
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.1 JANUARY 2019
251

PAPER
Fast and Scalable Bilinear-Type Conversion Method for Large Scale
Crypto Schemes∗

Masayuki ABE†,††, Senior Member, Fumitaka HOSHINO†,†††a), Nonmember, and Miyako OHKUBO††††,Member

SUMMARY Bilinear-type conversion is to translate a cryptographic
scheme designed over symmetric bilinear groups into one that works over
asymmetric bilinear groups with small overhead regarding the size of objects
concerned in the target scheme. In this paper, we address scalability for
converting complex cryptographic schemes. Our contribution is threefold.
Investigating complexity of bilinear-type conversion. We show that there
exists no polynomial-time algorithm for worst-case inputs under standard
complexity assumption. It means that bilinear-type conversion in general
is an inherently difficult problem. Presenting a new scalable conversion
method. Nevertheless, we show that large-scale conversion is indeed
possible in practice when the target schemes are built from smaller building
blocks with some structure. We present a novel conversion method, called
IPConv, that uses 0-1 Integer Programming instantiated with a widely
available IP solver. It instantly converts schemes containing more than a
thousand of variables and hundreds of pairings. Application to computer-
aided design. Our conversion method is also useful in modular design
of middle to large scale cryptographic applications; first construct over
simpler symmetric bilinear groups and run over efficient asymmetric groups.
Thus one can avoid complication of manually allocating variables over
asymmetric bilinear groups. We demonstrate its usefulness by somewhat
counter-intuitive examples where converted DLIN-based Groth-Sahai proofs
are more compact than manually built SXDH-based proofs. Though the early
purpose of bilinear-type conversion is to save existing schemes from attacks
against symmetric bilinear groups, our new scalable conversion method
will find more applications beyond the original goal. Indeed, the above
computer-aided design can be seen as a step toward automated modular
design of cryptographic schemes.
key words: pairing-based cryptography, bilinear-type conversion, integer
programming, cryptographic scheme design, Groth-Sahai proofs

1. Introduction

1.1 Background

Bilinear groups (also called pairing groups) are mathematical
primitives that yield wide variety of advanced cryptographic
applications. Informally, a bilinear group is defined by a triple
of groups (G0,G1,GT) of same order q associated with an

Manuscript received March 12, 2018.
Manuscript revised August 17, 2018.
†The authors are with Secure Platform Laboratories, NTT

Corporation, Musashino-shi, 180-8585 Japan.
††The author is with Graduate School of Informatics, Kyoto

University, Kyoto-shi, 606-8501 Japan.
†††The author is with School of Computing, Tokyo Institute of

Technology, Tokyo, 152-8550 Japan.
††††The author is with Security Fundamentals Laboratory, CSR,
NICT, Koganei-shi, 184-8795 Japan.
∗A preliminary version of this paper was published in the

proceedings of CRYPTO 2016 [1]. This work was supported by
JSPS KAKENHI Grant Number JP16K00027.

a) E-mail: hoshino.fumitaka@lab.ntt.co.jp
DOI: 10.1587/transfun.E102.A.251

efficient bihomomorphism e : G0 × G1 → GT called pairing.
Among several types of bilinear groups in the literature, most
frequently used ones in cryptography are those so-called
Type-I and Type-III groups [2]. In Type-I groups, there exist
non-degenerate efficient homomorphisms between G0 and
G1 bidirectionally and hence it is regarded as G0 = G1 that
is simply denoted by G. In Type-III groups, it is assumed
that there exists no non-degenerate efficient homomorphism
between G0 and G1. Type-I groups has been a popular choice
in cryptographic design in early days. For these days, however,
crypto designers are prompted to employ Type-III groups due
to the rapid progress in cryptanalysis for small characteristic
finite fields that match to Type-I groups [3–8].

As vast number of schemes have been built over Type-I
groups, e.g, [9–15], bilinear-type conversion methods that
translate schemes designed for Type-I groups into ones that
work over Type-III groups have been developed [16–22].
Recall that cryptographic schemes designed over Type-I
groups do not necessarily work over Type-III groups due to
the presence of symmetric pairings, e(X, X). A workaround
is to convert the algorithm by duplicating the variables. That
is, the variable is represented by a pair (X, X ′) ∈ G0 × G1.
Duplication however clearly slows down the performance
since all relevant computations are ‘duplicated’ in G0 and
G1 as well. Besides, duplication is not always possible due
to mathematical constraints or external requirements. For
instance, it is not known how to pick random and consistent
pair X and X ′ while retaining the hardness of the discrete
logarithm problem on X and X ′. An automated conversion
finds the best allocation of variables over G0 and G1 that
makes all group operations doable with minimal overhead.

Automated conversion methods in the literature [20–
22] are only for small-scale schemes consisting of up to
tens of group operations. To follow the secure conversion
framework introduced in [21], one needs to convert not only
the algorithms in the target scheme but those that appear
in security proofs. It makes the target of conversion much
larger than the scheme itself. Besides, applications often
use several cryptographic schemes as building blocks. It is
in particular common to use efficient non-interactive proof
systems in constructions of advanced applications, which
results in involving hundreds of variables and dozens of
pairings. Existing methods thus fell short for converting
middle to large-scale schemes.

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers

252
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.1 JANUARY 2019

1.2 Our Contribution

In this paper, we address the scalability issue in bilinear-type
conversion. We investigate the complexity of the problem in
general, show a practical solution, and present its application
in cryptographic design. We elaborate our contributions as
follows.

(1) Investigating complexity of bilinear-type conversion.

Though bilinear-type conversion has been studied for long and
several heuristic methods have been explored, no theoretical
argument has been given about its complexity. We for the first
time investigate the complexity of bilinear-conversion and
formally prove the difficulty of the problem. In the framework
of [21] a scheme over Type-I group is represented by a graph
called a dependency graph. It describes a flow of group
operations in G over variables in the scheme. Conversion
is explained as a problem of splitting a given dependency
graph into two dependency graphs that represent flow of
group operations in G0 and G1. These graphs must satisfy
certain conditions so that the resulting scheme is executable.
A split that satisfies the conditions is called a valid split. It
has been shown that whether a valid split exists or not can
be decided in polynomial-time [23]. Finding a valid split
that brings the best efficiency in the converted scheme is an
optimization problem. We show that there is no algorithm
that solves the optimization problem in the worst case in
time polynomial in the size of input, if P , NP. Therefore
the scalable conversion is an essentially difficult problem in
general.

(2) Presenting a new scalable conversion method.

The above negative result however does not mean absence
of practical solution. The optimal solution may be found in
practical time for realistic cryptographic schemes that have
some structure in their dependency graph. We present a
novel scalable conversion method, which we call ‘IPConv’,
that uses 0-1 integer programming (IP). Given several kinds
of constraints and a metric implemented into an objective
function, it searches for a solution that minimizes the function
value subject to the constraints. The idea of encoding com-
putational constraints into an objective function follows from
previous works [20, 22]. Our novelty is the encoding method
that allows one to use Integer Programming that fits well to
our optimization problem with various constraints. Besides,
using such a tool is advantageous in the sense that there are
publicly available (both commercial and non-commercial)
software packages such as [24–29].

We demonstrate its scalability by applying it to large
systems with thousands of variables and pairings are gener-
ated randomly subject to some reasonably looking structures.
IPConv processed them in a few minutes to hours even with
non-commercial IP solver SCIP [25] as an engine. The con-
crete figures of course become magnitude of better with a
powerful commercial IP solver e.g. [24]. Scaling up to thou-
sands of pairings may seem an overkill. However, for instance,

schemes that include Groth-Sahai (GS) proof system [30]
easily involve dozens or even hundreds of pairings when
their security proofs are taken into account. Furthermore,
tools such as [31–33] would allow automated synthesis that
reach to or even exceed such a scale. Our method not only
contributes to speedup the process of conversion but also
opens the door to automated synthesis and optimization of
large scale cryptographic applications over bilinear groups.

(3) Application to computer-aided design.

To show usefulness of IPConv beyond its original purpose of
saving existing Type-I schemes, we use IPConv for conversion-
assisted design of middle-scale schemes that involve GS-
proofs. GS-proofs typically requires the Decision Linear
assumption (DLIN) over Type-I groups or the Symmetric
eXternal Diffie-Hellman assumption (SXDH) over Type-III
groups. By conversion, the DLIN assumption is translated to
the eXternal DLIN (XDLIN) assumption [34]. Though it is
generally considered that schemes based on SXDH is more
efficient than those based onXDLIN, we show some examples
that converted schemes using XDLIN is more efficient than
their direct instantiation based on SXDH.

