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PAPER
Parameter Estimation of Fractional Bandlimited LFM Signals
Based on Orthogonal Matching Pursuit

Xiaomin LI†,††a), Nonmember, Huali WANG†††b), Member, and Zhangkai LUO††††c), Student Member

SUMMARY Parameter estimation theorems for LFM signals have been
developed due to the advantages of fractional Fourier transform (FrFT).
The traditional estimation methods in the fractional Fourier domain (FrFD)
are almost based on two-dimensional search which have the contradiction
between estimation performance and complexity. In order to solve this
problem, we introduce the orthogonal matching pursuit (OMP) into the
FrFD, propose a modified optimization method to estimate initial frequency
and final frequency of fractional bandlimited LFM signals. In this algo-
rithm, the differentiation fractional spectrum which is used to form obser-
vation matrix in OMP is derived from the spectrum analytical formulations
of the LFM signal, and then, based on that the LFM signal has approx-
imate rectangular spectrum in the FrFD and the correlation between the
LFM signal and observation matrix yields a maximal value at the edge of
the spectrum (see Sect. 3.3 for details), the edge spectrum information can
be extracted by OMP. Finally, the estimations of initial frequency and fi-
nal frequency are obtained through multiplying the edge information by
the sampling frequency resolution. The proposed method avoids recon-
struction and the traditional peak-searching procedure, and the iterations
are needed only twice. Thus, the computational complexity is much lower
than that of the existing methods. Meanwhile, Since the vectors at the
initial frequency and final frequency points both have larger modulus, so
that the estimations are closer to the actual values, better normalized root
mean squared error (NRMSE) performance can be achieved. Both theoreti-
cal analysis and simulation results demonstrate that the proposed algorithm
bears a relatively low complexity and its estimation precision is higher than
search-based and reconstruction-based algorithms.
key words: linear frequency modulation signal, parameter estimation, or-
thogonal matching pursuit, fractional Fourier transform

1. Introduction

Fractional Fourier transform (FrFT) is a powerful tool for
analyzing LFM signals which are also known as chirp sig-
nals [1]. FrFT uses a transform kernel which essentially al-
lows the signal in the time-frequency domain to be projected
onto a line of arbitrary angle. The definition of FrFT is de-
noted by [2]:
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Xp (u) =
{
Fp [x (t)]

}
(u) =

∫ ∞
−∞

x (t) Kp (t, u) dt (1)

Where Fp denotes the FrFT operator. The kernel function is
denoted by:

Kp (t, u) =
Aα exp jπ

[(
t2 + u2

)
cotα − 2ut cscα

]
, α , nπ

δ (t − u) , α = nπ
δ (t + u) , α = (2n + 1) π

(2)

Where Aα =
√

1 − j cotα, and α =
pπ
2 is the trans-

form angle. FrFT can be interpreted as a signal decompo-
sition in terms of a chirp basis as its kernel is constituted
by chirp functions, so FrFT has a notable potential for ana-
lyzing chirp signals [1], [3]. For the LFM signal detection
and parameter estimation, FrFT is densely used by making
use of the change of the concentration, or equivalently the
support. In the fractional Fourier domain (FrFD), support
of LFM signals change associated with the transform an-
gle and there exists an optimum transform angle in which
the energy of chirp signals are most concentrated [4], [5].
when an LFM signal is transformed by FrFT at its optimum
angle, transform kernel acts as a matched filter. Therefore,
an optimum LFM detection and estimation can be done by
sweeping all of the angles and finding the correct angle that
maximizes the absolute amplitude. Almost all successful
methods employing FrFT use the maximum peak of sweep
in the FrFD [4], [6]–[11], which is an easy method to realize.
And obviously, the search-based algorithms above require
numerous extra calculations and have the contradiction be-
tween estimation performance and complexity.

