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PAPER
Correlation of Column Sequences from the Arrays of Sidelnikov
Sequences of Different Periods∗

Min Kyu SONG†a), Nonmember and Hong-Yeop SONG†b), Member

SUMMARY We show that the non-trivial correlation of two properly
chosen column sequences of length q − 1 from the array structure of two
Sidelnikov sequences of periods qe − 1 and qd − 1, respectively, is upper-
bounded by (2d − 1)

√
q + 1, if 2 ≤ e < d < 1

2 (
√
q − 2√

q
+ 1). Based

on this, we propose a construction by combining properly chosen columns
from arrays of size (q − 1) × qe−1

q−1 with e = 2, 3, ..., d. The combining
process enlarge the family size while maintaining the upper-bound of max-
imum non-trivial correlation. We also propose an algorithm for generating
the sequence family based on Chinese remainder theorem. The proposed
algorithm is more efficient than brute force approach.
key words: Sidelnikov sequences, array structure, correlation

1. Introduction

Sequences with good correlation properties have been used
for various applications such as serving multiple users over
the same channel, estimating the channel state in digital com-
munications [3], and ranging the distance in GPS/GNSS
systems [1]. For communication systems employing code
division multiple access using direct-sequence spread spec-
trum (DS-CDMA), it is important to serve a given number
of multiple users with as low interference as possible, since
such systems are known to be interference-limited [5], [13].
Therefore, sequences have been designed so that their cor-
relation properties satisfy some optimality condition main-
taining certain reasonable size restriction.

Recent success in commercial mobile communications
through various generations up to 5G has reached a posi-
tion where “massive connectivity” and “grant-free access”
are getting more and more attentions and non-orthogonal
multiple access schemes need to be studied [11]. Dai et
al. [11, page.74] mentioned that “...due to the rapid devel-
opment of the Internet of Things (IoT), 5G needs to support
massive connectivity of users and/or devices to meet the de-
mand for low latency, low-cost devices, and diverse service
types.” Lots of multiple access (MA) schemes have recently
been proposed for massive connectivity and/or grant-free
access. Among these, the code-based MA schemes, for ex-
ample, MUSA (Multi-User Shared Access), are getting an
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attention for supporting massive connectivity and grant-free
access [19]. Therefore, now, we have to pay a lot more at-
tention on increasing the family size as much as possible in
the designing sequences for MA with correlation properties
somewhat compromised. This gives amotivation of studying
and developing sequence families of size as big as possible
with reasonable condition on correlation magnitude.

For the DS-CDMA, one has to find sequence families
with as low complex correlation as possible, with reasonable
number in size. Gold sequence family [2], constructed using
an m-sequence and its decimations, is a famous example of
optimal binary sequences family in correlation magnitude
with fairly large size. From then on, so many examples of
both binary and non-binary families with optimal correlation
properties have been studiedwith limited number in sizes [4],
[6]–[10], [17]. Sidelnikov sequences [12], which have been
initially presented as having good auto-correlation property,
have also been considered for the multiple acess for the first
time in [6] and this family has been considerably improved
in size by many others [4], [7], [8], [17]. The approach
in this line was to employ ‘multiplying constants’ or ‘shift-
and-add’ to increase the family size [4], [6], [7]. In 2010,
Yu and Gong proposed a sequence family construction from
the (q − 1) × q2−1

q−1 array structure of Sidelnikov sequences
of period q2 − 1 [17]. Later, this idea is generalized to use
Sidelnikov sequences of period qd−1 and its array structures
of size (q−1)× qd−1

q−1 [8]. Their main contribution is to study
the various properties of the column sequences of such array
structures [8]. Here, we would like to note that [17] and [8]
are considered correlation properties of column sequences
from the array structure of the same Sidelnikov sequence.