Concretely, our first example is a scheme for showing
in zero-knowledge ones possession of a correct structure-
preserving signature [35] on a public message. We measure
the concrete size of proofs when instantiated over KSS-
16 curves at 128-bit security parameter and show that the
scheme obtained by conversion yields proofs that are up
to 56% shorter (asymptotic in the message length) than
those generated by direct constructions based on SXDH. The
construction uses a novel fine-tuning for zero-knowledge
GS-proofs which may be of independent interest. Our second
example is an automorphic blind signature scheme [35] that
involves GS-proofs and is secure under SXDH assumption in
asymmetric pairing. We show that the proofs can be replaced
with the DLIN-based ones and it can be converted to work in
asymmetric pairing under XDLIN assumption saving 41% of
the signature size compared to the originally manufactured
SXDH-based scheme.

Although our primary metric for optimization is the size
of intended objects, we also compare their computational
workload in the number of pairings in signature verifica-
tion. Interestingly, the winner changes depending on the
message size, acceptable duplication, and also the use of
batch verification technique [36]. This unveils an open issue
on optimization of schemes involving GS-proofs.

Documentation and source files used for the experiments
in this paper are available in [37].

1.3 Related Works

Early works on bilinear-type conversion, e.g. [16–19], study
and suggest heuristic guidelines for when a scheme allows or
resists conversion.

To our best knowledge, AutoGroup introduced by
Akinyele, Green and Hohenberger in [20] is the first au-
tomated conversion system that converts schemes from sym-

ABE et al.: FAST AND SCALABLE BILINEAR-TYPE CONVERSION METHOD FOR LARGE SCALE CRYPTO SCHEMES
253

metric pairing to asymmetric one. Given a target scheme
described in their scheme description language, the system
finds set of ‘valid’ solutions that satisfy constraints over
pairings by using a satisfiability modulo theory solver [38].
It then search for the ‘optimal’ solution that conforms to
other mathematical constraints and ones preferences. When
there are number of possible solutions, the performance gets
lower. In [22], Akinyele, Garman, and Hohenberger intro-
duced an upgraded system called AutoGroup+ that integrates
the framework of [21] to AutoGroup. Though the system
becomes more solid in terms of security, their approach for
finding an optimal solution remains the same as before. They
cover only small scale cryptographic schemes.

In [21], Abe et al. established a theoretical ground for
preserving security during conversion. Their framework,
reviewed in Sect. 3, provides useful theorems for security
guarantee. But their conversion algorithm is basically a brute-
force search over all possible conversions and it requires
exponential time in the number of pairings. In [1], the
authors proved that there exists a polynomial time algorithm
to solve search version of pairing type satisfiability problem,
and introduced an algorithm using 0-1 Integer Programming
(IP) to solve the optimization problem. This is a preliminary
version of this paper.

Regarding Groth-Sahai zero-knowledge proofs, the clos-
est work is the one by Escala and Groth in [39]. They observe
that commitment of 1Zp can be seen as a commitment of
the default generator G and uses the fact that a commitment
of G can be equivocated to 1G to construct more efficient
zero-knowledge proofs for pairing product equations (PPEs)
with constant pairings of the form e(G, A) in Type-III setting.
Our fine-tuning technique uses the same property for the
commitment of G but use it in a different manner that is
most effective in Type-I setting. For details please refer to
Section 5.1 in [40]. Another close work is [41] that presents
a DLIN-based variant of GS-proof system over asymmetric
bilinear groups. Their scheme bases on SDLIN assumption
where independent DLIN in G0 and G1 are assumed as hard,
and uses independently generated CRSes for commitments
in G0 and G1. Thus their proof system is inherently asym-
metric, which cannot exploit nice properties of symmetric
setting as done in this work. Besides, SDLIN-based instanti-
ation is less efficient than SXDH-based one. We therefore
use the original SXDH-based instantiation for comparison
in this paper. In [42, 43], a more efficient instantiation of
GS-proofs by using recently introduced Matrix assumptions.
Although DLIN-based GS-proofs are used throughout this
paper, matrix-based assumption might be an alternative to fur-
ther gain efficiency if the Type-III analogue of the assumption
is acceptable.

2. Preliminary

In this work, we identify the set of integers {0, 1} with the
set of truth values. Namely 0 is interpreted as false and 1
as truth. We assume that statements can be deduced as in
classical logic.

Definition 1 (∧,∨, ⊕,⇒,⇔,¬, ·̄). For two logical statements
x, y , we write its logical conjunction, disjunction, exclusive
disjunction, implication, and equivalence as x ∧ y, x ∨ y,
x ⊕ y, x ⇒ y, and x ⇔ y respectively. For a statement x,
we write its logical complement as ¬x or x̄.

Wewill frequently use some elementary notions in graph
theory. Since the same words often mean slightly different
notions between different contexts in graph theory, to avoid
confusion or ambiguity, in this paper we define them as
follows.

Definition 2 (Directed Graph). A directed graph G is de-
fined as G = (V, E), where V is a set called vertex set, and
E is a multiset of elements in V × V called edge set. In
this work, we assume all directed graphs are simple, which
means their edge sets have neither self-loop nor multiedge.
Therefore, E is a subset of V × V in this work. For a given
graph G, its vertex set and edge set are written as V (G) and
E(G) respectively. An edge (x, y) ∈ V × V is often written
as (x

G
→ y) or (y

G
← x) to clear its direction.

Definition 3 (In-edge/Out-edge). For a vertex x, (x
G
→ y)

(resp. (x
G
← y)) is called its outgoing edge or out-edge (resp.

incoming edge or in-edge).

Definition 4 (Degree). For any vertices x ∈ V (G), its out-
degree deg+(x), indegree deg−(x) and degree deg(x) are
defined as deg+(x) := #{(x

G
→ y) ∈ E(G) | y ∈ G},

deg−(x) := #{(x
G
← y) ∈ E(G) | y ∈ G}, and deg(x) :=

deg+(x) + deg−(x).

Definition 5 (Leaf). A leaf is defined as a vertex without
outgoing edge, i.e. vertex x s.t. deg+(x) = 0.

Definition 6 (Parent/Child). Let x and y be vertices inV (G).
When (x

G
→ y) ∈ E(G), we simply denote x

G
→ y, i.e. the

binary relation x
G
→ y is a shorthand for “(x

G
→ y) ∈ E(G)”.

In the same manner, when (x
G
← y) ∈ E(G), we denote

x
G
← y. If x

G
→ y (resp. x

G
← y), x is called a parent (resp.

child) of y .

Although it is ambiguous whether the expression (x
G
→

y) means an edge (x, y) or a binary relation x
G
→ y in

parenthesis, in most cases we can distinguish between them
by context. In this paper, we rarely use the latter.

Definition 7 (Ancestor/Descendant). A vertex y which can
reach (resp. reachable from) x is called an ancestor (resp. a
descendant) of x. If y is an ancestor (resp. a descendant) of
x or x itself, we write y G

; x (resp. y G
;x).

Definition 8 (Strongly Connected). For any vertices x, y ∈
V (G), if x G

; y and x G
;y, we say x and y are strongly

connected to each other, and write x G
∼ y .

254
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.1 JANUARY 2019

Definition 9 (Induced Subgraph). Let G be a graph, S be
a subset of V (G). The (vertex) induced subgraph G[S] is
defined as G[S] := (S, {(x, y) ∈ E(G) | x, y ∈ S}).

Definition 10 (Strongly Connected Component/Cycle).
For a graph G, its strongly connected components are defined
as the induced subgraphs of equivalence classes of V (G)
w.r.t. G∼ . When a strongly connected component has 2 or
more vertices, we call it a cycle.

3. Conversion Based on Dependency Graphs

3.1 Overview

In this section we review the framework in [21]. To guarantee
the security of the resulting scheme, it converts not only
algorithms that form the target scheme but also all algorithms
that appear in the security proof as well as underlying as-
sumptions. Namely, it assumes that the security is proven by
the existence of reduction algorithms from some assumptions
in Type-I, and converts the algorithms and assumptions into
Type-III. This way, the security proof is preserved under the
converted assumption. It is proven in [21] that if the origi-
nal assumptions are valid in Type-I generic bilinear group
model [44], the converted assumptions are valid in Type-III
generic bilinear group model. Most typically, the DLIN
assumption is converted to XDLIN.

In their framework relations among variables in target
algorithms are described by using a graph called a dependency
graph, and the central task of conversion is reduced to find a
‘split’ of the graph so that each graph implies variables and
computations in each source group in the Type-III setting.

We follow the framework of [21] that consists of the
following four steps.

1. Verify that the target scheme in Type-I and its security
proof follows the abstraction of bilinear groups.

2. Describe the generic bilinear group operations over source
group G by using a dependency graph as we shall explain
later.

3. Split the dependency graph into two that satisfy some
conditions. The resulting graphs imply variables and
group operations in G0 and G1 respectively.

4. Describe the resulting scheme in Type-III as suggested
by the graphs.

As well as [21], we focus on step 3 and propose a practical
algorithm for the task of finding a split. Thus, when we
conduct an experiment for demonstrating the performance,
we start from a dependency graph as input and complete
when a desirable split of the input graph is obtained.