In recent years, numerous researchers have explored
the parameter estimation problem of chirp signals from dif-
ferent aspects[1], [9], [12]–[22]. Inspired by the recently-
developed sparse reconstruction method [23]–[28], we pro-
pose a fast and high accuracy parameter estimation method
for LFM signals in the FrFD based on orthogonal matching
pursuit (OMP). In this algorithm, We construct the observa-
tion matrix through the differentiation spectrum, and prove
that the LFM signal and observation matrix are most rele-
vant at the edge of the fractional spectrum, so the fractional
spectrum edge information can be extracted by OMP. And
the estimations of initial frequency and final frequency can
be gotten through multiplying the sampling frequency reso-
lution by the edge information.

Neither reconstruction nor peak-searching are needed
in the proposed method, which can reduce the computa-
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tional complexity greatly. And the estimation precision is
higher than existing algorithms because of the larger modu-
lus the vectors at the initial frequency and final frequency
points have (see Sect. 3.3 for details). Simulation results
demonstrate that the proposed algorithm has better normal-
ized root mean squared error (NRMSE) performance.

The remainder of this paper is organized as follows: In
Sect. 2, the basic preliminaries is presented. The new algo-
rithm is proposed in Sect. 3. In Sect. 4, the parameters esti-
mation performance is simulated and analyzed. Section 5 is
the conclusion.

2. Preliminaries

2.1 Simplified Fractional Fourier Transform (SFrFT)

FrFT is an extension of the ordinary Fourier transform (FT),
which essentially allows the signal in the time-frequency
domain to be projected onto a line of arbitrary angle [29].
Simplified fractional Fourier transform (SFrFT) [30] has the
same effect as FrFT of order α for filter design, but it is sim-
pler to implement digitally than the original FrFT. And the
first type of αth-order SFRFT is defined as [30]:

Yα (u) = ( j2π)−
1
2

×
∫ ∞
−∞

exp
(
− jut + jt2 cotα/2

)
y (t) dt

(3)

where α is the SFrFT order. The inverse SFrFT is denoted
as follows:

y (t) = ( j/2π)
1
2 exp

(
− ju2 cotα/2

)
×

∫ ∞
−∞

exp ( jut) Yα (u) dt
(4)

The digital implementation of SFrFT (DSFrFT) is given by
[30]

Fα [m] = ( j2π)−
1
2 ∆t

N∑
n=−N

exp
(
− j

2πmn
2N + 1

+
j
2

n2 cotα (∆t)2
)
· y [n]

(5)

Where y [n] = y [n∆t], Fα [m] = Fα [m∆u], m, n = −N,
−N + 1, N, ∆t and ∆u are the sample spacing in temporal
domain and simplified fractional Fourier domain (SFrFD)
respectively. And ∆t∆u = 2π/ (2N + 1). We can also write
(5) in matrix form, expressed as

Fα = c1Oα
Fy

Where c1 = ( j2π)−
1
2 ∆t,

(
Oα

F

)−1
=

(
Oα

F

)∗
, ∗ denotes

the transposed conjugate operator, and Oα
F is a (2N + 1) ×

(2N + 1) unitary matrix whose element
[
Oα

F

]
mn

at the m row,
n column has the following form:[

Oα
F
]
mn = exp

⌈
− j 2π(m−N−1)(n−N−1)

2N+1

⌉
· exp

⌈
j (n − N − 1)2 cotα (∆t)2 /2

⌉

where d·e returns the nearest integer towards positive infin-
ity. With the change of α, the frequency axis of the SFrFT is
located in different positions, and more abundant informa-
tion about the frequency characteristics of the signal can be
obtained compared to the FT.

2.2 Fractional Bandlimited LFM Signal and Its Spectral
Features in SFrFD

A fractional bandlimited LFM signal f (t) has finite en-
ergy. The SFrFT of f (t) is zero outside the region
(−u0 − uα,−u0 + uα) ∪ (u0 − uα, u0 + uα).

i.e.

