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PAPER
Phase-Based Periocular Recognition with Texture Enhancement

Luis Rafael MARVAL-PÉREZ†, Nonmember, Koichi ITO†a), and Takafumi AOKI†, Members

SUMMARY Access control and surveillance applications like walking-
through security gates and immigration control points have a great demand
for convenient and accurate biometric recognition in unconstrained scenar-
ios with low user cooperation. The periocular region, which is a relatively
new biometric trait, has been attracting much attention for recognition of an
individual in such scenarios. This paper proposes a periocular recognition
method that combines Phase-Based Correspondence Matching (PB-CM)
with a texture enhancement technique. PB-CM has demonstrated high
recognition performance in other biometric traits, e.g., face, palmprint and
finger-knuckle-print. However, a major limitation for periocular region is
that the performance of PB-CM degrades when the periocular skin has poor
texture. We address this problem by applying texture enhancement and
found out that variance normalization of texture significantly improves the
performance of periocular recognition using PB-CM. Experimental evalua-
tion using three public databases demonstrates the advantage of the proposed
method compared with conventional methods.
key words: periocular recognition, phase-only correlation, phase-based
image matching, phase features, texture enhancement, biometrics

1. Introduction

Reliable authentication of individuals in unconstrained sce-
narios is increasingly required for applications, such as immi-
gration control, entrance-exit management, surveillance, law
enforcement, forensics, etc. [1]. Capturing high-resolution
images in less-constrained environments with relaxed coop-
eration is crucial for user experience in terms of convenience
and acceptability [2], and it is relatively easy using the state-
of-the-art imaging technology. However, accurate person
authentication requires careful consideration in the choice
of an adequate biometric trait. In general, iris and face have
been used in unconstrained scenarios. Face recognition per-
formance has greatly improved in the last decades [3], and
iris recognition has arguably the highest performance in con-
trolled settings [4]. On the other hand, the applicability of
face recognition is limited, since face recognition methods
have to deal with factors such as facial expressions, lighting
variations, and occlusions in order to achieve accurate au-
thentication. Iris recognition methods also have to deal with
different factors, especially, partial occlusions due to specu-
lar reflections and eyelashes, non-frontal gaze, motion blur,
and defocus blur. Such impairments degrade recognition
performance or sometimes prevent recognition at all.

Over the last years, the periocular region—the ex-
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Fig. 1 Discriminative features included in the periocular region, where
the image sample is from the UBIPr database.

tended region around the eye—has received considerable
attention [5]–[7]. Periocular region includes many discrim-
inative components, such as iris, sclera, skin, eyefolds, eye-
lashes and eyebrows [6]. These components are indicated
in Fig. 1 for an image sample from the UBIPr database [8].
They allow highly accurate recognition comparable with iris
recognition in non-controlled scenarios [9]–[11]. In addi-
tion, existing sensing setups for face recognition and iris
recognition can be used also for periocular recognition.

In order to achieve efficient performance in periocular
recognition, highly accurate image matching techniques are
indispensable, since images captured from periocular region
usually exhibit nonlinear deformation due to variations in
head pose and facial expression as well as partial occlusion
by eyeglasses, hairs, etc. This paper proposes a periocular
recognition algorithm using Phase-Based Correspondence
Matching (PB-CM) [12], which has demonstrated efficient
performance in face, palmprint and finger knuckle recog-
nition [13]. PB-CM employs local block matching using
phase features obtained from 2D Discrete Fourier Trans-
form (DFT) of image blocks. It combines phase features
with image resolution pyramids to deal with deformation
caused by variations in head pose and facial expression. The
final matching score is calculated by summarizing results of
local block matching in PB-CM, resulting in having the ro-
bustness against partial occlusion. The above characteristics
of PB-CM are useful also in periocular recognition because
of its robustness against partial occlusion and non-linear im-
age deformation.

A major problem of PB-CM is that its performance
is significantly degraded when it is applied to regions with
poor texture such as the skin under the eye. Addressing this
problem, we combine phase-based correspondence match-
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ing with a texture enhancement technique to make a highly
robust recognition algorithm for periocular images. Experi-
mental evaluation using three public databases demonstrates
the efficient performance of the proposed algorithm in peri-
ocular recognition compared with conventional algorithms.

Contributions of this paper are summarized as fol-
lows: (i) a new periocular image recognition algorithm using
phase-based correspondence matching, (ii) a technique for
improving its recognition performance through variance nor-
malization, and (iii) systematic experimental evaluation of
the algorithms using three public databases.

2. Related Work

Let us start by reviewing a simplified flow diagram in Fig. 2
of a biometric system that performs periocular recognition.
The recognition process comprises sensing, periocular re-
gion extraction, feature extraction and matching. During
sensing, the system captures a raw image which includes
the periocular region in the visible or near-infrared spec-
trum. Once the image is captured, the system normalizes
the periocular region using eye detection [9], [14]–[16] or
eye corners detection [8]. Normalization involves scaling,
rotation and cropping of the captured image. From the nor-
malized periocular image, the system extracts discriminative
feature vectors. Then, the similarity between a probe im-
age and a registered image is evaluated by comparing these
features.

Previous works on periocular recognition applied tradi-
tional features used in biometric recognition, especially, in
face recognition. Examples of works employ Histograms
of Oriented Gradients (HOGs) [17]–[19], Local Binary
Patterns (LBPs) [8], [17], [19]–[22], Principal Component
Analysis (PCA) [22] and Scale-Invariant Feature Transform
(SIFT) [8], [17], [18], etc. The recognition methods using
these features are relatively robust against imperfect align-
ment and changes in facial expression. However, their per-
formance is limited since they do not fully exploit the texture
information within the periocular region.

