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SUMMARY The paper employed an Alexnet, which is a deep learning
framework, to automatically diagnose the damages of wind power gener-
ator blade surfaces. The original images of wind power generator blade
surfaces were captured by machine visions of a 4-rotor UAV (unmanned
aerial vehicle). Firstly, an 8-layer Alexnet, totally including 21 functional
sub-layers, is constructed and parameterized. Secondly, the Alexnet was
trained with 10000 images and then was tested by 6-turn 350 images. Fi-
nally, the statistic of network tests shows that the average accuracy of dam-
age diagnosis by Alexnet is about 99.001%. We also trained and tested a
traditional BP (Back Propagation) neural network, which have 20-neuron
input layer, 5-neuron hidden layer, and 1-neuron output layer, with the same
image data. The average accuracy of damage diagnosis of BP neural net-
work is 19.424% lower than that of Alexnet. The point shows that it is fea-
sible to apply the UAV image acquisition and the deep learning classifier to
diagnose the damages of wind turbine blades in service automatically.
key words: deep learning, Alexnet, 4-rotor UAV, BP neural network, wind
power generator blade, damage diagnosis

1. Introduction

Presently, with the power generation capacity of wind tur-
bines increasing gradually, the volume, the height, and the
surface area of generating units have increased tremen-
dously. It becomes more and more difficult to observe
the surface condition of wind power generator blades in
an overall and detailed manner. Current detection meth-
ods for blade surface damage include: ground percussion
sound detection, telescope observation, or close inspection
by maintenance engineer transport. When applied for the
diagnosis of wind power generator blade surface damages,
these aforementioned methods usually have some limita-
tions: for example, large blind areas, high risks, low pre-
cisions, long time consumptions, and large power consump-
tions [1]. Compared to other UAVs, rotary-wing UAVs have
more significant characteristics of low cost and good adapt-
ability to environment. In addition, only through the con-
trol of four motors, rotary-wing UAVs can perform a vari-
ety of flight attitude adjustments and changes, such as tum-
bling, pitching, yaw, and vertical take-off and landing. Thus,
compared to the traditional fix-wing UAVs, they are more
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suitable for the implementation of fixed-height and fixed-
point hovering tasks. Therefore, rotary-wing UAVs are used
extensively in plant protection, wire-inspection of electric
power systems, emergency rescue, express delivery, and etc.

Yuan B., Wang C. et al. [2] proposed a novel wind
turbine blade anomaly detection system based on Wavelet-
FCNN (Fully Convolutional Neural Network) classifier.
The experimental results show that the accuracy of Wavelet-
FCNN classifier in detecting icing fault reaches 81.82%,
which is 15.91% higher than the original FCNN classifier
without combining the Wavelet method.

Gao F., Wu X.J. et al. applied a new method to de-
tect blade damage of wind turbines using wavelet packet
energy spectrum analysis and operation mode analysis [3].
This method employs wind simulation software to simulate
the damage fault of wind turbine blades, analyzes the dis-
placement signal of leaf tip by Fourier analysis and wavelet
packet energy spectrometry, and makes a preliminary eval-
uation and classification of blade damages. This method is
limited to simulation analysis, and has not been applied to
actual production and operation occasions.

By manipulating a rotary-wing UAV, we can obtain the
surface images of wind power generator blades. Then, a
pattern recognition algorithm, based on the machine visions
and a deep learning framework is applied to diagnose and
classify the surface damages. More detailedly, the research
adopts an Alexnet architecture to design the damage defect
classifier. The processes of feature extraction and cluster-
ing are integrated into the network training process, which
greatly improves the effectiveness of the automatic classify-
cation of wind power generator blades surface damage.

In contrast, our paper analyzes the image data of wind
turbine blades operating on the wind power generation pro-
duction sites, and uses the deep learning algorithm to au-
tomatically diagnose the wind turbine blade damages. The
higher diagnostic accuracy verifies the validity and practica-
bility of the proposed wind turbine blade damage inspection
method. The wind turbine blade damage diagnosis method
proposed in our paper is a non-destructive testing method,
and it is not necessary to install any signal acquisition de-
vice for the wind turbine blade.