Fα (u) =

Fα (u) , u0 − uα ≤ |u| ≤ u0 + uα
0, otherwise

(6)

Where 2uα is the fractional bandwidth of f (t). Accord-
ing to Parseval’s theorem, the bandlimited LFM signal can
also be expressed as:∫ ∞

−∞
| f (t) |2 dt =

∫ −ul

−uh
|Fα (u) |2 du +

∫ uh

ul
|Fα (u) |2 du

where uh = u0 + uα, and ul = u0 − uα.
The LFM signal model is given by

x (t) = A · exp
(

j2π f0t + jπKl f mt2
)

(7)

Where f0 is the initial frequency, A is the amplitude of x (t)
which could be random or fixed. Kl f m is the modulation rate.

And using the results in Appendix, for the LFM signal
whose duration time is

[
−

Td
2 ,

Td
2

]
, when

(
Kl f m + cotα/2π

)
T 2

d
� 1, its amplitude spectrum in SFrFD is

|Xα (u) |

≈
1√

Kl f m + cotα/2π
· rect

(
u − 2πu0 cscα

B′

)
(8)

and its phase spectrum in SFrFD is

θ (u) ≈ −
π (u − 2πu0 cscα)2

Kl f m + cotα/2π
+
π

4
(9)

Where B′ is the width of the spectrum in SFrFD, K′l f m =

Kl f m + cotα/2π, and α is the fractional orders. And accord-
ing to (6) and (8), the LFM signal x (t) whose duration time
is

[
−

Td
2 ,

Td
2

]
is a fractional bandlimited signal.

3. Proposed Parameter Estimation Method for Frac-
tional Bandlimited LFM Signals

3.1 Method Description

In this part, we propose an optimization method to estimate
initial frequency and final frequency of fractional bandlim-
ited LFM signals by introducing the OMP. The proposed
method is based on two principles. First, the LFM signal
has a rectangular spectrum in the SFrFD of α-th order when
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Td ·
√
|Kl f m + cotα| � 1 (see Appendix for details), and the

correlation between the LFM signal and observation matrix
yields a maximal value at the edge of the fractional spectrum
(see Sect. 3.3 for details). Second, OMP algorithm have the
ability to search the maximum correlation information.

In the proposed method, the differentiation spectrum
which is used to form the observation matrix is derived from
the spectrum analytical formulations of the LFM signal in
the FrFD, and then the correlation between the LFM signal
and observation matrix is proved to be the largest at the edge
of the fractional spectrum, as a result, the spectrum edge
information can be extracted by OMP. Finally, multiply the
sampling frequency resolution by the edge information to
get the estimations of initial frequency and final frequency.

There are only two iterations in the method, neither re-
construction nor the traditional peak-searching procedures
are needed, thus, the computational complexity is much
lower than the existing methods. Meanwhile, since the vec-
tors at the initial frequency and final frequency points both
have larger amplitude, so that better NRMSE performance
can be achieved as well.

3.2 The Differential Procedure for the Fractional Spec-
trum of the LFM Signal

The fractional bandlimited LFM signals can be depicted as

ym = A · e j[2π(nln/K+Kl f mn2/2K2)]|n=0,1,··· ,K−1

= A · e
j
{
2π

[
nl
K

(
n− n2

2K

)
+

nh
K

n2
2K

]}
|n=0,1,··· ,K−1

=
[
ym (0) ym (1) · · · ym (K − 1)

]T

(10)

where nl is the initial frequency point, nh is the final fre-
quency point. Kl f m is the modulation rate. K is the number
of sampling data.
The DSFrFT of ym is [30]

Fα = c1Oα
Fym

the differentiating process for Fα can be expressed as

y = Γ′ · Fα = Γ′ · c1Oα
Fym (11)

where Γ′ =


1 −1 · · · 0

0 1
. . . 0

0
. . .