3.2 Dependency Graph

A dependency graph is a directed graph that represents
computational dependencies among variables storing source
group elements in the target system. Each vertex represents a

Fig. 1 An example of dependency graph.

variable storing a group element in the algorithms e.g. some
part or all of public key, cipher text, signature, commitment,
zero-knowledge proof and so on. Each edge represents its
dependency w.r.t. group operations, that is head depends on
tail.

In Fig. 1, we show an example of a dependency graph for
a program that computes some group operations over Type-I
pairing. The left of Fig. 1 is an example of an algorithm (in
so called pidgin ALGOL) which takes source group elements
A, B and D as input, compute C and E via group operations,
and outputs a result of pairing e(C, E). The right of Fig. 1 is
a dependency graph that corresponds to the left algorithm. In
a dependency graph, just the relations between source group
elements via group operations are described, and all other
things are dropped, e.g. the structures of the program like
“if-then-else”, variables storing other than the source group
elements like a ∈ Z/pZ, and operations in the target group.
In a dependency graph, there may exist some nodes which do
not appear explicitly in the description of algorithms. Such
nodes are called implicit. The followings are the typical cases
to appear implicit nodes.

• Temporary nodes represent temporary variables in G. In
a description of an algorithm, results of group operations
are not necessary assigned to explicit variables. To bind
the type of all operands, a new node is introduced.

• Pairing nodes represent inputs to pairing operations. Ev-
ery pairing node has only one incoming edge and no
outgoing edges. Each pairing node is paired with another
pairing node so that the pair constitutes an input to a pairing
operation.

• Comparing nodes represent element identification oper-
ations in G i.e. = or ,. In terms of dependency, element
identification is nothing other than the group operation
except for its output. To bind the type of both side, a new
node who has two incoming edges but no outgoing one is
introduced.

• Control nodes may be appended to the dependency graph
to implement users’ preferences defined independently
of the description of algorithms. In Sect. 5.2, we will
exemplify three typical cases, i.e. specific assignment,
grouping, and exclusive assignment.

In Abe et al.’s framework, two sub-graphs are derived from a
dependency graph to execute the conversion. We call deriving
the pair of the sub-graphs or the pair itself “split”. A split
represents a converted scheme, and each sub-graph becomes

ABE et al.: FAST AND SCALABLE BILINEAR-TYPE CONVERSION METHOD FOR LARGE SCALE CRYPTO SCHEMES
255

Fig. 2 An example of conversion by split.

a dependency graph w.r.t. G0 or G1. The converted scheme
based on asymmetric pairing will be reconstructed according
to the split. In Fig. 2, we show an example of conversion for
the program of Fig. 1.

Definition 11 (G,G0,G1). In previous sections, we defined
G,G0,G1 as source groups of symmetric or asymmetric pair-
ing, but hereinafter, we redefine G as a dependency graph to
be split or its vertex set as in the Fig. 1. In the same manner,
we redefineG0 andG1 as sub-graphs of G or their vertex sets
as in the Fig. 2. For simplicity, we assume the notation G, G0,
and G1 include all relevant information about the scheme
e.g. which vertices correspond inputs of pairings, outputs of
hash functions, and so on. Through this work we assume G
is finite.

Notice that this abuse of notation may confuse some
experts of the cryptographic pairing, e.g. the statement P ∈
G0 ∧ P ∈ G1 may mislead them as P = O which is the
identity element of G0 and G1, but this is a fallacy because
the statement means nothing other than that the variable P is
represented as G0 × G1 in the converted scheme.

Definition 12 (Split). Formally, for a dependency graph G,
any pairs of its sub-graphs are called its splits.

Definition 13 (Duplicated node). If a vertex x satisfies x ∈
G0 ∧ x ∈ G1, x is called duplicated node, or simply we
say x is duplicated.

Definition 14 (Duplicatable/Non-duplicatable). The node
which can be duplicated is called duplicatable. Similarly the
node which cannot be duplicated by some reasons is called
non-duplicatable.

It is known that vertices which represents the outputs
of an operation called HashToPoint [15,19,45, 46] must be
configured as non-duplicatable [21, 47]. Some nodes may
be specified as non-duplicatable by crypto designers due to
reducing the data size of converted scheme.

Definition 15 (Pairing node/Regular node). A vertex which
represents an input of pairing is called a pairing node.
Vertices other than pairing nodes are called regular nodes.

Every pairing node has just one in-edge and no out-
edges, hence it must be a leaf. Each pairing node is paired
with another pairing node so that the pair constitutes an input
to a pairing operation. We assume that variables storing
the inputs of a pairing are declared and defined implicitly.

For example, in the right of Fig. 1 the vertices p1[0] and
p1[1] correspond to the implicit variables. If there are many
pairings in a scheme, we assume that i-th pairing has implicit
variables pi[0] and pi[1]. Moreover, we will treat all pairing
nodes as non-duplicatable.

In general, data flow of a single algorithm (i.e. chains
of effective assignments) compose a directed acyclic graph
(DAG), thus it has no cycle. However in our cases, the
dependency graph consists of multiple algorithms in a scheme.
In such a case, it is possible that the dependency graph has a
cycle, hence, a vertex x can be an ancestor and a descendant
of a vertex y simultaneously. Each vertex in a cycle is an
ancestor and a descendant of all other vertices in the cycle,
therefore we can identify all vertices in the cycle with a single
vertex w.r.t. dependency.

Considering this property, we can reduce a dependency
graph to a DAG by identifying all vertices in each cycle with a
single vertex (and removing all loop edges). We assume each
vertex in the reduced dependency graph inherits its properties
from the original graph. If a cycle has a non-duplicatable
node, we regard the corresponding vertex in the reduced
dependency graph as non-duplicatable.

The above reduced graph is nothing other than the quo-
tient graph of G by the equivalence relation G∼, which is often
referred to as the strongly connected components quotient
graph or the condensation of G. Efficient algorithms are
well known for strongly connected components decomposi-
tion [48–50].

For most of our problem, it is enough to consider the
reduced dependency graph instead of the original one. There-
fore we assume G as a DAG hereinafter, and define the
following notion to treat bilinear-type conversion formally.

Definition 16 (AbstractCrypto Scheme). Adirected acyclic
graph G with

NoDup ⊂ V (G) : set of non-duplicatable nodes, and
Pair ⊂ {{x, y } | x, y ∈ L1

G
} : set of pairings

is called an abstract symmetric-pairing-based crypto scheme,
or just an abstract crypto scheme. Here L1

G
is all of leaves in

G whose indegree is just 1, and #
⋃
Pair = 2 #Pair.

The word “abstract crypto scheme” means the same
as (reduced) dependency graph except for ignoring whether
it is derived from a real crypto scheme or not. To avoid
complicated notation, we will often omit NoDup and Pair,
and simply write G to express an abstract crypto scheme,
except when they are necessary.

3.3 Valid Split

In [21, 51], Abe et al. defined a class of split called valid
split which guarantees the functionalities and the security of
the converted scheme. It has been shown in [21] that if a
dependency graph is split into two graphs that satisfy four
conditions below then the converted scheme derived from the
graphs works over Type-III bilinear groups and is secure in

256
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.1 JANUARY 2019

the same sense as the original scheme but based on converted
assumptions. Such a pair of graphs is called a valid split.

Definition 17 (Valid Split). Let (G, NoDup, Pair) be an ab-
stract crypto scheme, (G0,G1) be a split ofG. We say the split
(G0,G1) is valid iff it satisfies all of the following properties:

1. merging G0 and G1 recovers G,

2. if y
G
; x ∧ x ∈ Gb then y ∈ Gb, for all b ∈ {0, 1},

3. if {x, y } ∈ Pair then x and y are separately included
in G0 and G1, and

4. G0 ∩ G1 ∩ NoDup = ∅.

The first condition guarantees that all variables and
computations are preserved during conversion. The second
condition guarantees that all variables needed to compute a
variable belong to the same source group.

Let (G0,G1) be a split which satisfies V (G0)∪V (G1) =

V (G) and the above property 2. For any edge (y
G
→ x)

in E(G), there exist b ∈ {0, 1} s.t. x ∈ V (Gb) because
x ∈ V (G0) ∪ V (G1). Therefore y ∈ V (Gb) by the property
2, i.e. for any edge e ∈ E(G) there exist b ∈ {0, 1} s.t.
e ∈ E(Gb) if we can identify the induced subgraphG[V (Gb)]
and Gb .

This means we do not have to care about the edges
of a valid split except for ancestor-descendant relationship.
Therefore, in the rest of this paper, we often regard G, G0,
and G1 just as vertex sets. We can always restore Gb to the
induced subgraph G[V (Gb)] when E(G) is known.