The main theme of this paper is investigation of corre-
lation properties of some column sequences of length q − 1
from the array structure of Sidelnikov sequences of possi-
bly different periods qe − 1 and qd − 1, respectively, where
2 ≤ e < d < 1

2 (
√

q − 2√
q
+ 1). For this, we first present a

brief review of previous results in Sect. 2. After then, Sect. 3
is devoted to discuss correlation of some column sequences
from the array structure of Sidelnikov sequences of differ-
ent lengths. This allows us to combine columns sequences
from Sidelnikov-sequence-arrays of different lengths while
remaining the same upper-bound on the maximum non-
trivial correlation. By this process, the combined sequence
family is of size slightly larger than that of sequence fami-
lies given by [8]. For some efficient implementation of the
proposed family, we give a construction in Sect. 4, which is
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much better than brute force approach discussed in [8]. In
Sect. 5, we finish this paper with some concluding remarks.

Throughout this paper, we will use the following nota-
tion:

• p is a prime number.
• q is a prime power q = pr with a positive integer r .
• GF (q) is the finite field with q elements.
• Zn is the integers modulo n.
• M is a divisor of q − 1 with M ≥ 2.
• α is a primitive element of GF (qd).

• β = α
qd−1
q−1 is a primitive element of GF (q).

• logβ (·) is a discrete log overGF (q) such that logβ (x) =
k if and only if non-zero x = βk in GF (q). We use
logβ (0) = 0 for convenience.

• pl (x) is the minimal polynomial of −α−l over GF (q).
• ωM = exp

(
2π
√
−1

M

)
is a primitive M-th root of unity.

• ψ is a multiplicative character of GF (q) of order M
defined by ψ(x) = ω

logβ (x)
M . Note that ψ(0) = 1.

2. Preliminaries

2.1 Correlation of Sequences

Let x = {x(n)}L−1
n=0 and y = {y (n)}L−1

n=0 be two M-ary se-
quences of period L. When we regard them as the phase
sequences of certain polyphase sequences, then the (peri-
odic) complex correlation between x and y at time shift τ is
given by

Cx, y (τ) =
L−1∑
n=0

ω
x(n)−y(n+τ)
M .

If y is cyclically equivalent to x, i.e., y is a cyclic shifted
version of x, then it is called autocorrelation and denoted
by Cx (τ), simply. Otherwise, Cx, y (τ) is correlation of two
cyclically inequivalent sequences x, y . In this case, it is
called crosscorrelation.

For a given set K of M-ary sequences of period L, the
maximum non-trivial complex correlation among sequences
in K , denoted by Cmax(K ), is

Cmax(K ) = max



max
x∈K
τ,0

|Cx (τ) | , max
x, y∈K
x,y

���Cx, y (τ)���



.

2.2 Sidelnikov Sequences and Their Array Structure

Let α be a primitive element of GF (qd), and β be the prim-
itive element of GF (q) given by the relation

β = α
qd−1
q−1 .

Then, for a divisor M of q − 1 with M ≥ 2, the t-th term of
an M-ary Sidelnikov sequence {sd (t)}q

d−1
t=0 of period qd − 1

*............
,

sd (0) sd (1) · · · sd ( q
d−1
q−1 − 1)

sd ( q
d−1
q−1 ) sd ( q

d−1
q−1 + 1) · · · sd (2 × qd−1

q−1 − 1)
.
.
.

.

.

.
. . .

.

.

.

sd ((q − 2) × qd−1
q−1 ) sd ((q − 2) × qd−1

q−1 + 1) · · · sd (qd − 2)

+////////////
-

Fig. 1 The 2-D array structure of a Sidelnikov sequence sd (t) of period
qd − 1.

can be written by [8]

sd (t) ≡ logβ
(
Nd

1 (αt + 1)
)

(mod M), (1)

where Nd
1 (x) is the norm function from GF (qd) to GF (q),

defined by

Nd
1 (x) =

d−1∏
i=0

xq
d

= x (qd−1)/(q−1) .