Among recent periocular recognition methods, we find
those based on Convolutional Neural Networks (CNNs)
[23]–[25] and those based on a correlation filter known as
Fusion Optimal-Trade-off Synthetic Discriminant Function
(FOTSDF) [18], [26]–[28]. For comparison purpose, we put
our attention on two of these methods: Semantic-Assisted
CNN (SCNN) [23] and Periocular Probabilistic Deforma-
tion Model (PPDM) [27]. One major disadvantage of these
state-of-the-art methods is that they require training data.
CNN-based approaches require large training datasets for
optimization which are not usually available, and FOTSDF-
based approaches rely on image samples of target users for
training and parameter selection.

In this paper, we propose Phase-Based Correspondence
Matching (PB-CM) with texture enhancement for periocu-
lar recognition. PB-CM handles various nonlinear trans-
formation by comparing local blocks at their corresponding
location in a similar way to SIFT feature matching. Com-

Fig. 2 Flow diagram of a periocular recognition system.

Fig. 3 Correspondence matching examples for two periocular images of
the same person (genuine pair) using m-SIFT features matching (a) and
using PB-CM (b). Red dots indicate corresponding locations successfully
estimated, and blue dots indicate failed estimations.

paring with SIFT feature matching (Fig. 3(a)), PB-CM uti-
lizes precise corresponding locations for accurate similar-
ity evaluation (Fig. 3(b)). PB-CM employs phase features
which have shown to be effective for representing various
biometric texture, such as fingerprint, iris, face, palmprint
and finger-knuckle-print [29]. However, the skin below the
eyes has usually a weak texture and does not yield the same
recognition performance as other parts of the periocular re-
gion. We found out that we can enhance the skin texture
with variance normalization and improve the discriminative
capacity of the phase features in periocular recognition. In
this manner, the novel combination of PB-CM with texture
enhancement makes an intensive use of the available perioc-
ular texture. This allows our method to compete favorably
against advanced periocular recognition approaches such as
FOTSDF-based [27] and CNN-based [23] methods.
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3. Fundamentals for Phase-Based Periocular Recogni-
tion

Let us formalize the image matching problem. The problem
is to accurately measure the similarity between two peri-
ocular images, a given enrolled image I (registered in the
gallery) and a probe image J. In a real situation, the peri-
ocular regions in these images are not perfectly normalized,
and may contain occlusions and global deformation, which
must be addressed in the image matching task. The block-
wise image matching, which compares multiple local image
blocks extracted from the given pair of images, could handle
these problems, since occlusions and deformation are less
pronounced at the scale of small blocks. For these compar-
isons to be accurate, it is necessary for the local blocks to be
aligned, i.e., to be at their corresponding locations between
the two images, like the locations indicated by red dots in
Fig. 3(b). We use Phase-Only Correlation (POC) to find
the corresponding locations and to measure the collective
similarity between the groups of blocks.

We first present fundamentals of POC for robust image
matching. Second, we introduce a texture enhancement tech-
nique, which significantly improves matching performance
for periocular images. Third, we present a technique for
phase-base correspondence search and possible similarity
measures for periocular recognition. We leave the overall
design of the periocular recognition algorithm to the next
section.

3.1 Phase-Based Image Matching

Let us consider two N1 × N2 local blocks, f (n1, n2) and
g(n1, n2), extracted from the image I with the center coor-
dinate p and from the image J with the center coordinate
q, respectively. The ranges of image coordinates are given
by n1 = −N−1 , · · · , N+1 and n2 = −N−2 , · · · , N+2 , where N−1 =
d(N1 − 1)/2e, N+1 = b(N1 − 1)/2c, N−2 = d(N2 − 1)/2e and
N+2 = b(N2 − 1)/2c. In order to extract the local phase
features, we calculate the 2D DFTs of the blocks with the
following equations:

F (k1, k2) =
∑
n1,n2

{
f (n1, n2) − f DC

}
w (n1, n2)

×W k1n1
N1

W k2n2
N2

= AF (k1, k2)e jθF (k1,k2), (1)
G(k1, k2) =

∑
n1,n2

{
g(n1, n2) − gDC

}
w (n1, n2)

×W k1n1
N1

W k2n2
N2

= AG (k1, k2)e jθG (k1,k2), (2)

where
∑

n1,n2 denotes
∑N+1

n1=−N
−
1

∑N+2
n2=−N

−
2
, the twiddle factors

are given by WN1 = e−j
2π
N1 and WN2 = e−j

2π
N2 , and the ranges

of the transformed blocks are k1 = −N−1 , · · · , N+1 , k2 =
−N−2 , · · · , N+2 . AF (k1, k2) and AG (k1, k2) are the amplitude

components of the two image blocks, and θF (k1, k2) and
θG (k1, k2) are the phase components.

We modify the original POC-based matching [31], [32]
as follows. In order to address the wrap around effect of
the 2D DFT, we apply a window function w (n1, n2), i.e.,
Hanningwindow, to Eqs. (1) and (2) in our case. As observed
above, we subtract the DC components of f (n1, n2) and
g(n1, n2), which are denoted by f DC and gDC , since they
do not contribute to the texture description.

We define the local phase features at the coordinates p
and q as

X (k1, k2) =
F (k1, k2)
|F (k1, k2) |

, (3)

Y (k1, k2) =
G(k1, k2)
|G(k1, k2) |

. (4)

The normalized cross-power spectrum R(k1, k2) is computed
from the phase features X (k1, k2) and Y (k1, k2) as

R(k1, k2) = X (k1, k2)Y (k1, k2)
= e j {θG (k1,k2)−θF (k1,k2) }, (5)

where X (k1, k2) is the complex conjugate of X (k1, k2).
Then, the POC function rPOC(n1, n2) is defined as the 2D
Inverse DFT (2D IDFT) of R(k1, k2):

rPOC(n1, n2) =
1

N1N2

∑
k1,k2

R(k1, k2)

×W−k1n1
N1

W−k2n2
N2

, (6)

where
∑

k1,k2 denotes
∑N+1

k1=−N
−
1

∑N+2
k2=−N

−
2
.