At present, UAVs are widely used in the fault detec-
tion of power equipment (including high-voltage transmis-
sion lines, towers, fittings, photo-voltaic panels, etc.), how-
ever a deep learning algorithm is rarely reported in the de-
tection of blade surface defects of wind turbines. Based on
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Fig. 1 The framework diagram of an Alexnet.

the above research, at present, we can plan the cruise route
of UAV in advance, realize the full-automatic damage di-
agnosis of wind turbine blades, and establish the full-cycle
health records of wind turbine blades.

2. Method

2.1 Alexnet

In 2012, the team directed by Alex Krizhevsky from Toronto
University, firstly introduced the Alexnet architecture to the
ImageNet competition and won the championship of the
competition. The Alexnet is one kind of deep convolutional
neural network (CNN) with 8 layers as shown in Fig. 1.

The Alexnet consists of 5 convolution layers and 3 fully
connected layers, and each layer contains 2∼4 functional
sub-layers. The functional sub-layers belonging to the con-
volution layers are composed of: one ReLU sub-layer, one
cross channel normalization sub-layer, one Max-Pooling 2-
D sub-layer. The functional sub-layers inside the fully con-
nected layers consists of: one fully connected sub-layer, one
ReLU sub-layer, one dropout sub-layer, one softmax sub-
layer, and one classification sub-layer. Such a deep learning
framework has three distinct characteristics: 1. In the convo-
lution sub-layers, the dimension of the convolution nucleus
is always larger than the convolution step length. It is shown
that the descriptions of image pixels by the convolution sub-
layers are overlapped with each other, which facilitates the
comprehensive expression of the feature pixels. Thus, such
comprehensive expression makes feature learning and pre-
dictions more accurately. 2. Seven of eight network layers
contain the ReLU sub-layers. As an activation function of a
mathematical mapping from sub-layer input data to network
weights, ReLU sub-layers make linear corrections for the in-
put data. Since about 50% neurons of ReLU sub-layers are
activated [4], such sparse activation states induce relatively
sparse network connections and greatly alleviates the heavy
training and testing tasks of the Alexnet. 3. The Dropout
sub-layers can prevent an over-fitting of the feature data by
randomly concealing some of neurons temporarily. Suppose
that one Dropout sub-layer has n neurons, the network has a
predictive ability, improvements of the Alexnet framework
mainly lie in the two aspects: namely, the ReLU sub-layers
supported by the ReLU activation function and the Dropout
sub-layers with the temporarily randomly hidden neurons.

2.1.1 ReLU Sub-Layer

Rectified Linear Unit (ReLU) function, being a variation of
the slope function, becomes a breakthrough technology in
the field of constructing nonlinear activation functions. In
general, the ReLU function refers to the ramp function in
mathematical viewpoint:

f (x) = max(0, x) (1)

In the framework of Alexnet, ReLU, as the activation
function of the neurons, determines the nonlinear outputs of
the current layer. The input of ReLU is formed by a linear
transformation (ωT x + b) of the layer input x, where ω is
a non-zero row vector and b is a column vector. Based on
the principle of brain network communications, the infor-
mation encoding of biological neurons is usually dispersed
and sparse [5], instead of densely connected with each other.
In fact, only 1%∼4% neurons in brains are activated at one
moment. For the biological neural networks, the neurons
employ any non-linear activation function so that the single-
layer biological neurons could acquire the ability to solve
linear inseparability. The application of linear correction
and regularization can effectively debug the degree of activ-
ity of neurons in neural networks, i.e. the outputs of layers
are positive.