The following algorithm efficiently decides whether a
split is valid or not.

Algorithm 1 (Valid or Not).
Input. An abstract crypto scheme (G, NoDup, Pair), and

a split (G0,G1).
Output. 1 if valid, 0 otherwise.
Steps.
1. ∀x ∈ G if (x ∈ G0) ∨ (x ∈ G1) , 1, E(G), ∀b ∈ {0, 1}

if (y ∈ Gb) ∧ ¬(x ∈ Gb) return 0,
3. ∀{x, y } ∈ Pair, ∀b ∈ {0, 1}

if (x ∈ Gb) ⊕ (y ∈ Gb) , 1 return 0,
4. ∀x ∈ NoDup, if (x ∈ G0) ⊕ (x ∈ G1) , 1 return 0,
5. return 1.

According to this algorithm, Abe et al. proposed a
bilinear-type conversion algorithm [21,51], but it is basically
a brute-force search over all possible conversions and requires
exponential time in the number of nodes.

Note that a valid split as defined above only meets the
mathematical constraint over the pairings and those given
by NoDup. There could be large number of valid splits for
a dependency graph and it is another issue how to pick the
optimal one according the metric and constraints given by
the user.

4. Theory of Bilinear-Type Conversion

In this section, we introduce a comprehensive theory of

bilinear-type conversion. In this theory, some logical state-
ments on vertices of abstract crypto schemes will be treated
algebraically. To ease translation between logical statements
and algebraic relations, we define the following notations.

Definition 18 (Assignment Variable). For x ∈ V (G) and
b ∈ {0, 1}, we interpret the expression (x ∈ Gb) as a propo-
sitional variable which represents its truth value. We call
(x ∈ Gb) an assignment variable. For an abstract crypto
scheme G, we define VG as the set of assignment variables,
i.e.

VG := {(x ∈ Gb) | (x, b) ∈ V (G)×{0, 1}} = V (G)×{0, 1}.

Definition 19 (Shorthand Notation for Assignment Vari-
ables). If vertex x is a non-duplicatable node, we regard x
as a variable over {0, 1}, and define x := (x ∈ G1).

Definition 20 (Assignment). Amap δ : VG → {0, 1} is called
an assignment for the abstract crypto scheme G, or simply
an assignment. For x ∈ V (G) and b ∈ {0, 1}, we often write
an assignment δ(x, b) as δ(x ∈ Gb).

If an assignment δ is specified, all assignment variables
are assigned as (x ∈ Gb) := δ(x ∈ Gb), and δ decides
a split (G0,G1) as Gb := {x ∈ G | δ(x ∈ Gb) = 1}.
Similarly, if a split (G0,G1) is specified, the corresponding
assignment δ is uniquely decided. Therefore an assignment
δ is also called a split. We will often omit the map δ from
statements of assignments, e.g. we say “A split (G0,G1)
satisfies (x ∈ Gb) ⇒ (y ∈ Gb) if y G

; x,” instead of “A
split δ satisfies δ(x ∈ Gb) ⇒ δ(y ∈ Gb) if y G

; x.”

Definition 21 (Order of Assignments). Let δ and δ′ be two
assignments. We write δ′ ≥ δ iff ∀(x ∈ Gb) ∈ VG, δ(x ∈ Gb)
⇒ δ′(x ∈ Gb).

4.1 Problems on Bilinear-Type Conversion

A theoretical background that distinguish this work from
previous ones is a separation between satisfiability and op-
timization problems on bilinear-type conversion. In the
previous works, satisfiability problem is primarily focused on,
and optimization is regarded as a subsidiary issue. However,
in this work, we will show that the problem to tackle is just the
optimization, since the satisfiability is easy. In this section,
we formalize these problems to discuss the hardness of them.

Definition 22 (ConvSAT).

Name. Satisfiability of Bilinear-Type Conversion.
Instance. An abstract crypto scheme G.
Question. Decide whether there exists a valid assignment
in (VG → {0, 1}) or not.

Definition 23 (sConvSAT).

Name. Search Version of ConvSAT.
Instance. An abstract crypto scheme G.

ABE et al.: FAST AND SCALABLE BILINEAR-TYPE CONVERSION METHOD FOR LARGE SCALE CRYPTO SCHEMES
257

Question. Find a valid assignment in (VG → {0, 1}) if
possible.

Definition 24 (ConvOpt).

Name. Optimization of Bilinear-Type Conversion.
Instance. An abstract crypto schemeG, and an evaluation
function f : (VG → {0, 1}) → R.
Question. Find a valid assignment in (VG → {0, 1}) that
minimizes f .

The evaluation function f is assumed to be a metric
of some cryptographic interest like message length, circuit
size, operation time, and so on, but f is not specified here for
formal treatment.

Algorithms to solve sConvSAT or ConvOpt can be di-
verted to ConvSAT even if their output is nonsense for im-
possible cases, because by using Algorithm 1, we can decide
whether a given split is valid or not efficiently. There-
fore, w.r.t. hardness of the problems, we can easily derive
ConvSAT ≤ sConvSAT ≤ ConvOpt. In the literature, an ef-
ficient algorithm for ConvSAT is known [23], while one for
sConvSAT is unknown. In this work, we show that there
exists polynomial-time algorithms to solve sConvSAT, but
no algorithm to solve ConvOpt in the worst case in time
polynomial in the size of input, if P , NP.

4.2 Semi-Optimal Split

In [21,51], Abe et al. introduced a set of conditions to guaran-
tee all functionalities and securities of the converted scheme
as in the Definition 17 (Valid Split). But their conditions
are not so informative for our problems because they do not
exclude apparently poorly-optimized splits. In this section,
we introduce a special class of valid split which we call
semi-optimal split and state some trivial facts. Surprisingly
most of relevant results in this work will be derived from
such trivial facts. We omitted some proofs of propositions
due to space. See [47] for them.

Definition 25 (Semi-Optimal Split).We define that an as-
signment for the variable (x ∈ Gb) is semi-optimal iff

(x ∈ Gb) =
{

¬(x ∈ Gb̄) (if Dx = ∅),∨
y∈Dx

(y ∈ Gb) (if Dx , ∅),

where Dx is all of descendants of x. A node x is called
semi-optimal iff both (x ∈ Gb)’s are semi-optimal. A valid
split is also called semi-optimal iff all assignments in the split
are semi-optimal. Semi-optimal split is short for semi-optimal
valid split.

Proposition 1. If there exists a valid split s.t. (x ∈ Gb) is
not semi-optimal for some x ∈ G and some b ∈ {0, 1}, there
exists another valid split s.t. (x ∈ Gb) is semi-optimal.

Corollary 1. For an abstract crypto scheme, there exists a
valid split iff there exists a semi-optimal one.

By using the following algorithm, we can convert a valid

assignment into a semi-optimal one efficiently.

Algorithm 2 (Valid To Semi-Optimal).

Input. An abstract crypto scheme (G, NoDup, Pair) and
a valid assignment δ : VG → {0, 1}.

Output. A semi-optimal assignment δ′ : VG → {0, 1}.
Steps.
1. ∀v ∈ V (G), visited[v]← 0,
2. ∀v ∈ V (G), DFSearch(v),
3. return δ′.

Subroutine. DFSearch(v)
SideEffects. δ′ and visited will be updated.
Steps.
if (¬ visited[v]) then
visited[v]← 1,

if {w | w
G
← v } = ∅ then

if δ(v ∈ G0) ∧ δ(v ∈ G1) then

δ′(v ∈ G0)
$
← {0, 1}, δ′(v ∈ G1) ← 1 ⊕ δ′(v ∈ G0),

else ∀b ∈ {0, 1},
δ′(v ∈ Gb) ← δ(v ∈ Gb),

else

∀w : w
G
← v, DFSearch(w),

∀b ∈ {0, 1}, δ′(v ∈ G0) ←
∨
w :w

G
←v

δ′(w ∈ G0),

return.

As a consequence of Corollary 1, we can drastically
reduce the number of assignments to consider w.r.t the sat-
isfiability problems. Namely, it is enough to consider just
semi-optimal assignments to solve ConvSAT or sConvSAT.
To apply this technique to the optimization problem, we
introduce the following condition which is quite natural since
the evaluation function is assumed to be something like size
of data, cost of implementation or efficiency of operations.
Condition 1. Let f be the evaluation function, δ and δ′

be two valid splits, where all vertices but x have the same
assignments in the both splits. If x is not duplicated in δ but
in δ′, then f (δ) ≤ f (δ′).

Proposition 2. Let f be the evaluation functionwhich satisfies
Condition 1, δ, δ′ and x be the same as in Condition 1. If x is
not semi-optimal in δ′ but in δ, then f (δ) ≤ f (δ′).