. . . −1
0 · · · 0 1


K×K

is the differentiating matrix. c1 = ( j2π)−1/2 ∆t,

Oα
F =


Oα

F (1, 1) Oα
F (1, 2) · · · Oα

F (1,K)
Oα

F (2, 1) Oα
F (2, 2) · · · Oα

F (2,K)
...

...
. . .

...
Oα

F (K, 1) Oα
F (K, 2) · · · Oα

F (K,K)


K×K

is the DSFrFT matrix, and Oα
F is unitary matrix. The ele-

ments of matrix Oα
F are:

Oα
F (m, n) = exp

⌈
− j 2π(m−N′−1)(n−N′−1)

2N′+1

⌉

· exp
⌈

j
(
n − N′ − 1

)2 cotα (∆t)2 /2
⌉

m, n = 1, · · · ,N′, · · · ,K,N′ =
⌈

K−1
2

⌉
,∆t = 1

fs

From Eq. (11),

ym =
(
Γ′ · c1Oα

F
)−1
· y = G′ · y (12)

Where

G′ =
(
Γ′ · c1Oα

F
)−1

= ( j/2π)1/2 / (K∆t) ·

1∑
n=1

Oα
F (1, n)

2∑
n=1

Oα
F (1, n) · · ·

k∑
n=1

Oα
F (1, n)

1∑
n=1

Oα
F (2, n)

2∑
n=1

Oα
F (2, n) · · ·

k∑
n=1

Oα
F (2, n)

...
...

. . .
...

1∑
n=1

Oα
F (K, n)

2∑
n=1

Oα
F (K, n) · · ·

k∑
n=1

Oα
F (K, n)



∗

K×K

3.3 The Correlation between G′ and ym

Assume the initial residual res0 = ym, observation matrix
G′ =

(
Γ′ · c1Oα

F

)−1
, so the correlation between res0 and G′

can be computed according to their inner product as follows:

|
〈
res0,G′

〉
| = ( j/2π)1/2 / (K∆t) ·

|
1∑

n=1
Oα

F (n, 1) ym (1) + · · · +
1∑

n=1
Oα

F (n, k) ym (k) |

|
2∑

n=1
Oα

F (n, 1) ym (1) + · · · +
2∑

n=1
Oα

F (n, k) ym (k) |

...

|
K∑

n=1
Oα

F (n, 1) ym (1) + · · · +
K∑

n=1
Oα

F (n, k) ym (k) |


K×1

(13)

Where 〈·〉 denotes the inner product operator. Since the DS-
FrFT of ym (n) is

Fα (m) = c1
K∑

n=1
Oα

F (m, n) · ym (n)

Equation (13) can be reduced to:

|
〈
res0,G′

〉
|

=
[
|
〈
res0, g

′
1
〉
||
〈
res0, g

′
2
〉
| · · · |

〈
res0, g

′
K
〉
|
]T

= ( j/2π)1/2 / (K∆t) ·

|Fα (1) |
|Fα (1) + Fα (2) |

...
|Fα (1) + Fα (2) + · · · + Fα (k − 1) |

|Fα (1) + Fα (2) + · · · + Fα (k − 1) + Fα (k) |


K×1

= ( j/2π)1/2 / (K∆t) ·| 1∑
m=1

Fα (m) ||
2∑

m=1

Fα (m) | · · · |
K∑

m=1

Fα (m) |


T

(14)
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According to (14), |
〈
res0, g

′
k

〉
|, the kth element of

| 〈res0,G′〉 |, denotes the summation of the first k terms from
Fα (m), which is the DSFrFT of ym (n). And for the LFM
signal ym, when Td ·

√
|Kl f m + cotα| � 1, its amplitude spec-

trum and phase spectrum in α-th order discrete time simpli-
fied fractional Fourier domain (DTSFrFD) are respectively:

|Xα (u) |

≈
A√

Kl f m + cotα
· rect

(
u − 2πu0 cscα

B′

)
(15)