Consider the array of a Sidelnikov sequence by writing the
M-ary Sidelnikov sequence of period qd−1 as a (q−1)× qd−1

q−1
array shown in Fig. 1. Then, the t-th term of the l-th column
{vl (t)}

q−1
t=0 of the array can be written as

vl (t) = sd

(
qd − 1
q − 1

t + l
)
. (2)

According to [8], these can be classified cycli-
cally inequivalent columns by using a q-cyclotomic coset
mod qd−1

q−1 . For a given integer l, denote by Ĉl (d) the q-

cyclotmic coset mod qd−1
q−1 defined by

Ĉl (d) =
{
l, lq, lq2, ...

}
,

and let ml be the cardinality of Ĉl (d). Then, ml is the least
positive integer such that [8]

qd − 1
(qml − 1) gcd( d

ml
, q − 1)

���l . (3)

Then, the l-th column sequence given by (2) has the
following properties:

Fact 1 (Theorem 3 and Corollary 1 in [8]) Let {sd (t)} be
an M-ary Sidelnikov sequence of period qd − 1 given by (1)
and consider its (q − 1) × qd−1

q−1 array structure.

1. The first column {v0(t)} can be written as

v0(t) ≡ d logβ (βt + 1) (mod M).

2. Two column sequences
{
vl1 (t)

}
and

{
vl2 (t)

}
are cycli-

cally equivalent if l1, l2 are in the same q-cyclotomic
coset mod qd−1

q−1 .
3. If ml = d, then {vl (t)} is of period q − 1 for any M .

To consider cyclically inequivalent columns of period
q−1 regardless of M , we will consider the setΛ′(d) defined
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as the following: Λ(d) is the set of smallest representatives
of all the q-cyclotomic cosets Ĉl (d) mod qd−1

q−1 except for
l = 0, and

Λ
′(d) = {l ∈ Λ(d) |ml = d}. (4)

The exact size of Λ′(d) was known by [17] for d = 2 as
bq/2c and was known by [8] for some cases of d. It is also
known by [8] that, for d ≥ 3, as q → ∞,

��Λ′(d)�� ∼
qd−1

d
. (5)

If l ∈ Λ′(d), a column sequence {vl (t)} defined by (2)
can be alternatively written as [8]

vl (t) = logβ
(
βlpl

(
βt

))
, (6)

where pl (x) is a minimal polynomial over GF (q) which
has −α−l as a root. In [8], there were some constructions
for sequence families having good correlation properties by
using different subsets of Λ(d). Here, we review only the
case with Λ′(d), which will be considered in this paper:

Fact 2 (Theorems 4, 6 in [8]) For an integer d in the range
2 ≤ d < 1

2 (
√

q − 2√
q
+ 1), define a set of column sequences

Σ′(d) by

Σ
′(d) =

{
cvl (t) |l ∈ Λ′(d), 1 ≤ c < M

}
,

where vl (t) is given by (2).

1. Cmax(Σ′(d)) ≤ (2d − 1)
√

q + 1. As a result, all the
sequences in Σ′(d) are cyclically inequivalent to each
other.

2. |Σ′(d) | ∼ (M−1)qd−1

d .

In [8], they combined Σ′(d) with two previous known
sequence families IS of [6] andAS of [7] and [4] which are
sequence sets of period q − 1 and defined by

IS = {cs1(t) |1 ≤ c < M } , (7)

AS =

{
c0s1(t) + c1s1(t + δ) |1 ≤ δ ≤

⌊
q − 1

2

⌋}
, (8)

respectively, where s1(t) is the Sidelnikov sequence of period

q−1 generated by β = α
qd−1
q−1 and 1 ≤ c0, c1 < M if 1 ≤ δ ≤

b
q−1

2 c and 1 ≤ c0 < c1 if δ = q−1
2 . One interesting point

is that, even those are combined, the maximum non-trivial
complex correlation is still upper-bounded by (2d−1)

√
q+1.