The POC function rPOC(n1, n2) exhibits a sharp peak
when the two image blocks are similar. The location of this
correlation peak indicates the translational displacements
δ = (δ1, δ2) between the two image blocks, while the peak
height α serves as a measure of their similarity [30]. In
this way, we can compare two image blocks by comput-
ing their POC function. However, the correlation peak of
the POC function can be very noisy due to the low signal-
to-noise ratio in the high-frequency domain. In computer
vision applications, this problem has been addressed with a
spectral weighting function to decrease the influence of high
frequency components [31], while in biometrics a simpler
strategy to omit the high frequency components is adopted.
This approach is called Band-Limited POC (BLPOC) [32],
since it limits the frequency band to a smaller size K1 × K2
(K1 < N1, K2 < N2) in the 2D IDFT computation of
Eq. (6). More precisely, the frequency range is restricted
as k1 = −K−1 , · · · , K

+
1 and k2 = −K−2 , · · · , K

+
2 , where K−1 =

d(K1 − 1)/2e, K+1 = b(K1 − 1)/2c, K−2 = d(K2 − 1)/2e and
K+2 = b(K2 − 1)/2c. Then, the BLPOC function r (n1, n2) is
defined by rewriting Eq. (6) as

r (n1, n2) =
1

N1N2

∑
k1,k2

′
R(k1, k2)W−k1n1

N1
W−k2n2

N2
,

(7)
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where
∑′

k1,k2
denotes

∑K+1
k1=−K

−
1

∑K+2
k2=−K

−
2
. The peak location

of the BLPOC function
(
δBL1 , δBL2

)
indicates the translational

displacement δ = (δ1, δ2) between the image blocks such
that δ1 = δBL1 N1/K1 and δ2 = δBL2 N2/K2. The BLPOC
function is particularly effective for matching a variety of
biological textures and is useful for biometric authentication
[29].

We refer to the phase features X (k1, k2) and Y (k1, k2)
as band-limited functions. That is to say, they are defined
for k1 = −K−1 , · · · , K

+
1 and k2 = −K−2 , · · · , K

+
2 . Note that

r (n1, n2) is also band-limited, and hence it is defined for
n1 = −K−1 , · · · , K

+
1 and n2 = −K−2 , · · · , K

+
2 .

3.2 Texture Enhancement

Phase-based image matching has shown to be effective for
recognizing popular biometric traits such as fingerprint [32],
iris [33], palmprint [12], [34], and finger knuckle [35], [36],
which contain homogeneous texture components. When we
apply phase-based imagematching to periocular recognition,
however, we have to deal with heterogeneous texture com-
ponents contained in periocular images. For example, while
the appearance of eyebrows have very distinctive textures,
the skin around the eyes might have poor texture, which de-
teriorates the recognition performance. It is necessary to
enhance the periocular images so as to make the poor texture
more visible and make the whole image more homogeneous.
Therefore, we employ variance normalization of texture, also
known as contrast normalization [37], which adjusts the lo-
cal variance of pixel intensity across the whole image to the
same level. The phase-only image, which, for example, is
obtained from IDFTof X in Eq. (3), corresponds to the image
having an equalized variance of pixels. This fact indicates
that phase features in the frequency domain corresponds to
the image in the spatial domain after variance normalization.
Therefore, the important information of phase features can
be enhanced by applying variance normalization in the spa-
tial domain. Variance normalization consists of three steps
as illustrated in Fig. 4.
(i) Extract local patches: Extract a small (e.g. 7× 7 pixels)
local patch from the original image for every pixel.
(ii) Normalize patches: For all the patches, eliminate their
DC components and normalize their variance. A given patch
ν(n1, n2) is normalized as follows:

ν̂(n1, n2) =
ν(n1, n2) − νDC

max *.
,
η,

√ ∑
{n′1,n

′
2 }∈C
{ν(n′1, n

′
2) − νDC }2

+/
-

,

(8)

where C is a set of patch coordinates, η is a small constant to
cancel noise and νDC is the DC component which is given
by

νDC =
∑

{n1,n2 }∈C

ν(n1, n2)
|C |

. (9)

Fig. 4 Texture enhancement with variance normalization, which consists
of three steps: (i) extract one patch per pixel, (ii) normalize the variance of
each patch and (iii) combine them into a new image.

(iii) Aggregate normalized patches: Construct a new image
by aggregating the patches using their original pixel coordi-
nates. The intensity of each pixel in the new image is given
by adding overlapping neighbor patches.

The general formulation of the steps (i) and (ii) is called
Divisive Normalization Transform (DNT), and it is effective
to reduce the statistical dependencies [38]. DNT has been
applied to image processing tasks such as image compression
[39] and contrast enhancement [40] among others.

In order to illustrate the effect of texture enhancement
on theBLPOC function, Fig. 5 depicts an example ofBLPOC
matching without texture enhancement and another example
with texture enhancement. Both examples show the image
blocks f (n1, n2) and g(n1, n2), the phase features X (k1, k2)
andY (k1, k2) and the respective BLPOC functions r (n1, n2).
TheBLPOC functionwithout enhancement exhibitsmultiple
peaks, and the location of the highest peak does not corre-
spond to the correct translational displacement between the
two image blocks. On the other hand, the BLPOC function
with texture enhancement produces a single peak, which
location indicates the correct translational displacement be-
tween the two image blocks.