Corollary 2. Let f be the evaluation function which satisfies
Condition 1. For any valid split δ1 of G, there exists a
descending chain of valid splits terminated by a semi-optimal
split δn, i.e. δ1 ≥ · · · ≥ δn, which satisfies f (δ1) ≥ · · · ≥
f (δn).

4.3 Hardness of the Problems

Theorem 1. There exists a polynomial time algorithm to solve
sConvSAT.

Proof . We show this constructively by giving the following

258
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.1 JANUARY 2019

algorithm which solve sConvSAT deterministically in time
polynomial in the size of input. In the followings, we call a
set of linear equations a linear equation system.

Algorithm 3 (sConvSAT Solver).

Input. An abstract crypto scheme (G, NoDup, Pair).
Output. A valid split (G0,G1) if possible. ⊥ otherwise.
Steps.
1. NoDup

∪
← LG, where LG is all of leaves in G.

2. Let Q ← ∅ be a variable storing a linear equation system,

3. ∀x ∈ NoDup, ∀y ∈ Lx, Q
∪
← {x ⊕ y = 0},

where Lx is all of descendant leaves of x.

4. ∀{x, y } ∈ Pair, Q
∪
← {x ⊕ y = 1},

5. Establish an echelon form of linear equation system
Q/F2 with Gaussian elimination.

6. If the last non-zero row of the echelon form is ~0 · ~x = 1,
where ~x is the vector of the variables in Q/F2, return ⊥
(which means Q/F2 is inconsistent).

7. Otherwise decide the assignment of the leading variable
(the first variable who has non-zero coefficient from the
left, also called the dependent variable) of the row to
satisfy the equation of the row by assigning all following
variables to any in {0, 1}. In the same way, decide the
dependent variables in the upper rows from bottom to
top by assigning all following variables consistently.

8. ∀x ∈ NoDup, (x ∈ G0) ← ¬x,
// (x ∈ G1) = x by Definition 19.

9. ∀x ∈ G \ NoDup, ∀b ∈ {0, 1}, (x ∈ Gb) ←
∨
y∈Lx

(y ∈ Gb),
10. Establish (G0,G1) according to the assignment, and

return it.

2

By using Algorithm 3, we can exactly know how many
feasible solutions i.e. semi-optimal splits exist, namely 2n

where n is the number of independent variables.

Algorithm 4 (SanityChecking). Sanity checking is a variant
of Algorithm 3 which just returns the consistency of the linear
equation system Q/F2 at Step 6.

Corollary 3. ConvSAT is in P.

Tango et al. gave another proof of this corollary using
graph coloring [23].

To prove the hardness of ConvOpt, we just refer the
following definition and theorem due to Kohli, Krishnamurti
and Mirchandani. See [52] for proof of the theorem.

Definition 26 (MinSAT [52]).

Name. Minimum Satisfiability Problem.
Instance. A set of binary variables U = {u1, . . . , uk }, and
a set of clauses C = {c1, . . . , cn} over U (where a clause is
a disjunction of literals).
Question. Find a truth assignment : U → {0, 1} to min-
imize number of clauses in C which is satisfied by the

assignment.

Theorem 2 (Kohli et al. [52]). MinSAT is NP-hard.

Theorem 3. ConvOpt is NP-hard.

Proof . The following algorithm reduces a MinSAT instance
to a ConvOpt instance in time polynomial in the size of input.

Algorithm 5 (MinSAT to ConvOpt).

Input. An instance of MinSAT:
U = {u1, . . . , uk } and C = {c1, . . . , cn}.
Output. An instance of ConvOpt:
an abstract crypto scheme (G, NoDup, Pair), and
an evaluation function f : (VG → {0, 1}) → R.
Steps.
1. (V (G), E(G), NoDup, Pair) ← (∅,∅,∅,∅),
2. ∀u ∈ U,

define new symbol p,

V (G)
∪
←{u,¬u, p,¬p}, E(G)

∪
←{(u

G
→ p), (¬u

G
→ ¬p)},

NoDup
∪
← {u,¬u, p,¬p}, Pair

∪
← {{p,¬p}},

3. ∀c ∈ C,

V (G)
∪
← {c},

For all literal ` ∈ c, E(G)
∪
← {(c

G
→ `)},

4. Let f (δ) :=
∑

c∈C δ(c ∈ G1),
5. return (G, NoDup, Pair) and f .

Given an optimal valid split (G0,G1) of the above ConvOpt
instance. We can derive a semi-optimal split efficiently from
a given valid split by using Algorithm2. Thus we can find
its semi-optimal version of (G0,G1) efficiently. Moreover
the semi-optimal version also satisfies the optimality of f ,
because f satisfies Condition 1. In the semi-optimal split,
(c ∈ G1) satisfies (c ∈ G1) =

∨
`∈c (` ∈ G1) =

∨
`∈c `.

Therefore the assignments of (ui ∈ G1) = ui is the solution to
minimize

∑
c∈C

∨
`∈c `, i.e. the solution of MinSAT instance

(U,C). 2

5. Finding Optimal Valid Split with IP

In previous section, we show that there exists no algorithm
to solve ConvOpt in the worst case in time polynomial in the
size of input, if P , NP.

However this negative result never means that there exist
no practical bilinear-type conversion algorithm. The optimal
solution may be found in practical time for practical cases,
if it includes no hard structure. In the preliminary version
of this paper [1], we propose such a conversion algorithm,
which we call ‘IPConv’, based on 0-1 integer programming
(IP). In this section, we will introduce a simplified version of
it.

Proposition 3. Let (G0,G1) be a valid split of G.
∀x, y ∈ G : x G

; y, ∀b ∈ {0, 1}, (x ∈ Gb) ≥ (y ∈ Gb).

Namely the map : V (G) → {0, 1}, x 7→ δ(x ∈ Gb) can

ABE et al.: FAST AND SCALABLE BILINEAR-TYPE CONVERSION METHOD FOR LARGE SCALE CRYPTO SCHEMES
259

be regarded as order-preserving for a valid split δ. Regarding
this property, we can extend Algorithm3 to the next one,
which reduces an instance of ConvOpt to that of 0-1 IP
efficiently. In the followings, we call a set of linear equations
and inequalities a linear inequality system.

Algorithm 6 (ConvOpt to 0-1 IP).

Input. An abstract crypto scheme (G, NoDup, Pair).
Output. A linear inequality system Q.
Steps.
1. NoDup

∪
← LG

2. Let Q ← ∅ be a variable storing a linear inequality
system,

3. ∀x ∈ NoDup,Q
∪
← {(x ∈ G0) + (x ∈ G1) = 1},

4. ∀{x, y } ∈ Pair,Q
∪
← {(x ∈ G1) + (y ∈ G1) = 1},

5. ∀(x
G
→ y) ∈ E(G),∀b ∈ {0, 1}, Q

∪
← {(x ∈ Gb) ≥

(y ∈ Gb)},
6. return Q.

In the above algorithm, the evaluation function f is
not specified, but we assume that it is a metric of some
cryptographic interest.

In general, if f contains an expression X ∧Y (or X ×Y)
for distinct binary variables X and Y , we can replace it with a
new binary variable Z by introducing a new linear constraints
{Z − X −Y + 1 ≥ 0, X − Z ≥ 0,Y − Z ≥ 0} to the inequality
system Q. Similarly, if f contains ¬X , we can replace it
with a new variable Z by introducing {Z = 1 − X } to Q.
Therefore any linear combination of any binary logic can be
easily and efficiently linearized by introducing new variables
and linear constraints. Consequently, for a large class of
computable evaluation function, we can establish a linear
inequality system Q and a linear evaluation function f , i.e.
an instance of 0-1 integer “linear” programming problem.

However, for simplicity, we assume that all evaluation
functions are monotonic (order-preserving) and non-negative
in the rest of this paper, i.e. for any assignments δ and δ′,
δ′ ≥ δ ⇒ f (δ′) ≥ f (δ) and f (δ) ≥ 0. Such evaluation
functions are natural for most of cryptographic interest like
message length, circuit size, operation time, and so on. Hence,
ignoring the validity of the splits, we can easily estimate the
maximumand theminimumvalues of the evaluation functions
as max f = f (δ1) and min f = f (δ0) ≥ 0, where δ1 and δ0
are the assignments which assign all assignment variables to
1 and 0 respectively.

5.1 IPConv Procedure

We present a new method, which we call ‘IPConv’ for finding
an optimal valid split. IPConv takes the task in the third step
of the conversion procedure mentioned in Sect. 3.1. It takes
as input a dependency graph G of a Type-I scheme and users’
preferences, and outputs a split (G0,G1) corresponding to a
converted Type-III scheme. IPConv consists of the following
stages.

1. Preprocessing on the graph. The input dependency
graph is modified to implement some user-specified pref-
erences. When the dependency graph has a cycle, it is
reduced into a DAG by using a strongly connected com-
ponents decomposition algorithm [48–50]. The output of
this stage is an abstract crypto scheme (G, NoDup, Pair).