By contrast, the logistic function outputs 1/2 when the
input is 0. The half-saturation state does not conform to
the expectations of the output of the actual biological neu-
rons [4]. However, the ReLU activation function enables
approxi-mately 50% of the neurons in the layer to be ac-
tivated [4], which complies with the principle of biology.
Generally, the use of ReLUs enhances the efficiency of
Alexnet, and also alleviates the problems of gradient di-
vergence, gradient disappearance, network parameter over-
fitting.

2.1.2 Dropout Sub-Layer

The Dropout algorithm is applied to the field of machine vi-
sion based on deep learning for alleviating the over-fitting
situations in the deep learning network. The algorithm
forces one neuron to connect with the remaining randomly
emerging neurons and communicate with each other. This
process weakens the joint-adaptability between the neurons,
enhances the generalization ability of the network, and ef-
fectively reduces the computing consumption of network in-
formation transmission.

In Alexnet, the probability of random hidden neu-
rons in the Dropout sublayer is 0.5. The process of cross-
validations shows: the number of possible randomly gen-
erated Dropout sub-layer network structures arrive its max-
imum, when the probability of random hidden neurons in
the Dropout sublayer is 0.5. The maximum corresponds to
the strongest generalization ability. Take an example of a
m-layer network with n neurons in each layer. Suppose that
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Fig. 2 Diagram of Dropout algorithm operation.

Fig. 3 The framework diagram of the constructed BP neural network.

m = 3, n = 4, the dropout probability ratio is 0.5. The work-
ing process diagram of the Dropout layers is illustrated as
follows:

2.2 BP Neural Network

BP neural network, is a kind of multi-layer feedforward ar-
tificial neural network put forward by Rumelhart and Mc-
Clelland in 1986 [1]. As stated by its name, the training
processes of the BP neural networks are based on an error
inverse propagation algorithm and in theory a 3-layers BP
neural network can simulate any nonlinear mapping.

For a BP neural network, which is a traditional pattern
recognition method, it is necessary to extract the image fea-
tures artificially before the network is trained. However, for
an Alexnet, which is deep learning network, it can extract
the features of the original data autonomously in its front
layers. Therefore, the process of feature extractions is not
necessary for a Alexnet. Nevertheless, a feature extraction
is still a prerequisite for a BP network training.

In this paper, a three layers BP neural network is con-
structed. The input layer corresponds to the extracted fea-
tures. Considering that there are 20 features were extracted
for the BP network, the output layer has 20 neurons and one
neuron represents a feature. The value of an output layer
indicates a class which the input vector belongs. Therefore,
the output layer includes one neuron. Here, the BP network
only contains one hidden layer, and the number of neurons
in the hidden layer can be determined by a test process. In
other words, by the optimization method, we can find the
optimal network structure of the BP Neural network with a
peak of the network test accuracy. The framework diagram
of the constructed BP Neural network is show in Fig. 3.

3. Experiments and Results

The Alexnet was built on the MATLAB 2017b to automati-
cally diagnose the surface damages of wind power generator
blades based on UAVs’ machine visions. Firstly, the im-
ages, collected by UAVs, are cropped and the typical dam-
age images of wind power generator blades are marked and
selected for training. Then, the training process was per-
formed using 10000 images. Based on the trained Alexnet,
6 turns of tests for 6 different groups of images are con-
ducted. Finally, a sub-layer visualization was applied to the
convolution layers of the untrained and the trained Alexnet,
and an output feature map of the sub-layer-visualization was
analyzed.

3.1 An Brief Introduction to the Wind Power Generator
Blade Images Captured by UAVs

Normally, each initially captured image includes 5472 ×
3078 pixels. When the storage space becomes limited and
the UAV is still under the working conditions, the UAV sys-
tem goes into the saving storage mode and the size of images
is compressed into 4096× 2160 pixels. We crop the original
images into the sub-images with a pixel size of 227 × 227.
With the additional 3 dimensional RGB information, the to-
tal size of the input images for Alexnet training and testing
is 227 × 227 × 3. Zero pixel borders, i.e., black compensa-
tion edges, are need to be added in the cropped sub-images,
when the number of cropped image pieces is not integer. All
images are classified into 3 categories: No defect or false de-
fect, cracks, and sand holes, which are the 3 kinds of outputs
of Softmax sub-layers.