3.3 Phase-Based Correspondence Search

As mentioned above, accurate authentication in biometrics
cannot be performed unless dealing with various transfor-
mation between the images, for example, those caused by
variations in facial expression and head pose. To address the
global image transformation appeared in periocular images,
we combine phase-based block matching with a coarse-to-
fine search strategy using multi-scale image pyramids [41].
This technique is known as Phase-Based Correspondence
Matching (PB-CM) and it consists of two main steps: cor-
respondence search and similarity evaluation. Ito et al. [12]
proposed this technique for palmprint recognition and it was
later extended to other biometric traits [13], [42]. We mod-
ified this technique for periocular recognition and demon-
strated that the designed method can achieve the highest
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Fig. 5 Effect of texture enhancement on the BLPOC function for comparison of a genuine block pair
with poor texture (left: without texture enhancement, right: with texture enhancement).

level of performance on matching periocular features tex-
tures when compared with the other methods reported so
far.

Given a pair of periocular images, the problem con-
sidered here is to find a set of corresponding block pairs
between the two images and evaluate their similarity on the
basis of block-wise correlation computation. Let P be a set
of Nb local block locations (i.e., coordinates) on the enrolled
image I, where P = {p1, · · · , pNb

} ⊆ Z2 determined in ad-
vance. The correspondence search problem is to find the set
of corresponding block locations Q = {q1, · · · , qNb

} ⊆ Z2

on the probe image J. The search of Q comprises three main
steps:
(i) Generate multi-resolution image pyramids

We indicate the resolution layer of the image pyramids
by the superscript l, where l = 0, · · · , lmax . That is Il for
the enrolled image and Jl for the probe image. We generate
the image pyramids by setting I (= I0) and J (= J0) and
applying the following equations:

Il (n1, n2) =
1
4

1∑
j1=0

1∑
j2=0

Il−1(2n1 + j1, 2n2 + j2), (10)

Jl (n1, n2) =
1
4

1∑
j1=0

1∑
j2=0

Jl−1(2n1 + j1, 2n2 + j2), (11)

for all l = 1, · · · , lmax . After generating image pyramids,
texture enhancement described in Sect. 3.2 is carried out for
all the resolution layers.
(ii) Determine a set of local block locations in the enrolled
image pyramid

Let Pl = {pl1, · · · , p
l
Nb
} denote a set of local block

locations on the the l-th layer enrolled image Il . A set of
block locations P0 = {p0

1 · · · , p
0
Nb
} on the original enrolled

image I0 are given in advance as P0 = P and p0
t = pt .

Then, the lower-resolution coordinates can be automatically
computed as

plt =

⌊
1
2l

p0
t

⌋
, (12)

where t = 1, · · · , Nb and l = 1, · · · , lmax .
(iii) Estimate the corresponding block locations

Let Ql = {ql1, · · · , q
l
Nb
} denote a set of corresponding

block locations on the l-th layer probe image Jl . These coor-
dinates are estimated using a coarse-to-fine strategy. The l-th
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Fig. 6 Sketch of phase-based correspondence matching.

layer corresponding block location qlt (∈ Ql) is derived from
the (l + 1)-th layer correspondence (pl+1

t , ql+1
t ) recursively

by

qlt = 2
(
ql+1
t + δl+1

t

)
, (13)

where t = 1, · · · , Nb , l < lmax and δl+1
t denotes the transla-

tional displacement between pl+1
t and ql+1

t estimated by the
BLPOC function. This recurrence starts from the coarsest
layer l = lmax , where we assume the simplest approxima-
tion:

qlmax
t = plmax

t . (14)

The recurrence ends at the original resolution layer l = l0.
As a result, we obtain a set of coordinates Q = Q0 on the
probe image that corresponds to a set of coordinates P on the
enrolled image. Fig. 6 depicts the coarsest-to-fine strategy
for estimating the corresponding points q1

t on J1 and q0
t on

J0. The result of the original layer l0 is used for similarity
evaluation as it is explained below in Sect. 3.4.

We modify the original PB-CM [12], [13], [42] in or-
der to dedicate PB-CM to periocular image matching as
summarized below. The original PB-CM uses three level
resolution pyramids, that is, lmax = 3 [13]. In the case of
periocular images, this is challenging due to the presence of
occlusions and variations in gaze. Nonetheless, detection
of eyes and facial landmarks is very mature and can ensure
reliable global alignment of periocular images. Our exper-
imental observation shows that correspondence search with
two-level resolution pyramid, lmax = 1, should suffice to a
wide range of periocular recognition applications. We also
introduce the new similarity evaluation metric for periocular
recognition described in the next subsection.

3.4 Similarity Evaluation

We evaluate the similarity between I and J through block-
wise matching on the original resolution using the corre-
sponding locations Q obtained from the correspondence
search. This is to compute the BLPOC functions between
a set of blocks at locations P on I and a set of blocks at
locations Q on J so as to find the correlation peak values.

Fig. 7 Block center selection using thresholding to detect reflections:
(a) the original image pair, (b) reflection masks and block locations with
selected locations indicated by red dot and the discarded locations indicated
by blue dots and (c) images after filling the areas that have reflections and
the final block locations used for matching.

So far, we assumed that all the blocks in Q = q1, · · · , qNb

are valid in that they precisely correspond to the blocks in
P = p1, · · · , pNb

.
In a real situation, however, we have to consider that

some blocks in Q are meaningless, since periocular images
can present different kinds of occlusions such as glasses,
hair, hats and specular reflections, which significantly dis-
turb the matching operation. In particular, specular reflec-
tions have a considerable impact on recognition performance
[43], which we actually confirmed through experiments. To
address this problem, we detect the specular reflections with
simple thresholding operation and discard the blocks (in P
and Q) that are mostly covered by reflections. To be precise,
in our experiments, a block is discarded when reflections
occupies more than 50% of the block area.