2. Translating into a linear inequality system. Assign-
ment variable (x ∈ Gb)’s are placed on each node x’s in
V (G) for all b ∈ {0, 1}. Although the feasibility of the in-
stance can be detected in later stages, we use Algorithm 4
in this stage to assure the existence of a solution, since it
is overwhelmingly faster (deterministic polynomial-time).
After that, the abstract crypto scheme is translated into a
linear inequality system Q by using Algorithm 6.

3. Establishing the objective function. According to user’s
preferences, the objective function f is composed with
possibly modifying Q and introducing new variables. We
will discuss this in more detail in the next section.

4. Running Integer Programming. Run 0-1 Integer Pro-
gramming for finding an assignment to the variables
that minimizes the objective function f subject to the
constraints Q.

5. Composing the final split. The assignment decides
which constraint nodes belong to which source group,
and further decides on other nodes. Thus a valid split is
composed from the assignment.

5.2 Users’ Preferences

One may want to avoid duplication regarding specific set of
variables as much as possible. Typical practical demands
would be to look for the minimal duplication in the public-key
elements, or the smallest possible duplication in the instance
of assumptions. In general, by manipulating inputs and
outputs of Algorithm6 and the objective function, i.e. G,
NoDup, Pair, Q and f , we can handle various requirements
to the split. In this section we show in the following several
types of preferences that can be handled in our conversion
procedure.

• Priority. We allow users to give a priority to some nodes
so that they avoid duplication as much as possible than
other nodes. Concretely, a priority is given by a list of sets
of nodes. Let (I1, I2, · · ·) be a sequence of non-empty sets
of nodes where every set consists of arbitrary number of
nodes and the sets are pairwise disjoint. It is considered
that nodes in Ii are given more priority for non-duplication
than those in Ii+1. For instance, suppose that I1 includes
nodes representing a public-key and I2 includes nodes
representing a signature. By specifying (I1, I2) as a priority,
a solution that includes less duplication in a public-key is
preferred. If only one node in a public-key is duplicated in
solution A, and all nodes in a signature are duplicated in
solutionB, then solutionBwill be taken. Unspecified nodes
are given the least priority. For example, we can implement
a evaluation function supporting priorities, based on the

260
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.1 JANUARY 2019

space to store, as follows. Let gi (δ) be a evaluation function
s.t. gi (δ) :=

∑
x∈Ii, b∈{0,1} |Gb |(x ∈ Gb), which means

the space to store all nodes in Ii . We can compose a
sequence of evaluation functions s.t.

f i (δ) =

0 (i = 0),
gi (δ) + (#Ii + 1) f i−1(δ) (i > 0),

(1)

which means in the evaluation function f i , any one of
nodes in f i−1 has a greater impact than all of nodes in gi .
When In is the least priority, clearly fn implements all
priorities. Evaluation functions supporting priorities based
on other metrics can be also implemented by applying the
same technique, e.g. gi (δ) :=

∑
x∈Ii (x ∈ G0) ∧ (x ∈ G1),

which means the number of duplicated nodes in Ii .
• Magnification factor. Often a node represents multiple
of variables treated in the same manner in the converting
program. For instance, a message m consisting of several
group elements m = (m[1], . . . ,m[k]) with constant k can
be represented by a node referred to by m[i]. Such a node
should have a magnification factor of k. It must be equal or
larger than one. Magnification factor can be implemented
simply by multiplying k to the term of the node m[i],
e.g. f (δ) := k ×

∑
b∈{0,1} |Gb |(m[i] ∈ Gb) + · · · .When

a dependency graph is reduced into a DAG, a vertex in
the DAG may represent multiple vertices in the original
graph. In such a case, the representing vertex may have a
magnification factor which can be calculated automatically.
When a node with a magnification factor k belongs to a
priority Ii , it may be natural to modify the meaning of #Ii
in Eq. (1) to count up k group elements in the node.

• Prohibiting duplication. By specifying a node as ‘prohib-
ited’, the node will never be duplicated. We can implement
this simply by appending the node to NoDup.

• Specific assignment. By specifying a particular group to
a particular node, the group is assigned to the node. (But
the node may still be duplicated unless it is specified as
‘prohibited’ as well.) A specific assignment to a specific
node, say n, is handled by appending a new implicit non-
duplicatable node c and a new edge (n

G
→ c) to the graph

G. To assign a user specified group Gb to c, just introduce
a constraint {c = b} to the inequality system Q, otherwise
either G0 or G1 will be chosen automatically. As the
specific group is assigned to c, the same group must be
assigned to n as well since n is an ancestor of c.

• Grouping. By specifying a set of nodes, they are as-
signed to the same group. (But it does not solely mean
no duplication for individual node.) Grouping of nodes
n1, . . . , nk is handled in the same manner as in the case of
specific assignment, i.e. by appending a new implicit non-
duplicatable node c and edges (n1

G
→ c), . . . , (nk

G
→ c) to

the graph G.
• Exclusive assignment. By specifying two nodes, different
groups are assigned to each node. The specified nodes
are implicitly specified as prohibited so that the exclu-
sive assignment holds. This option, together with the

prohibition, allows one to describe schemes designed in
Type-III without concretely specifying groups to every
variable. Exclusive assignment of two nodes x and y can
be implemented by appending the nodes x and y to NoDup,
and introducing a constraint {x + y = 1} to the inequality
system Q.

5.3 Optimality of the Output

According to our implementation of the objective function,
IPConv outputs a solution whose variables given the top
priority have minimal space to store. That is, those variables
avoid duplication and are allocated in G0 as much as possible.
Then, subject to the allocation in the top priority, variables
in the second priority are allocated to have minimal space
to store, and so forth. Concrete meaning of optimality is
defined by the variables specified in the order of priority. If
one’s target is a public-key encryption scheme, for instance,
and elements in a public-key are set as the top priority,
the outcome is a scheme whose public-key has the shortest
representation possible. (But it never reduces the number
of group elements in the public-key, which is left for the
designers’ work.) To see the balance between several options
in the order of priority, one may repeat the conversion to
the same scheme with different preferences. Each result of
conversion is optimal with respect to the given preference.

In the context of bilinear-type conversion, optimizing
the size of objects is a reasonable choice for better efficiency
as avoiding duplication not only saves the space but also saves
relevant computation. Yet extending the objective function to
implement more elaborate metrics is a potential direction for
further research. For instance, it is desirable to incorporate
the cost of computation each variable is involved in. It
requires the dependency graph to carry more information
than the relations by group operations. We leave it for future
development.

6. Performance

Throughout the paper, experiments are done on a standard
PC: CPU: Intel Core i5-3570 3.40GHz, OS: Linux 3.16.0-
34-generic #47-Ubuntu. For Integer Programming, we use
SCIP [25] (non-commercial) andGUROBI [24] (commercial).
In this experiments, we assume |G1 | = 2|G0 | according to
Barreto-Naehrig curves [53].

6.1 Processing Time for Real Schemes

(1) Small-scale schemes.

In the first two rows of Table 1, we show the processing time
of IPConv for converting Boneh-Boyen HIBE [54] with ` = 9
hierarchy, and Waters’ Dual-system encryption [13]. Their
dependency graphs are relatively small but have number of
possible splits. A comparison to AutoGroup+ is done in
the same environment. For fair comparison, we need to
offset the overhead for processing high-level I/O format in

ABE et al.: FAST AND SCALABLE BILINEAR-TYPE CONVERSION METHOD FOR LARGE SCALE CRYPTO SCHEMES
261

Table 1 Processing time of IPConv with SCIP. Figures in parenthesis are
those of AutoGroup+ in the same environment. The upper half is small-scale
monolithic schemes and the lower half is middle-scale schemes consisting of
several building blocks. (# vertices) counts all nodes including the pairing
nodes in the input graph. (# pairings) counts pairs of pairing nodes.

Target Graph Size Processing Notes
Scheme #vertices #pairings Time

Waters’ DSE [13] 95 13 146 ms (4639 ms)
BBS HIBE [54] 283 56 262 ms (15667 ms)

BlindAutoSIG [35] 339 116 142 ms -
AHO [35]+GSZK [30] 597 222 463 ms -
Trace. Group Enc. [55] 1604 588 6306 ms -

AutoGroup+. According to [22], it takes about 500ms to
handle the smallest case in their experiments. Even after
offsetting similar amount as an overhead, the speedup with
IPConv is obvious.

(2) Middle-scale schemes.

We also conduct experiments on middle scale schemes that
involve GS-proofs and other building blocks. The results are
summarized in Table 1.