The class of no defect or false defect includes back-
grounds, pseudo-defects, column damages, characters on
the outer shells of wind power generator blade spindle,
and non-damaged wind power generator blade; the class of
cracks includes fine cracks, slight scratches, and strip en-
larged damages cumulated by unrepaired wind power gen-
erator blade defects; the class of sand holes includes the tiny
black sand holes, the coating peeling off, the pitted surface
caused by some sand holes accumulation and the surface
water seepage of the blades.

In the experiment, 10000 images were used to train the
Alexnet where 568 images were labeled as the crack class,
8176 images were taken as no defect or false defect class,
and 1256 images were considered as sand holes class. Run-
ning on an Intel Core i5 CPU and 4G RAM, the training pro-
cess lasted for about 84 hours, and 550 iterations of training
happened.

Based on the trained Alexnet, 6 rounds of tests were
performed, each round used 350 images. Compare the orig-
inal category labels to the network output labels one by one.
By calculation, the average accuracy rate of damage diag-
nosis is 99.001%. The results of 6 round of experiments
based on the machine visions for automatic diagnosing wind
power generator blade surface damages are shown in Ta-
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Table 1 Statistics of Alexnet diagnosis.

Table 2 Statistics of 6 turn tests for different scales of the hidden layer of the BP network.

ble 1.

3.2 Experiment Protocols of the BP Neural Network

In the BP neural network, number of neurons in hidden-
layer is determined by network testing. The BP Neural net-
work uses the same training data and testing data as the
Alexnet did. Initially, the number of neurons is increased
from 1 to 8 one by one. When one the hidden layer neurons
is added, it needs to be re-trained and tested 6 times with 6
different sets of image data (see Table 2). The average ac-
curacy of the tests is the basis of determining the number
of neurons in the hidden layer. As we can see in Fig. 6, the
accuracy of diagnosis is gradually increasing at the begin-
ning, and the accuracy of diagnosis begin to decrease after
the number of hidden layer neurons is greater than 5. This
indicates that the optimal neuron number of the hidden layer
is 5.

3.3 Reverse Observed Alexnet Network Structure Based
on Sub-Layer-Visualization

The process of feather extractions by sub-layer-visualization
can be implemented by an activation function. According
to their functions, the 8-layer structures of Alexnet can be
divided into two groups: the convolution 2D layer and the
fully connected layer.

In the sub-layer-visualization method, a tested original
image is directly taken as the input data of the current visu-
alized sub-layer. That means that only one sub-layer is con-
sidered when the sub-layer-visualization method is working.

Through the observations in Fig. 8 and Fig. 9, it is
easy to know that according to the outputs of the 4 sub-
layers in layer1 the performances of trained Alexnet are bet-
ter than that of untrained Alexnet in a respect of depress-
ing the noise. For ReLU sub-layers, the trained Alexnet
mapping typical damage features are more vivid than un-
trained Alexnet.

Each convolution 2D layers consists 2, 3, or 4 func-
tional sub-layers and each fully connection layers consists
of 3 functional sub-layers. Take an example of the conv1
layer, which has the maximal number of functional sub-
layers among 5 convolution 2D layers. Activate every func-
tional sub-layer in conv1 layer and observe the processes of
its convolutions and max-pooling. But on fully connected
layer, transformed from pixel arrangement the feature to the
data form, pixel-point output is distortion. So there is not to
research that.

We can acquire layer output feature pixel images, so
that it is easy to know the working states of forward training.
If let an image fed in Alexnet, we can see the working states
of testing process.