θ (u) ≈
π (u − 2πu0 cscα)2

Kl f m + cotα
+
π

4
(16)

Substitute (15) and (16) into(14),

|
〈
res0, g

′
k

〉
| =

0, k < nl

|
( j/2π)

1
2

K∆t ·
A√

Kl f m+cotα
·

k−nl∑
m=1

e jφ(m)|, nl ≤ k ≤ nh

|
( j/2π)

1
2

K∆t ·
A√

Kl f m+cotα
·

k−nl∑
m=1

e jφ(m)|, k > nh

(17)

Where φ (m) = −
π(m∆)2

Kl f m+cotα + π
4 , 0 ≤ m ≤ nh − nl, and

∆φ (m) = φ (m) − φ (m + 1) = π
(2m + 1) ∆2

Kl f m + cotα
(18)

when nl ≤ k ≤ nh, |
〈
res0, g

′
k

〉
| can be expressed as the sum

of ( j/2π)
1
2

K∆t ·
A√

Kl f m+cotα
· e jφ(m), whose phase changes nonlin-

early in Eq. (18) as Fig. 1.

Let vector B =
( j/2π)

1
2

K∆t ·
A√

Kl f m+cotα
· e jφ(m). And Fig. 1

also shows that vector B with constant magnitude, moves
clockwise on a circle. Meanwhile, φ (m), the phase of B,
increases with an interval of ∆φ (m), therefore |

〈
res0, g

′
k

〉
|

will increase at first and then decrease. According to (18),
∆φ (m) increases as B moves along the circle clockwise, the

Fig. 1 The vector B with constant magnitude.

accumulated phase energy of |
〈
res0, g

′
k

〉
| reaches its maxi-

mum value within the first cycle. And this maximum value
is corresponding to the estimation of initial frequency. Sim-
ilarly, when differentiating matrix is

Γ =


1 0 · · · 0

−1 1
. . . 0

0
. . .

. . . 0
0 · · · −1 1


K×K

,

observation matrix is G =
(
Γ · c1Oα

F

)−1
,

| 〈res0,G〉 |

=
[
| 〈res0, g1〉 || 〈res0, g2〉 | · · · | 〈res0, gK〉 |

]T

= ( j/2π)1/2 / (K∆t) ·
|Fα (1) + Fα (2) + Fα (3) + · · · + Fα (K) |
|Fα (2) + Fα (3) + · · · + Fα (K) |

...
|Fα (K) |


K×1

= ( j/2π)1/2 / (K∆t) ·| K∑
m=1

Fα (m) ||
K∑

m=2

Fα (m) | · · · |
K∑

m=K

Fα (m) |

T

(19)

And a similar analysis can be perform for | 〈res0, gk〉 |,
as a result, the maximum value of | 〈res0, gk〉 | is correspond-
ing to the estimation of final frequency.

3.4 The Parameter Estimation Procedures Using OMP

Assume res0 is the residual, i is the iteration count, Λ0
is a set of indices of the nonzero channel coefficients.
g′k (k = 1, 2, · · · ,K) is the columns of observation matrix G′.
And ym = G′ · y. Accordingly, the initial frequency estima-
tion procedures of the proposed method is summarized in
Algorithm 1.

Algorithm 1: the initial frequency estimation

(1) Initialize res0 = ym, i = 1 and Λ0 = ∅.
(2) Determine the new index λ′i by selecting the maximum absolute
value of the correlation between G′ and previous residual res0.
That is, λ′i = arg max

k=1,2,··· ,N/2
|
〈
resi−1, g

′
k

〉
|.

(3)combine the newly selected index λ′i with the index Λi−1, i.e.,
Λi = Λi−1 ∪

{
λ′i

}
.

Compute the yi = arg min
y

∥∥∥∥ym −G′
Λi
y
∥∥∥∥

2
.

Compute the new residual resi = ym −G′
Λi
yi.

(4) Set i = i + 1 if i < 3 go to step 2.