We first define reflection masks MI and MJ for the
enrolled image I and the probe image J, respectively, through
thresholding:

MI (n1, n2) =
{

1 if I (n1, n2) < 252
0 otherwise , (15)

MJ (n1, n2) =
{

1 if J (n1, n2) < 252
0 otherwise , (16)

where 1 indicates valid pixels and 0 indicates possible spec-
ular reflections. In order to weaken the effect of abrupt
intensity changes caused by specular reflections, we fill the
area with reflections by interpolating inward from the pixel
values on the outer boundary of such area†.

Using the reflection masks, we can select valid blocks
for which more than half of the pixels are valid. Fig. 7
depicts the block selection for two images with considerable
specular reflections (Fig. 7(a)). We can observe how the
effect of the specular reflection on the glasses is reduced in

†For example, Matlab provides the regionfill function for this
purpose.
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Fig. 8 Overall of the proposed periocular recognition method: (a) verification procedure of phase-
based correspondence matching with texture enhancement and (b) enrolment procedure of phase-based
correspondence matching with texture enhancement.

Fig. 7(c). After the block selection, we can determine the
valid block pairs (pt, qt ), where both of two blocks are valid
in I and J, respectively. Let V be the set of all the indices
t for the valid block pairs (pt, qt ), i.e., V = {t |(pt, qt )} is
a valid block pair, where pt ∈ P and qt ∈ Q. Then, the
correlation peak value αt of the BLPOC function between
the block pair (pt, qt ) is said to be valid if and only if the
block pair is valid, i.e., t ∈ V .

We consider three measures for similarity (i.e., match-
ing scores) between I and J using the valid correlation peak
values. The first measure is the straightforward average of
the valid peak values αt as

Save =
1
|V |

∑
t∈V

αt . (17)

The second measure is the n-rank of peak values ordered
from highest to lowest as

Srank = αtn, (18)

where the valid peak values are sorted as αt1 ≥ · · · ≥ αtn ≥

· · · ≥ αt|V | . The third measure is the number of peak values
that are greater than a threshold value thr as

Sthr =
∑
t∈V

h(αt ), (19)

where

h(x) =
{

1 if x ≥ T hr
0 otherwise. .

4. Periocular Recognition Algorithm

We describe our proposed algorithm for periocular recogni-
tion using PB-CM with texture enhancement. Fig. 8 shows
the overall of the recognition method. The enrolment proce-
dure is depicted in Fig. 8(b) and described by Algorithm 1.
During enrolment, we register a given periocular image as

Algorithm 1 Enrolment procedure
Require: An image I to be enrolled
Ensure: A set of phase features X l

t (k1, k2) for I
Generate the reflection mask MI (n1, n2) by Eq. (15)
Fill the area with specular reflections on I as described in Sect. 3.4
Generate a two-layer resolution pyramid and apply texture enhancement
so as to obtain I0 and I1 as described in Sect. 3.3 and Sect. 3.2
for t ∈ {1, 2, · · · , Nb } do

if the block at location p0
t has more than 50% of valid pixels according

to MI (n1, n2) then
Extract a block from I0 at p0

t
Compute the phase feature X0

t (k1, k2) by Eq. (3)
Extract a block from I1 at p1

t
Compute the phase feature X l

t (k1, k2) by Eq. (3)
end if

end for
Store the computed phase features in the gallery

an array of local phase features extracted from its multi-
resolution image pyramid with texture enhancement. A
phase feature extracted from the enhanced enrolled image
Il at position plt is denoted by X l

t (k1, k2).
The verification procedure is depicted in Fig. 8(a) and

described byAlgorithm 2. During verification, given a probe
image J, we extract a set of phase features from its multi-
resolution image pyramid with texture enhancement. We
compare these phase features with the phase features in the
gallery using correspondence search and similarity evalua-
tion. Y l

t (k1, k2) denotes a phase feature extracted from the
enhanced probe image Jl at a position qt .

In addition, we reduced the registered-data size of the
phase features stored in the gallery. We stored only a reduced
portion of the total phase information by taking advantage
of the spectrum symmetry and including only the band re-
quired for the calculation of the BLPOC functions. Also, we
applied quantization to the phase angles (see [13], [34] for
details). Phase quantization has shown slight degradation
of the recognition performance by carefully considering the
number of bits used.
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Algorithm 2 Verification procedure
Require: A probe image J
Ensure: A matching score between J and the enrolled image I
Generate the reflection mask MJ (n1, n2) by Eq. (16)
Fill the area with specular reflections on J as described in Sect. 3.4
Generate a two-layer resolution pyramid and apply texture enhancement
so as to obtain J0 and J1 as described in Secs. 3.3 and 3.2
Initialize the corresponding points q1

t (t = 1, 2, · · · , Nb ) on J1 by
Eq. (14)
Initialize the setV , i.e.,V = {∅}
for t ∈ {1, 2, · · · , Nb } do

if there is a phase feature X1
t (k1, k2) in the gallery then

Extract a corresponding block from J1 at q1
t

Compute the phase feature Y1
t (k1, k2) by Eq. (4)

Compute the BLPOC function between X1
t (k1, k2) andY1

t (k1, k2)
by Eq. (5) and Eq. (7)
Estimate the translational displacement δ1

t
Determine q0

t from q1
t and δ1

t by Eq. (13)
Extract a corresponding block from J0 at q0

t
if the block at q0

t has more than 50% of valid pixels according to
MJ (n1, n2) then

Compute the phase feature Y0
t (k1, k2) by Eq. (4)