4. Discussion

4.1 UAVs’ Application to Image Acquisition

The data applied for the damage diagnosis come from a
large amount of field captures by a 4-rotor UAV in the
Guohua WuChuan wind farm and Huarun ChaYouZhongQi
wind farm. Through the field investigations of wind power
industries, a variety of schemes of cruise paths for detecting
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Fig. 4 Surface sample image of blades.

Fig. 5 The trend of the average test accuracy with an increase of the
neuron number of the hidden layer.

the images of wind turbine blades are designed according
to the different running states of wind turbines. During the
period of weak wind, the wind turbine is shut down or in
a slow operating speed. A close-range and slow-speed in-
spection scheme could be adopted. When the wind turbine
runs at a rated load, a scheme of plane slow-track inspec-

Fig. 6 The original image of sub-layer-visualization.

Fig. 7 Sub-layer-visualization experiment on layer1 of untrained
Alexnet.

tion with fixed distance from the rotating plane of the blade
is adopted. When the wind season is coming and the speed
of the wind power blade is over a rated speed, a fixed-point
shooting plan with a fixed distance from the blade rotation
plane is adopted.

4.2 Automatic Diagnosis

For the traditional classification method, BP classifier, it is
necessary to artificially extract the damage features of wind
turbine blades images. In addition, to ensure the validity
of the feature parameters, a preprocess and segmentation of
images is usually conducted before extracting the feature pa-
rameters. However, the deep learning classification method,
Alexnet can extract the features of the original data automat-
ically in its front layers. Therefore, Alexnet does not need
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Fig. 8 Sub-layer-visualization experiment on layer1 of trained Alexnet.

the preprocess and segmentation of images.
For Alexnet, some of test examples are shown in Fig. 9.

The labels on the top of the image are the original label and
the classified label from top to bottom. When the two labels
are the same, they are indicated by black color, otherwise
by red color. According to Fig. 9, 18 of 19 samples of sand
holes were classified correctly, 1 of 19 sample was identified
wrongly. The wrong one was mistakenly divided into no
defect or false defect class rather than sand hole class, which
is a realistic case. For the image not categorized correctly,
the diagnosis system can locate its file path and validate its
classification accuracy as shown in Fig. 10.

The diagnostic accuracy of 6 test sets for the surface
damages of wind power generator blades on the Alexnet and
BP neural network are compared in Fig. 11. The diagnosis
result of the Alexnet is more robust than that of the BP neu-
ral network, when both of them are applied for detecting
the surface damages of wind power generator blades. In 6
rounds of tests, the fluctuation range of test accuracy for the
BP neural network is 0.2449, which is quite higher than that
of Alexnet.

5. Conclusion

In this study, we employed an Alexnet, a deep learning
framework, to automatically diagnose the damages of wind
power generator blade surfaces in real industrial fields.

Fig. 9 Classification results of sand holes.

Fig. 10 Map of misclassification image.

UAVs are used to inspect the operational wind turbine
blades. Under the condition of keeping a certain safe dis-
tance, normally 5 m∼20 m, the wind turbine blades placed at
the height are carefully and comprehensively observed, and
the high-quality images are obtained. Manipulating UAV
to cruise around the operational wind turbine blades and
to capture images realizes the damage inspections without
shutdown economic loss. Compared to the traditional clas-
sifier, the deep learning classifier has a higher degree of au-
tomation. Alexnet not only eliminates the tedious steps of
manually extracting features included in the framework of
traditional classifiers, but also has a higher diagnostic accu-
racy. For practical engineering application, it is more suit-
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Fig. 11 Test accuracy rate of diagnosis in the Alexnet and the BP classi-
fication methods for 6 tests.

able for wind turbine blade damage diagnosis because of its
ease to use. We can plan a cruise route for UAVs to automat-
ically capture wind power generator blade images. When
large-scale images data are collected, the classification work
can be distributed on multiple-core GPU (Graphics Process-
ing Unit) server for performing a parallel computation pro-
cess to save time. Thus, the proposed method can help wind
plants to establish full-cycle health records of their wind tur-
bine blades.
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