The stopping criterion in Algorithm 1 is i = 3, which
means that two iterations for ym = G′ · y is required. As a
result, λ′1 and λ′2, the index which are corresponding to the
maximum values of the correlation between G′ and residual



1452
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.11 NOVEMBER 2019

Fig. 2 The relationship between |
〈
resi−1, g

′
k

〉
| and the fractional “fre-

quency”.

within each iterations, are obtained. And the estimated ini-
tial frequency of LFM signal in DTSFrFD is min

(
λ′1, λ

′
2

)
∆,

where ∆ = 1/KTs, Ts is the sampling interval.
Similarly, when observation matrix is G =

(
Γ · c1Oα

F

)−1
,

conduct two iterations on ym = G · y to generate two indexs
λ1, λ2. Then the estimated final frequency in DTSFrFD is
max (λ1, λ2) ∆, where ∆ = 1/KTs. Figure 2 illustrates the re-
lationship between |

〈
resi−1, g

′
k

〉
|, i = 1, 2 and the fractional

“frequency”. Figure 2(a) shows that there are two maximum
values at nl and nh respectively after the first iteration. Thus
the index λ′1 corresponds to either nl or nh. Compared with
Fig. 2(a), |

〈
res1, g

′
k

〉
| has a smaller value at nh as shown in

Fig. 2(b), because the update process in OMP removes the
influence of gλ′1 from |

〈
res0, g

′
k

〉
|. Accordingly, the maxi-

mum value obtained by the second iteration is the second
largest value of |

〈
res0, g

′
k

〉
|, i.e., the value corresponding to

nl. Since the LFM signal has approximate rectangular spec-
trum in DTSFrFD, so when k > nh, Fα (m) is approximately
zero, which leads to an almost constant value of |

〈
res0, g

′
k

〉
|,

as shown in Fig. 2(a). Therefore, after two iterations, the in-
dex min

(
λ′1, λ

′
2

)
corresponds to nl, which is the initial fre-

quency.
Similarly, Fig. 3 illustrates the relationship between

| 〈resi−1, gk〉 | i = 1, 2 and the fractional “frequency”. And
after two iterations, the index max (λ1, λ2) is corresponding
to nh which is the final frequency.
Thus, the estimated initial frequency is

f0 = u0 · cscα =
[
min

(
λ′1, λ

′
2
)
∆
]
· cscα (20)

the final frequency estimated is

f1 = u1 · cscα = [max (λ1, λ2) ∆] · cscα (21)

3.5 Influence of the Fractional Order

According to the analysis above, algorithm 1 can effectively

Fig. 3 The relationship between | 〈resi−1, gk〉 |, and the fractional “fre-
quency”.

extract the edge information of the spectrum in DTSFrFD.
Since the αth-order SFrFT can be regarded as the projection
on the rotated frequency axis u, so the spectrum distribution
of the signal directly depends on the order of the SFrFT. Ac-
cording to the analysis in Appendix, for a discrete-time LFM
signal with the duration of

[
−

Td
2 ,

Td
2

]
, its amplitude spectrum

in DTSFrFD is

|Xα (u) | ≈
A√

Kl f m + cotα
· rect

(
u − 2πu0 cscα

B′

)
,

when
(
Kl f m + cotα/2π

)
T 2

d � 1. Where B′ is the bandwidth
of the spectrum, α is the fractional orders.
when Td and Kl f m are constant, the fluctuation of Fresnel in-
tegral decreases as cotα increases. So the shape of |Xα (u) |
is closer to rectangle and the edge feature of the spectrum
is more distinct as shown in Fig. 4, which improves the effi-
ciency of Algorithm 1.