The folowing have been used to obtain upper-bound on the
maximum non-trivial complex correlation:

Fact 3 (Weil bound [16]) Let f1(x), ..., f l (x) be l distinct
monic irreducible polynomials over GF (q) which are of
positive degree d1, ..., dl , respectively. Let ei be the num-
ber of distinct roots of f i (x) in GF (q) for 1 ≤ i ≤ l and k
be the number of distinct roots of

∏l
i=1 f i (x) in its splitting

field over GF (q). Let ψ1, ..., ψl be multiplicative characters
of GF (q), with ψi (0) = 1 for 1 ≤ i ≤ l. If the product

character
∏l

i=1 ψi ( f i (x)) is non-trivial for some x, then

�������

∑
x∈GF (q)

ψ1(a1 f1(x)) · · ·ψl (al f l (x))
�������
≤ (

l∑
i=1

di − 1)
√

q,

for any ai ∈ GF (q) \ {0}, 1 ≤ i ≤ l.

3. ColumnSequences fromSidelnikovSequences ofDif-
ferent Lengths

Our first goal is analyzing the cross-correlation of two col-
umn sequences of period q − 1 from arrays of two M-ary
Sidelnikov sequences of periods qe − 1 and qd − 1, respec-
tively, where 2 ≤ e ≤ d < 1

2

(
√

q − 2√
q
+ 1

)
.

Lemma 1 Let e, d be two positive integers with 2 ≤ e ≤
d < 1

2 (
√

q − 2√
q
+ 1) and consider GF (qe) and GF (qd).

There exist primitive elements of these fields, say, αe and

αd , respectively, such that α
qe−1
q−1
e = α

qd−1
q−1

d
∈ GF (q).

Proof Let h = lcm(e, d), and αh be a primitive element of

GF (qh). Choose αe = α
qh−1
qe−1
h

and αd = α

qh−1
qd−1
h

. Then, it is
obvious that

α
qe−1
q−1
e = α

qd−1
q−1

d
∈ GF (q),

which is desired.

Here after, we will use the notation that

α
qe−1
q−1
e = α

qd−1
q−1

d
= β

is the primitive element of GF (q) in the representation (1).

Theorem 1 Let e and d be some integers with 2 ≤ e < d <
1
2 (
√

q− 2√
q
+1). If we construct Σ′(e) and Σ′(d) by choosing

primitive elements αe and αd as in Lemma 1, then any two
sequences a(t) ∈ Σ′(e) and b(t) ∈ Σ′(d) have

��Ca,b (τ)�� ≤ (e + d − 1)
√

q + 1

as their maximum correlation magnitude. Hence, they are
cyclically inequivalent.

Proof From Lemma 1, make Ne
1 (αt

e + 1) and Nd
1 (αt

d
+ 1)

be functions of a primitive element β of GF (q). Then,
a(t) ∈ Σ′(e) with constant 1 ≤ c1 < M and column index l1
is

a(t) = c1 logβ βl1 pl1 (βt ),

and b(t) ∈ Σ′(d) with constant 1 ≤ c2 < M and column
index l2 is

b(t + τ) = c2 logβ βl2 pl2 (βt+τ ),
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Table 1 Comparison of Σ′(d) in [8] and Σ′U (d) in Def. 1 when q = 101, M = 100, and d = 3, 4.

Set size Asymptotic size (10) Maximum correlation Bound (9)

Σ′(3) in [8] 339,966 336,633 39.849 50.249

Σ′U (3) 344,916 336,633 39.849 50.249

Σ′(4) in [8] 25,749,900 25,499,950 43.475 70.349

Σ′U (4) 26,094,816 25,499,950 44.147 70.349

where βl1 pl1 (x) and βl2 pl2 (βτ x) are two distinct monic ir-
reducible polynomials of degree e and d, respectively. Then,
their complex cross-correlation function becomes

Ca,b (τ) =
q−2∑
t=0

ωa(t)−b(t+τ)
M

=

q−2∑
t=0

ψ1(βl1 pl1 (βt ))ψ2(βl2+τd β−τdpl2 (βt+τ )),

where ψ1 = ψc1 and ψ2 = ψM−c2 are both non-trivial
multiplicative characters. Here, note that β−τdpl2 (βt+τ ) =
pl2 (βt ). So, by applying the Weil bound in Fact 3, we have

|Ca,b (τ) |

=

�������

∑
x∈GF (q)∗

ψ1
(
βl1 pl1 (x)

)
ψ2

(
βl2 pl2 (βτ x)

) �������

≤

�������

∑
x∈GF (q)

ψ1
(
βl1 pl1 (x)

)
ψ2

(
βl2 pl2 (βτ x)

) �������
+ 1

≤ (e + d − 1)
√

q + 1.