Compute the BLPOC function between X0
t (k1, k2) and

Y0
t (k1, k2) by Eq. (5) and Eq. (7)

Obtain the peak value αt and add t to the setV
end if

end if
end for
Compute the matching score between I and J from the valuesαt (t ∈ V )
using one of the similarity measures described in Sect. 3.4

5. Experimentals and Discussion

This section describes performance evaluation of the pro-
posed method and two baseline methods, which are one
based on LBP [44] and the other based on SIFT [45], using
three publicly available databases: CASIA-Iris-Distance in
the CASIA Iris Image Database Version 4.0 (CASIA) [46],
UBIPr database (UBIPr) [8], and ocular still challenge of
the NIST FOCS database (FOCS) [47]. We also compare
the recognition performance of our method with the per-
formance reported in the literature for advanced periocular
recognition methods [23], [27].

For the comparative evaluation, we present the Receiver
Operating Characteristic (ROC) curve, which is a plot of the
False Rejection Rate (FRR) against the False Acceptance
Rate (FAR). In all the experiments, we measured the verifi-
cation performance using the Equal Error Rate (EER), which
is the error rate when FAR [%] is equal to FRR [%]. We
compute the EER [%] values by linear interpolation of the
ROC curves.

5.1 Databases

The images in the CASIA database were collected by the
Institute of Automation, Chinese Academy of Sciences [46].
This database consists of 2,567 partial face images taken
from142 subjects under near infrared illumination, where the
subjects stand at a distance around 3m from the camera. The
size of this images is 2, 352 × 1, 728 pixels (width×height)

and they cover from themouth to the forehead of the subjects.
The images contain small variations in head pose and occlu-
sions due to hair, eyeglass, and specular reflections. When
the tilt (or rotation of the face) is more than six degrees,
we correct it by aligning the eyes position horizontally. We
scaled the images to one-fourth of the original image resolu-
tion and cropped two periocular regions of 300 × 300 pixels
for each eye.

The University of Beira Interior Periocular (UBIPr)
database [8] consists of 10,950 periocular images captured
in the visible spectrum from 342 subjects [47]. Each subject
has images at five different resolutions: 501 × 401 pixels at
8m (stand-off distance), 561 × 441 pixels at 7m, 651 × 501
pixels at 6m, 801×651 pixels at 5m and 1, 001×801 pixels at
4m. We scale all these images to a common size of 240×300
pixels and transform them into gray-scale.

The Face andOcular Challenge Series (FOCS) database
[47] consists of 9,581 periocular images of 136 subjects
where 4,792 images are from left eyes and 4,789 images are
from right eyes. Images are captured with a near-infrared
camera at an image resolution of 750 × 600 pixels. These
periocular images were extracted from video sequences of
subjects while walking. This database contains images with
blur, occlusion and gaze deviation. The images also exhibit
drastic variations in illumination and sensor noise. We scale
these images to a size of 300 × 240 pixels.

5.2 Baseline Methods

In order to compare the recognition performance of the pro-
posed method, we implemented two baseline recognition
methods, which employ well-known image descriptors: Lo-
cal Binary Patterns (LBP) [48] and modified Scale-Invariant
Feature Transform (m-SIFT) [18]. The first method used the
LBP operator [49], which assigns a label to every pixel of
an image by thresholding the neighborhoods of each pixel
with the center pixel value and considering the result as a
binary number. Then, the histogram of the labels is used as
a texture descriptor. Periocular recognition is performed by
block-wise comparison of the local histograms. We tested
two block sizes for the histogram computation, which are
30 × 30 pixels for small size and 50 × 50 pixels for large
size. In the experiments with the CASIA database, images
are divided into 10 × 10 (column×row) for small blocks and
6 × 6 for large blocks. In the case of FOCS and UBIPr
databases, we divided images into 10 × 8 for small blocks
and 6 × 5 for large blocks. We use Matlab implementation
of LBP†. The modified SIFT (m-SIFT) method [18] is a bio-
metric recognition method based on SIFT features [45]. In
our experiments, m-SIFT is implemented using the VLfeat
library†† like Ross et al. [18]. For a fair comparison, we also
applied the reflection mask described in Sect. 3.4 to select or
discard features for the two baseline methods. If the circular
region around a SIFT keypoint has less than 70% of valid

†http://www.cse.oulu.fi/CMV/Downloads/LBPSoftware
††http://www.vlfeat.org/
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Table 1 Parameters for PB-CM and texture enhancement. Parameters
indicated with ∗ are used in the comparative evaluations.

PB-CM
Parameter Value
Block size 48 × 48 pixels∗
Horizontal/vertical spacing be-
tween blocks

16 pixels*

Number of blocks 14×14 blocks, where we removed
5 blocks corresponding to the up-
per eyelid

Band limitation for BLPOC 50% bandwidth for 24× 24 phase
components
67% bandwidth for 32× 32 phase
components

Texture enhancement
Parameter Value
Noise rejection parameter η 0.0004 × |C | × 255∗, where |C |

is the size of the patch
Patch size 3×3 pixels, 5×5 pixels∗ and 7×7

pixels

Similarity measure
Parameter Value
Threshold of Sthr 0.30 for 50% bandwidth

0.28∗ for 67% bandwidth
Rank of Srank 12 for 50% bandwidth

8∗ for 67% bandwidth

area, that keypoint is discarded, and if an LBP block has less
than 70% of valid area, that block is discarded.