4. Simulation and Analysis

4.1 Simulation Configurations

To evaluate the performance of the proposed method, a uni-
formly sampled chirp signal is tested. The original chirp sig-
nal in discrete-time domain is denoted by x (n). The noisy
signal is x (n) + w (n), where w (n) is the zero-mean Gaus-
sian noise. The SNR is defined by 10 log

(
‖x‖2 / ‖w‖

)
. x (n)

is given by x (n) = Ee jπKl f mn2/ f 2
NYQ cos

(
2π fln/ fNYQ

)
, where

E is the amplitude of the signal which could be random or
fixed. Kl f m = 0.200×109 Hz/s is the signal modulation rate.
The Nyquist sampling rate is fNYQ = uNYQ cscα = 2.2 GHz,
where uNYQ is the sampling rate in FrFD. α is the bandlim-
ited order which varies from −0.50 × 10−8 to −0.36 × 10−8

with a step of −0.01 × 10−8. The signal duration time is
T = 1s. So the bandwidth of x (n) is B = Kl f m ·T = 10 MHz,
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Fig. 4 The amplitude spectrums of the LFM signal in DTSFrFD with
different orders(S NR = 15 dB).

fl = 1 GHz is the initial frequency. The signal is both
frequency bandlimited and fractional bandlimited with dif-
ferent bandwidths in the observation interval. Simulations
were conducted to valid ate parameter estimation accuracy.
Each simulation has 300 trials to ensure statistically stable
results.

4.2 Parameter Estimation Accuracy

In this experiment, we test the parameter estimation ac-
curacy of our proposed method, compared with the tradi-

Fig. 5 The performance in the noise-free case.

tional search-based method [11] and reconstruction tech-
nique [28]. The parameter estimation accuracy is evaluated
by the NRMSE in the noise-free and noisy cases. And the
NRMSE is defined as:

fNRMS E =

√
1
N

N∑
n=1

(_
fn− fn

)2

max
(_

fn
)
−min

(_
fn
)

Where N is the number of Monte Carlo trials,
_

fn is the
estimation signal frequency from the n-th Monte Carlo ex-
periment, fn is the original signal frequency. Figure 5 de-
picts the tradeoff between NRMSE and the fractional or-
der α in the noise-free case. The orders α varies from
−0.50×10−8 to −0.36×10−8 with a step of −0.01×10−8. Ac-
cording to the previous analysis, fractional order α may lead
to changes in the spectral width. The wider the spectrum,
the better estimation performance can be achieved. And it is
observed that a smaller NRMSE correspond to larger α and
vice versa.
In the noisy case, the simulations demonstrated two aspects:
the tradeoff between NRMSE and the fractional order α,
and the balance between NRMSE and signal-to-noise ratio
(SNR).
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Fig. 6 The relationship between the NRMSE and orders α in the noise
case.

Figure 6 shows the relationship between the NRMSE
and orders α. In Fig. 6, the SNR is {5, 25} dB, the orders
α varies from −0.50 × 10−8 to −0.36 × 10−8 with a step of
−0.01×10−8. The increase of α leads to the wider bandwidth
and the NRMSE decreases.

In Fig. 7, the SNR varies from −10 dB to 18 dB with a
step of 2 dB. The fractional order α is

{
−0.50 × 10−8,−0.40

× 10−8
}
. It is common that the NRMSE decreases with in-

creasing SNR in both the proposed method and compared
methods. And it is clear that the proposed method has better
accuracy.

Figure 8 depicts the performance in terms of NRMSE
with different SNRs and fractional order α for the proposed
method. The SNR varies from −105 dB to 18 dB with a step
of 2 dB. The fractional order α varies from

{
−0.50 × 10−8

}
to

{
−0.36 × 10−8

}
with a step of

{
−0.02 × 10−8

}
. It is ob-

served that the NRMSE has the opposite trend as the SNR.

5. Conclusion

This paper introduces a parameter estimation method to de-
termine the initial frequency and final frequency of the frac-
tional bandlimited LFM signals by using OMP. The edge

Fig. 7 The relationship between the NRMSE and SNR.