Note that, since (e+d−1)
√

q+1 < q−1 under the assumption,
a(t) and b(t) are cyclically inequivalent.

From Theorem 1, we can construct a set of sequences
by taking a union of all the sequence families from the ar-
ray structures of Sidelnikov sequences of periods q2 − 1,
q3 − 1, ..., qd − 1 without increasing the upper-bound
on the maximum non-trivial complex correlation. Here,
we have to use some appropriate primitive elements of
GF (q2),GF (q3), ...,GF (qd), respectively, all obtained from
a primitive element of GF (qh) where h = lcm(2, ..., d).

Definition 1 (Unified sequence family) Assume that all the
primitive elements are chosen properly and let Σ′U (d) be the
set of M-ary sequences of period q − 1, given by

Σ
′U (d) =

d⋃
e=2
Σ
′(e).

Corollary 1 If 2 ≤ d < 1
2 (
√

q − 2√
q
+ 1), then

Cmax(Σ′U (d)) ≤ (2d − 1)
√

q + 1. (9)

Since the sequence family in Definition 1 is the union

of Σ′(d) in [8], we can directly combine it with IS and AS

to construct new sequence families.

Corollary 2 With all the previous assumptions and nota-
tions, construct a new set of sequences by combinining
Σ′U (d), IS , and AS . Then, any pair of sequences in the
set are cyclically inequivalent and

Cmax(Σ′U (d) ∪ IS ∪ AS ) ≤ (2d − 1)
√

q + 1.

Note that, even though Σ′U (d) is union of properly
chosen columns from arrays of size (q − 1) × qe−1

q−1 with
e = 2, 3, ..., d, from the asymptotic size of Σ′(d) in (5), we
have

���Σ
′U (d)��� ∼ (M − 1)qd−1/d. (10)

Table 1 shows the comparison of Σ′(d) of [8] and
Σ′U (d) of this paper for q = 101, M = 100, and d = 3, 4.
Here, all the appeared maximum correlation magnitudes are
calculated by using up to one million pairs of sequences.
In this table, Σ′U (d) is of size slightly larger than that of
Σ′(d). This is because Σ′U (d) additionally contains Σ′(2),
... Σ′(d−1), all of which are only of marginal size compared
with that of Σ′(d). We finish this section with Table 2 which
gives a comparison of the proposed family Σ′U (d) with some
well-known polyphase sequence families.

4. Problem of Constructing for Λ′(d)

So far, we have just defined the set Λ′(d) mathematically
over the integers mod (qd −1)/(q−1). As mentioned in [8],
a brute force approach for obtaining Λ′(d) may take time-

complexity on the order of
(
qd−1
q−1

)2
and the requiredmemory

size is approximately qd−1

d × dlog2
qd−1
q−1 e. This may be huge

for large q and d. To overcome this, we need more efficient
construction for Λ′(d).

Let qd−1
q−1 =

∏k
i=1 pek

k
be the prime factorization of qd−1

q−1
and consider a map from Z qd−1

q−1
to

∏k
i=1 Zpei

i
given by

f : x 7−→
(
x mod pe1

1 , x mod pe2
2 , ..., x mod pek

k

)
, (x1, x2, ..., xk ) . (11)

By the Chinese remainder theorem, it is known that the map
in (11) defines a ring isomorphism
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Table 2 Comparison with some known polyphase sequence families.