AHO Signature + GSZK: Our first experiment is for a
structure-preserving signature scheme in [35], a.k.a. AHO
signature scheme, combined with zero-knowledge proof
of a correct signature on a public message. We set the
message length for AHO signatures to n = 4 and instantiate
the zero-knowledge proof with the DLIN-based GS-proofs
and convert the entire scheme to Type-III. More details
appear in Sect. 7.
Blind Automorphic Signature Scheme: The second ex-
periment is for the automorphic blind signature scheme
from [35]. This experiment is to demonstrate that our
framework can handle schemes that is already in Type-III.
Overall structure of the target scheme is the same as the
first one; a combination of a signature scheme and a NIWI
GS-proof of a correct signature. Unlike the first one, how-
ever, the scheme is constructed under SXDH assumption
that holds only in the Type-III setting. We describe a de-
pendency graph for the scheme using exclusive assignment
directive so that SXDH assumption is consistently incor-
porated to the framework. It may be interesting to see that
assumptions are the only part that need to set constraints
originated from the asymmetry of groups. Constraints in
all upper layer algorithms are automatically taken from the
assumptions. More details appear in Section 5.3 in [40].
Traceable Group Encryption: Our last experiment is for
a traceable group encryption scheme from [55] that is more
intricate involving several building blocks such as a tag-
based encryption [56], AHO signatures, and one-time
signatures, and GS-proofs. Taking reduction algorithms
in the security proofs of each building block, the corre-
sponding dependency graph becomes as large as consisting
of 1604 nodes including 588 × 2 pairing nodes, which is
beyond the scale that existing automated conversion can
process within a practical time.

6.2 Scalability

Though the experiment in the previous section already demon-
strates the scalability of IPConv to some extent, we would
like to see overall behavior of IPConv against the size of
inputs. Generally it is exponential due to the nature of IP. Yet
it is worth to know the threshold for the practical use.

(1) On Random Graphs.

To measure the performance and the tolerance in the scale, it
is necessary to sample dependency graphs from reasonable
and scalable distribution. However, it is indeed impossible to
consider the distribution over all constructable cryptographic
schemes. It does not make sense to consider it over all
possible graphs, either, since most of them do not correspond
to meaningful cryptographic schemes. We therefore use some
heuristics to define the distribution. Through the experiments
in the previous section, we have observed that dependency
graphs for real cryptographic schemes follow some structure.
We simulate it in a scalable manner in the following way:
Let N be the number of regular nodes, P be the number of
pairings, and k be the maximum fan-in to a regular node.
Every regular node is indexed by i ∈ {1, . . . , N }. Pairing
nodes pi j[0] and pi j[1] represent a pairing with nodes i and
j as input.

Algorithm 7 (Random Dependency Graph Generation).

Input. Graph parameters:
the number of regular nodes N ,
the number of pairings P, and
the maximum fan-in to a regular node k.
Output. A dependency graph G.
Steps.
1. Generate regular nodes: V (G)←{1, . . . , N }, E(G)←∅.
2. For every regular node i ∈ {1, . . . , N },

select k ′
$
← {1, . . . , k}, and

repeat the following k ′ times:

Select j
$
← {1, . . . , i − 1}.

Generate an edge: E(G)
∪
← {(j

G
→ i)}.

3. Repeat the following P times:
Randomly select two regular nodes i and j (≥ i)
(discard and redo if the pair has been chosen before).

Generate pairing nodes: V (G)
∪
← {pi j[0], pi j[1]},

and edges: E(G)
∪
← {(i

G
→ pi j[0]), (j

G
→ pi j[1])}.

Our preliminary experiment shows that large k results in
so dense graphs that do not well simulate the graphs for real
schemes in the previous section. Throughout our experiments,
we set k = 6 and N = P as they are close to the average for
those in the real examples. With such a heuristic parameter
setting we are not able to claim theoretical rigorousness
to the result of our experiments. But they do show some
tendency in the scalability. For the purpose of comparison,

262
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.1 JANUARY 2019

Fig. 3 Processing time in the semi-log scale for random dependency
graphs.

we show a real dependency graph for a tagged one-time
signature scheme [11] in Fig. A· 1 and a random dependency
graph that has the same number of pairings in Fig. A· 2. The
square-shaped nodes placed in the bottom of the graph are
the pairing nodes. Other nodes are represented by a circle.
The node at the top represents the default generators.

We first examine the permissible scale of IPConv by
measuring its processing time for random dependency graphs
having up to 600 pairings and equal number of regular nodes.
Fig. 3 illustrates the results for 1200 inputs. IPConv finds
an optimal solution in well affordable time up to around
N = P = 600. But after that point, the processing time gets
more dispersed depending on the input.

We next compare the performance with AutoGroup+.
The result is illustrated in Fig. 4 that includes 250 samples
for each AutoGroup+ and IPConv.

Around 150 nodes, the SMT solver used in AutoGroup+
rarely fails for some unidentified reason. With graphs contain-
ing 150 nodes, the processing time between two conversion
methods differ 100 to 106 times. This result shows that
middle to large scale conversion is out of the scope of Au-
toGroup+. Comparing the absolute processing time based
on Fig. 4 is not perfectly fair as IPConv only takes the task
of finding an optimal split whereas AutoGroup+ deals with
higher-level inputs and outputs. But from the figure, one can
see less dispersion in the processing time with IPConv, and
its scalability is well observed.

(2) On Cluster Graphs.

We next evaluate the performance for more structured depen-
dency graphs based on a prospect that large scale systems
over bilinear groups are built in a modular fashion by com-
bining several building blocks and GS-proofs. How would
dependency graphs for such systems look like? Observe that,
1) only a small number of objects will be passed from one
building block to others, 2) every building block would be
used only through the legitimate interface during security
proofs, and 3) the default generator is connected to a number
of nodes in each building blocks. We thus foresee that a
dependency graph for a modularly-built large-scale system
would form sparsely connected clusters of dependency graphs

Fig. 4 Comparison between IPConv and AutoGroup+ regarding stability
of processing time.

Fig. 5 Processing time in the semi-log scale for cluster dependency
graphs.

with a single node that has relatively dense connection to
nodes in every cluster.

We generate random cluster dependency graphs in a
way that each cluster has similar volume and structure as that
of AHO signature plus GS zero-knowledge proof appeared
in the previous experiment (see Fig. A· 3 for its dependency
graph). Namely, a cluster consists of a randomly connected
thirty six regular nodes and some of the nodes are involved
in two random PPEs for GS zero-knowledge proofs whose
dependency is automatically encoded to the graph. Then
every two clusters are randomly connected each other with a
fixed number of edges. The resulting graph with five clusters
is shown in Fig. A· 4. The performance of IPConv for the
random cluster graphs are measured up to n = 19 clusters.

The experiment is repeated 10 times for each n. At
n = 19, a graph consists of 13046 nodes and 5182 pairings
in average. Comparing Fig. 5 with Fig. 3, there is a clear
stretch in the handleable number of vertices. If there are no
connections between the clusters (except for those from the
node representing the default generator), the processing time
will be linear in the number of the clusters assuming that the
processing time for each cluster is the same. We can thus
see that the sparse connection among the clusters did not add
much complexity.

ABE et al.: FAST AND SCALABLE BILINEAR-TYPE CONVERSION METHOD FOR LARGE SCALE CRYPTO SCHEMES
263

7. Using Conversion in Cryptographic Design

In this section we show an example of how conversion plays
the role in designing cryptographic schemes by showing
combination of the GS ZK and the AHO signature scheme.
We then show another example that demonstrates conversion
of an automorphic blind signature scheme designed originally
in Type-III.

(1) Fine-Tuned GS Proof of Correct Commitment via Con-
version

In the Groth-Sahai NIZK for PPE relations, it is often needed
to prove that [X] is a correct commitment of a public constant
A in such a way that the proof can be simulated with X = 1G.
In the original paper [30], it is done by proving a relation
represented by a general multi-scalar multiplication equation
(MSE). We present a technique that does the job with a less
costly linear pairing product equation (PPE).

The Original Construction. Recall that, in the symmetric
setting under the DLIN assumption, committing to a scalar
value a ∈ Zp requires two random values, say r1 and r2, in
Zp, and committing to a group element A ∈ G uses three
random values, s1, s2, s3 ∈ Zp. We denote the commitment
by [a; r1, r2], and [A; s1, s2, s3], respectively. The genuine
prover algorithm computes a default commitment of 1Zp
as [1Zp ; 0, 0], and a proof for multi-scalar multiplication
equation

[X]1 · A−[1Zp] = 1G. (2)

Fine-Tuning in Type-I. Instead of using default [1Zp], the

prover algorithm uses default commitment [G1; 0, 0, 0]. Then
prove a PPE

e([X],G) e(A−1, [G1]) = 1GT . (3)

instead of (2). Since we are considering the DLIN-based
instantiation for now, (3) is a linear PPE that costs only 3
group elements whereas proof of (2) requires 9 elements.

Converting to Type-III. By converting the above proof
system, we have an analogue proof system in the asymmetric
setting based on the XDLIN assumption [34]. While the
security is guaranteed by the conversion framework of [21],
the quality of the resulting proof system must be examined.