Fig. 8 The relationship between the NRMSE and SNR.

information of the spectrum can be extracted effectively in
DTSFrFD, and the corresponding frequencies are obtained.
The proposed method avoids reconstruction and the tradi-
tional peak-searching procedure, and it only needs two iter-
ations. The theoretical analysis and the simulations results
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demonstrate better performance of the proposed method in
comparison with existing methods.
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Appendix:

Spectrum distribution characteristics of LFM signal in
SFrFD
A monocomponent LFM signal is defined by:

x(t) = A · exp x
(

j2π f0t + jπKl f mt2
)

(A· 1)

Where f0 is the initial frequency. A is the amplitude of x (t)
which could berandom or fixed. Kl f m is the modulation rate.
And the duration time of x (t) is

[
−

Td
2 ,

Td
2

]
.

The SFrFT of x (t) can be calculated by

Xα (u) = A ( j2π)−1/2
∫ ∞

−∞

exp
(
− jut + jt2 cotα/2

)
·

exp
(

j2π f0t + jπKl f mt2
)

dt
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= A ( j2π)−1/2∫ ∞

−∞

exp
(

jπ
(
Kl f m + cotα/2π

)
t2 + j2π f0t

)
·

exp (− jut) dt (A· 2)

According to (A· 2), Xα (u), the SFrFT of x (u), denotes
the FT of another LFM signal whose modulation rate is
K′l f m = Kl f m + cotα/2π, initial frequency is f0, and the fre-

quency interval is
[
f0 − K′l f m

Td
2 , f0 + K′l f m

Td
2

]
. So the band-

width is B′ = K′l f m · Td. It can be interpreted that the SFrFT
rotates the time-frequency distribution curve of x (t) in the
clockwise direction with angle α, so that the modulation rate
and bandwidth changes.
Thus,

Xα (u) = A√
2K′l f m

exp
(
−

j(u−2πu0 cscα)2

4πK′l f m

)
·

{[c (u2) + c (u1)] + j [s (u2) + s (u1)]}

Where

c (u) =
∫ u

0 cos
(
π
2 x2

)
dx

and

s (u) =
∫ u

0 sin
(
π
2 x2

)
dx

is the Fresnel integral. And
u1 =

√
2K′l f m

(
Td
2 −

u−2πu0 cscα
K′l f m

)
u2 =

√
2K′l f m

(
Td
2 +

u−2πu0 cscα
K′l f m

) (A· 3)

where u0 = f0 sinα.
So the amplitude spectrum of Xα (u) is

|Xα (u) | =
A√

2K′l f m

·

{
[c (u2) + c (u1)]2 + [s (u2) + s (u1)]2

}1/2
(A· 4)

and the phase spectrum is

θ (u) = θ1 (u) + θ2 (u)

= −
(u − 2πu0 cscα)2

4πK′l f m
+ arctan

[
s (u2) + s (u1)
c (u2) + c (u1)

]
(A· 5)

Substituting K′l f m = B′
T into Eq. (A· 5):

u1 =
√

2B′Td

(
1
2 −

u−2πu0 cscα
B′

)
u2 =

√
2B′Td

(
1
2 +

u−2πu0 cscα
B′

) (A· 6)

According to the property associated with Fresnel inte-
gral, when B′Td � 1, i.e. K′l f mT 2

d � 1, c (u2) ≈ s (u2) ≈ 1
2 ,

so

|Xα (u) | ≈ A√
K′l f m

· rect
(

u−2πu0 cscα
B′

)

= A√
Kl f m+cotα/2π

· rect
(

u−2πu0 cscα
B′

)
,

θ (u) ≈ − π(u−2πu0 cscα)2

K′l f m
+ π

4

= −
π(u−2πu0 cscα)2

Kl f m+cotα/2π + π
4 .

Therefore, when
(
Kl f m + cotα/2π

)
T 2

d � 1, |Xα (u) | is
approximately a rectangular spectrum.
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