Length L Alphabet Size M Cmax Family Size

Trachtenberg [15] pm − 1 L =
√
p(L + 1) + 1 = L + 2

Kumar, Moreno [10] pm − 1 p ≤
√
L + 1 + 1 = L + 1

Kumar, Helleseth [9] 2m − 1 4 ≤ 4
√
L + 1 + 1 ≥ L3 + 4L2 + 5L + 2

Kim, Song [6] q − 1 M |q ≤
√
q + 3 = M − 1

Kim et al. [7] q − 1 M |q ≤ 3√q + 5 = (M − 1)
( (M−1)(q−1)+δ−2

2
)

Yu, Gong [17] q − 1 M |q ≤ 3√q + 5 =
M (M−1)

2 (q − 2) + (M − 1)

Kim, Kim, Song [8] q − 1 M |q ≤ (2d − 1)
√
q + 1 ∼ (M − 1)qd−1/d

Σ′U (d) in this paper q − 1 M |q ≤ (2d − 1)
√
q + 1 ∼ (M − 1)qd−1/d, slightly larger than the above; See Table 1.

Z qd−1
q−1

�
k∏
i=1
Zpei

i
= Zpe1

1
× Zpe2

2
× · · · × Zpek

k
.

That is, themap preserves additions andmultiplications of el-
ements. (Here, additions and multiplications over

∏k
i=1 Zpei

i

are performed component-wise.) The inverse map of (11) is
well-known by

g : (x1, x2, ..., xk ) 7−→
k∑
i=1

xi yi zi = x, (12)

where yi = (qd − 1)/(q − 1)peii and zi = y−1
i (mod peii ).

Here, q . 0 (mod peii ) for any i since qd ≡ 1 (mod qd−1
q−1 ).

Lemma 2 For a prime power q, let
∏k

i=1 pek
k

be the prime
factorization of qd−1

q−1 and f be the function given by (11).

1. For an integer a ∈ Z qd−1
q−1

, the q-cyclotomic coset Ĉa (d)

mod qd−1
q−1 is of size d if and only if there exists some

index i such that q jai ≡ ai (mod peii ) only when j is a
multiple of d.

2. Two integers a, b ∈ Z qd−1
q−1

are not in the same q-

cyclotomic coset mod qd−1
q−1 if and only if there exists

some j such that a j , qubj for any u = 0, 1, 2, ..., d − 1.

Proof We omit the proof since it is straightforward.

Based on Lemma 2, Λ′(d) can be obtained by picking
up an element in

∏k
i=1 Zpei

i
according to the following rules

and applying the map g given by (12):

FIRST RULE: For the condition ���Ĉa (d)��� = d, from
Lemma 2-1, pick up an element a from

∏k
i=1 Zpei

i
in

which q jai ≡ ai (mod peii ) only when j is a multiple
of d.

SECOND RULE: To pick up representatives of different
q-cyclotomic cosets mod qd−1

q−1 , there should be at least

one index i for which those elements have distinct rep-
resentatives of q-cyclotomic cosets mod peii .

Here, if ei = 1, finding all the representatives of q-
cyclotomic cosets mod pi can be done in a straightforward
manner as follow:

Lemma 3 For a prime power q and an integer d ≥ 2, let pi
be a prime factor of qd−1

q−1 , and δ be a primitive root of Zpi .
Then,{

δx | 0 ≤ x ≤
pi − 1
v
− 1

}
is a set of all the representatives of q-cyclotomic cosets mod
pi , where v is the smallest positive integer such that qv ≡ 1
(mod pi).

Proof Note that q . 0 (mod pi), since qd ≡ 1
(mod qd−1

q−1 ). Therefore, q can be written as a power of
δ, i.e.,

q = δ
u (p−1)

v

where v is the smallest positive integer such that qv ≡ 1
(mod pi). Then, δx . qiδy (mod pi) for any i, if 0 ≤ x <

y ≤
pi−1
v − 1. And, obviously, if pi−1

v ≤ y ≤ pi − 1, there
exist some x with 0 ≤ x ≤ pi−1

v − 1 such that δx = qiδy for
some i.