5.3 Impact of Texture Enhancement on Recognition Accu-
racy

We employed the CASIA database to evaluate the effect of
texture enhancement, since CASIA images are larger than
those of the other two databases and display richer skin tex-
ture. The parameters for PB-CM and the texture enhance-
ment are presented in Table 1. Texture enhancement affects
the appearance of the images with a whitening-like effect,
which intensifies the texture representation in the higher fre-
quency bands. Hence, the use of wider BLPOC bandwidth
compared with the usual 50% bandwidth [13] can improve
verification performance. For this reason, we consider two
band limitation setups for BLPOC and three patch size for
texture enhancement. Table 2 presents the EERs for the
aforementioned configurations. We observe consistent im-
provement using texture enhancement for both eyes. The
introduction of texture enhancement and 67%BLPOC band-
width can reduce EER to less than one third of the original
case (50% bandwidth) and no enhancement. Considering
these results, in the following experiments, we employ a
patch size of 5 × 5 pixels and a bandwidth of 67%. For this
configuration, the similarity measures Sthr and Srank con-
sistently outperform Save, and hence we omit Save in the
following experiments.

5.4 Comparative Performance Evaluation

We compared our proposed method with the baseline meth-

ods for the three databases. We adopt the parameters marked
with ∗ in Table 1. The number of blocks for PB-CM is
changed depending on the database used, i.e., 14 × 14 for
CASIA and 14 × 11 for FOCS and UBIPr. Additionally, we
employ 4-bit quantization for phase angle representation (see
Appendix for further on the effect of quantization). We also
compare the performance of the proposed method without
texture enhancement in order to demonstrate the effective-
ness of texture enhancement in periocular recognition. Ta-
ble 3(a), (b) and (c) summarize the verification performance
for the CASIA, UBIPr, and FOCS databases, respectively.
Fig. 9 compares theROCcurves of the proposedmethodwith
Srank, the proposed method with texture enhancement and
Srank and the conventional methods using m-SIFT and LBP
(the best case) for the three databases. The proposed method
with texture enhancement outperforms m-SIFT, while m-
SIFT outperforms LBP for the three databases. The pro-
posed method with texture enhancement outperforms that
without texture enhancement in all the cases. Hence, we dis-
cuss the experimental results only for the proposed method
with texture enhancement in the following.

As for the CASIA database shown in Table 3(a), the
proposed method exhibits EERs one order of magnitude
lower than those of m-SIFT. As observed at FAR=0.01%
in Fig. 9(a) and (b), the proposed method has a significantly
low FRR, i.e., 0.23% for left eye and 0.09% for right eye,
compared with m-SIFT, i.e., 9.6% for left eye and 6.4% for
right eye. The CASIA database has an advantage for the pro-
posed method due to its relatively good quality images with
some skin texture. This database is also acceptable for m-
SIFT, since the images have around 400 m-SIFT keypoints
on average.

As for the UBIPr database shown in Table 3(b), the pro-
posed method and m-SIFT performed relatively close, while
LBP performed poorly. Unlike the CASIA database, the
UBIPr database contains images with significant large head-
pose variation specially in yaw rotations, which are difficult
to address. This is a relatively advantageous scenario for m-
SIFT due to its robustness against image deformation. Also,
the UBIPr images contain a significant number of SIFT key-
points, where around 1,200 keypoints in average per image
are detected. Nonetheless, as observed at FAR=0.1% in
Fig. 9(c) and (d), the proposed method exhibits significantly
low FRRs, i.e., 9.1% for left eye and 6.5% for right eye, with
respect to m-SIFT, i.e., 16.7% for left eye and 10.29% for
right eye.

As for the FOCS database shown in Table 3(c), all the
methods performed poorly. The proposed method performs
slightly better thanm-SIFT in terms of EER. This database is
highly challenging, since it contains images with substantial
blur and noise.

5.5 Comparison with Methods Based on Trained Features

In Sect. 5.4, we demonstrated that the proposed method
achieves higher performance on periocular recognition com-
pared with other well-established biometric recognition
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Table 2 EERs [%] of phase-based image matching with and without texture enhancement. Bold fonts
indicate the best EER per similarity measure.

Bandwidth Texture enhancement Left eye Right eye
Save Srank Sthr Save Srank Sthr

50% without enhancement 0.415 0.451 0.472 0.165 0.313 0.351
3 × 3-pixel patch 0.237 0.197 0.210 0.094 0.116 0.128
5 × 5-pixel patch 0.237 0.179 0.227 0.089 0.098 0.108
7 × 7-pixel patch 0.250 0.205 0.237 0.089 0.102 0.123

67% without enhancement 0.442 0.624 0.484 0.179 0.487 0.272
3 × 3-pixel patch 0.235 0.170 0.180 0.085 0.103 0.109
5 × 5-pixel patch 0.223 0.157 0.145 0.085 0.080 0.077
7 × 7-pixel patch 0.250 0.165 0.178 0.085 0.081 0.075

Fig. 9 Comparison of ROC curves of the proposed method and conventional methods.

methods, which employ highly robust feature descriptors:
m-SIFT and LBP. The major difficulty of periocular recog-
nition is that the skin under the eyes has considerably weak
texture and hence conventional methods of biometric fea-
ture representation could not capture its inherent features.
Another possibility to address this problem would be to use
state-of-the-art machine learning techniques with training
data set. In order to enhance the credibility of this paper,
in this section, we additionally consider two methods: one
is based on Convolutional Neural Networks (CNNs), which
are gaining traction also in biometric applications [50], [51],
and the other is based on correlation filters, which have been
studied on periocular recognition [9], [18], [26]–[28], [52].
Specifically, we compared with “Semantic assisted CNN
(SCNN)” proposed by Zhao et al. [23] and “Periocular Prob-
abilistic DeformationModel (PPDM)” proposed by Smereka

et al. [27].
We prepared a subset of the CASIA database that im-

itates the setup used in [23] for SCNN, although we used
different image segments. Table 4 presents the parame-
ters of this setup, and Table 5 shows the resulting EERs
of our method and SCNN implementation†. The error
rates of our method are one order of magnitude lower than
those of SCNN. We assumed that our segments were fa-
vorable to SCNN, since in our experiments SCNN yielded
EER=4.32%, which is lower than EER=6.61% reported in
the literature [23]. Therefore, the comparison in Table 5
should be fair. Note that the EERs of the proposed method
in Table 5 differ from those in Table 3 due to the difference
in experimental setup.