Example 1 Let q = 7 and d = 3. Then, (qd − 1)/(q − 1) =
57 = 3 × 19 is a multiple of two odd prime numbers. By
Lemma 3, we can find representatives of all the q-cyclotomic
cosets mod 3 and all the q-cyclotomic cosets mod 19, respec-
tively. Here, since q ≡ 1 (mod 3), any element of Z3 is a
representative of a q-cyclotomic coset mod 3. Note that any
elements of Z3 represents a q-cyclotomic coset mod 3 with
cardinality 1. Therefore, according to FIRST RULE, it is
enough to consider Z19. Choose 2 as a primitive root of Z19.
Lemma 3 implies that
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Algorithm 1 An Algorithm for constructing Λ′(d)
Input: Two integers q and d
Output: The set Λ′(d)

1: Determine prime factors: qd−1
q−1 =

∏k
i=1 p

ek
k

2: Determine (q1, q2, ..., qk ) = f (q) by (11)
3: Set T =

{
i | qx

i . 1 (mod p
ei
i ) for any x not a multiple of d

}

4: for i = 1 to k do
5: Set Ai = ∅

6: if i ∈ T then
7: Find all the representatives of q-cyclotomic cosets mod p

ei
i

of size d, and put them into Ai

8: end if
9: end for
10: SetU = {(u1, u2, ..., uk ) | ui ∈ Z2 for i ∈ T and

ui = 0 for i < T } \ {(0, 0, ..., 0) }
11: Set B = ∅
12: for each u ∈ U do
13: B ← B ∪ {(x1, x2, ..., xk ) | xi ∈ Ai for ui = 1 and

xi ∈ Zpei
i
\ Ai for ui = 0}

14: end for
15: return {g(b) | b ∈ B } where g is defined in (12)

{
2x | 0 ≤

p2 − 1
3
− 1 = 5

}
= {1, 2, 4, 8, 16, 13} (13)

is the set of all the representatives 2x of 7-cyclotomic cosets
mod 19. Note that the size of the coset represented by 2x

above can be either 1 or 3. Just check the size of each and
obtain the set A2 of representatives of q-cyclotomic cosets
mod 19 of size d = 3, as

A2 = {1, 2, 4, 8, 16, 13}.

By using the function g defined in (12), we can construct
Λ′(d) as

Λ
′(d = 3) = {g (b1, b2) | b1 ∈ Z3, b2 ∈ A2} ,

and hence,
��Λ′(3)�� = |Z3 | × |A2 | = 18.

The process in Example 1 can be generalized as Algo-
rithm 1. When we use Algorithm 1 without pre-computed
information about Ai’s, the time-complexity of construct-
ing each Ai by checking 1 to peii − 1 is order of p2ei

i . So,
total time-complexity is at most order of

∑k
i=1 p2ei

i , which

becomes much smaller than
(
qd−1
q−1

)2
=

∏k
i=1 p2ei

i .
When we use Algorithm 1 with pre-computed informa-

tion of Ai’s, the required memory size is reduced to at most∑k
i=1

p
ei
i

d × dlog2 peii e bits, and hence, the required memory
size also becomes smaller as the number of distinct prime
factors of qd−1

q−1 becomes larger.

5. Concluding Remarks

The main contribution of this paper is the analysis of cross-
correlation of some column sequences from the array struc-
ture of Sidelnikov sequences of period q2−1, q3−1, ..., qd−1,
and enlarging size of the previous family by involving all of

them while preserving upper-bound on the correlation. The
proposed sequence family may be applicable to code-based
non-orthogonalmultiple access schemes formassive connec-
tivity and/or grant-free access. We also gave an algorithm
to generate the proposed family. The proposed algorithm
is more efficient than brute force approach, but it might be
not enough to use them in practice. Therefore, it would be
important to find a more efficient manner for identifying the
set Λ′(d).
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