We also compare our method with PPDM considering

†http://www4.comp.polyu.edu.hk/ csajaykr/scnn.rar
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Table 3 EERs [%] of the proposed method and conventional methods on
CASIA database, UBIPr database and FOCS database, where TE indicates
texture enhancement.

(a) CASIA database
Method Left eye Right eye
LBP (Block size: 30 × 30 pixels) 6.067 4.877
LBP (Block size: 50 × 50 pixels) 4.595 3.920
m-SIFT 2.065 1.710
Proposed with Srank 0.640 0.510
Proposed with Sthr 0.610 0.290
Proposed with TE and Srank 0.143 0.075
Proposed with TE and Sthr 0.150 0.078

(b) UBIPr database
Method Left eye Right eye
LBP (Block size: 30 × 30 pixels) 19.59 17.70
LBP (Block size: 50 × 50 pixels) 30.10 29.88
m-SIFT 5.57 4.15
Proposed with Srank 6.55 5.25
Proposed with Sthr 5.19 4.05
Proposed with TE and Srank 3.16 2.87
Proposed with TE and Sthr 3.47 3.17

(c) FOCS database
Method Left eye Right eye
LBP (Block size: 30 × 30 pixels) 35.30 35.45
LBP (Block size: 50 × 50 pixels) 46.60 43.03
m-SIFT 24.69 25.26
Proposed with Srank 32.64 32.79
Proposed with Sthr 32.02 32.46
Proposed with TE and Srank 22.46 25.08
Proposed with TE and Sthr 24.67 26.46

Table 4 Experimental setup for comparing with SCNN.
Parameter Value
Image selection As provided in the webpage†
Image resolution 0.294 times the original resolution,

which is estimated from image sam-
ples provided in the webpage†

Image size 240 × 240 pixels
Right eye images Right eye images are flipped horizon-

tally, since SCNN is trained for left
eye images

Number of blocks for PB-CM 10 × 10 blocks

Table 5 EERs [%] on a subset of CASIA database.
Method Left eye Right eye
SCNN 4.32 4.25
Proposed with Srank 0.682 0.237
Proposed with Sthr 0.735 0.253

the EERs reported in the literature for left eye images. The
EERs of PPDM are 10.47% and 7.67% for CASIA database
[23] and UBIPr database [27], respectively. These EERs are
more than double of those of our method for the respective
databases, i.e., 0.68% and 3.16%. We do not consider that
the difference in test protocols can be the reason of such
pronounced difference in performance. Therefore, we con-
clude that our method has clear advantage over PPDM in
periocular image matching.

In the case of FOCS database, for left eye images, the
EER of SCNN reported in [23] is 10.47%, and the EER
of PPDM reported in [27] is 22.44%. Their experimental

evaluation differs in term of preprocessing and selection of
test images. However, we can infer that the performance of
our method, i.e., EER=22.19% is close to PPDM, while it is
clearlyworse than the performance of SCNN. This is because
our method did not deal with such a high level of noise and
blur as is observed in the FOCS images, while CNNs are
able to manage a certain degree of feature ambiguity due
to image quality degradation. We will consider introducing
deblurring and denoising based on spatiotemporal analysis of
video sequences in addition to texture enhancement so as to
realize accurate periocular recognition for walking persons
in future work.

6. Conclusion

Weproposed a periocular recognition algorithmusing phase-
based correspondence matching with texture enhancement.
We demonstrated that the phase-based approach also exhibits
impressive performance in periocular recognition compared
with conventional approaches. By using texture enhance-
ment, we improved the recognition performance of phase-
based image matching on the skin texture of periocular im-
ages. Experimental evaluation using three public databases
demonstrated a clear advantage of the proposed method
matching on periocular images over conventional methods.
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Appendix: Quantization of Phase Features

We evaluated the effect of phase quantization on the recog-
nition performance using the CASIA database. We used the
parameters shown in Table 1 and selected a patch size of
5 × 5 pixels for texture enhancement and 67% bandwidth
for BLPOC. Table A· 1 shows the EERs for different quan-
tization levels of phase angles: 2bits, 3bits and 4bits. We
did not observe significant degradation of recognition per-
formance due to quantization. However, in the case of 2-bit
quantization, the results are not consistent for both eyes. We
observe little degradation of the recognition performance for
left eye, while slight improvement is observed for right eye.
We consider 4-bit quantization to be a good balance between
degree of compression and recognition performance. Also,
3-bit quantization is a valid consideration when the regis-
tered data size is the main concern.

Table A· 1 EERs [%] of phase-based image matching with and without
quantisation of phase angles. Bold fonts indicate the best EER per similarity
measure.
Phase Left eye Right eye
quantization Save Srank Sthr Save Srank Sthr
No 0.223 0.157 0.145 0.085 0.080 0.077
4 bits 0.219 0.143 0.150 0.087 0.075 0.078
3 bits 0.223 0.143 0.165 0.089 0.089 0.084
2 bits 0.257 0.179 0.210 0.080 0.071 0.088
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