Speaking from the conclusion, we have a clean split
of its dependency graph without duplication except for the
nodes representing the CRS. Thus, with duplicated CRS in
G0 and G1, every group operation is done in either G0 or
G1 and asymmetric pairing computation can be performed
consistently. More importantly, the proof remains consisting
of 3 group elements (and they are all in G0). Full details are
presented in Section 5.1 of [40].

(2) AHO Signature + GSZK

AHO signature scheme in Type-I setting is summarized as
follows. Let gk := (p,G,GT , e,G) be a symmetric bilinear

groups. A public-key is (gk, A0, A1, A2, A3, B0, B1, B2, B3,Gz,
Gr, Hz, Hu,G1, . . . ,Gn, H1, . . . , Hn) for the message space
ofGn. A signature for message (M1, . . . , Mn) isσ = (Z, R, S,
T,U,V,W) ∈ G7. To prove possession of a correct signature
for a message in the clear, a prover randomizes (S,T,V,W)
into (S′,T ′,V ′,W ′) in a way that e(S,T) = e(S′,T ′) and
e(V,W) = e(V ′,W ′) hold and then proves that pairing prod-
uct equations

e(A0, [A1]) e(A2, [A3]) = e(Gz, [Z]) ×

e(Gr, [R])e(S′, [T ′])
n∏
i=1

e(Gi, [Mi]), and (4)

e(B0, [B1]) e(B2, [B3]) = e(Hz, [Z]) ×

e(Hu, [U])e(V ′, [W ′])
n∏
i=1

e(Hi, [Mi]) (5)

hold with respect to committed variables in the brack-
ets. Additionally, relation (3) for every public value
X ∈ {A1, A3, B1, B3, M1, . . . , Mn} is proved by using our
fine-tuning technique to show the correctness of the commit-
ments.

We then consider four approaches to obtain Type-III
counterpart of the above scheme. Table 2 summarizes the
performance of the resulting schemes in Type-III in terms of
the proof size and number of pairings in verification. Sizes
in bits are estimated assuming the use of KSS-16 curves [57]
where |G1 |/|G0 | = 4.

Conversion: By converting the above scheme we obtain a
scheme in Type-III. Details for the proof part are presented
in Sect. A.1. In the resulting scheme, CRS is entirely dupli-
cated but elements in the proofs, public-keys, and messages
are assigned to either G0 or G1 without duplication. It is
particularly important to point out that X and [X] in (3) are
assigned to the same group without duplicating X while
proving (3) as a linear PPE. This approach is the most
efficient in the proof size since most of commitments and
proofs can be allocated in G0.
Direct instantiation 1 (with duplicated messages): Next
we consider instantiating the GS-proofs directly over Type-
III groups based on the SXDH assumption. The fine-tuned
construction is only possible when public constants paired
with committed variables are duplicated. Therefore, ele-
ments {A1, A3, B1, B3, M1, . . . , Mn} have to be duplicated.
Duplicated key elements, A1, A3, B1, and B3 will be a part
of the public-key. On the other hand, duplicated message
M1, . . . , Mn must be sent to the verifier as a part of the
proof.
Direct instantiation 2 (with duplicated keys): Whendu-
plicating Mi is prohibiting, a workaround would be to
commit to public-key elements Gi and Hi instead. Dupli-
cated Gi and Hi can be included in the public-key (thus
we do not count it in the proof size). Unfortunately, this
approach is not efficient in terms of proof size since the
proofs of correct commitment for both Gi and Hi doubles
the proof length. On the other hand, it allows efficient

264
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.1 JANUARY 2019

Table 2 Comparison of proof size and number of pairings between
conversion-aided and three direct constructions. The message is in G0.
Proof size counts number of group elements in relevant GS commitments
and proofs. The size in bits is estimated assuming KSS-16 curve with
base field size of 340 bits, i.e., λ := |G0 | = 340. Column “naive” counts
the number of pairings literally in the verification equations, and “batched”
counts the number of pairings in batch verification.

Construc- Duplicated Proof Size # of Pairings
tion Object G0 G1 in bits naive batched

Conversion crs 6n + 39 6 (6n + 63)λ 18n + 90 2n + 20
Direct (1) msg 2n + 18 3n + 12 (14n + 66)λ 12n + 60 2n + 17
Direct (2) pk 4n + 26 4n + 16 (20n + 90)λ 20n + 84 n + 23
Direct (3) - 4n + 26 4n + 20 (20n + 106)λ 22n + 100 2n + 22

Table 3 Comparison of the signature size and number of pairings in
verification between conversion-aided and direct instantiations of verifier’s
algorithm for the automorphic blind signature scheme [35]. The message is
(M, N) ∈ G0 × G1. Duplication of D̃ is needed for computing proofs but
not for verification.

Construction Duplicated Size of Blind Sig. # of Pairings
Objects G0 G1 in bits naive batched

Conversion crs, D̃ 24 6 48 λ 64 13
Original [35] - 18 16 82 λ 68 13

batch verification. The reason is that pairings correspond-
ing to e([Gi], Mi) and e([Hi], Mi) in the verification can
be merged into one pairing associated to Mi while at
least two pairings are needed to deal with e(Gi, [Mi]) and
e(Hi, [Mi]) in the above approaches.
Direct instantiation 3 (without duplication): Finally, we
consider avoiding duplication at all in the direct instanti-
ation of GS proofs in Type-III by following the original
approach using MSE (2). As expected, both proof size
and number of pairings increase due to the MSEs. Use of
batch verification is not quite effective, either.

As we see from Table 2, the scheme obtained by con-
version has advantage in the proof size as it includes less
elements fromG1, whose representation is 4 times larger than
those from G0 in the case of KSS-16 curves. Regarding the
computational workload, when batch verification is taken into
account, there is not much difference for small n whichever
approach is taken. But for large n, direct instantiation in
Type-III with duplicated public-key is more advantageous.

(3) Automorphic Blind Signature Scheme

Examples so far deals with schemes designed purely in
Type-I. Now we show that schemes designed originally in
Type-III are also incorporated into our framework for finding
optimal deployment of source groups and perhaps finding
more efficient GS-proofs used there.

We show a converted scheme converted from the auto-
morphic blind signature scheme in [35], a blind signature
is a GS-proof for one’s possession of a correct (plain) au-
tomorphic signature on a clear message. In total, a signa-
ture that a verifier receive except for the message is of size
24|G0 | + 6|G1 |, which is 48 λ bits at the same parameter

setting (KSS-16 at base field size of λ = 340 bits) as in
the previous case. It compares to the original construction
that requires 6|G0 |(= 3 · 2|G0 |) for committing to (A, B, R),
4|G1 |(= 2 · 2|G1 |) for (D̃, S̃), and 3 · (4|G0 | + 4|G1 |) for the
proof. This sums up to 18|G0 | + 16|G1 | and it turns out 82 λ
bits as above.

8. Conclusion

We have shown that scaling bilinear-type conversion in gen-
eral is an essentially difficult problem. We at the same time
develop a practical conversion method based on 0-1 Integer
Programming and demonstrate its performance and scalabil-
ity through experiments over real and randomly generated
targets of conversion. Usefulness of the conversion method
has been shown also in its application to conversion-aided
cryptographic scheme design. It can be seen as a step to-
ward realizing automated modular design of cryptographic
schemes and protocols. Yet, depending on the target schemes,
direct instantiation in Type-III based on SXDH can be better
than converted schemes. We conclude that it is an interesting
research and engineering target to develop an automated con-
version method that takes such options into its optimization.

Acknowledgments

The authors thank Susan Hohenberger Waters and co-authors
of [20, 22] for their help to understand AutoGroup. We also
thank to Takeya Tango for an alternative sanity checking
method. Comments from Jens Groth in early stage of this
research are appreciated. Special thanks to the developers of
SCIP [25] for their quality software.

References

[1] M. Abe, F. Hoshino, and M. Ohkubo, “Design in Type-I, run in
Type-III: Fast and scalable bilinear-type conversion using integer
programming,” Advances in Cryptology - CRYPTO 2016 - 36th
Annual International Cryptology Conference, Santa Barbara, CA,
USA, Aug. 2016, Proceedings, Part III, M. Robshaw and J. Katz, eds.,
Lecture Notes in Computer Science, vol.9816, pp.387–415, Springer,
2016. doi:10.1007/978-3-662-53015-3_14.

[2] S.D. Galbraith, K.G. Paterson, and N.P. Smart, “Pairings for cryptog-
raphers,” Discrete Appl. Math., vol.156, no.16, pp.3113–3121, 2008.
doi:10.1016/j.dam.2007.12.010.

[3] A. Joux, “Faster index calculus for the medium prime case application
to 1175-bit and 1425-bit finite fields,” Advances in Cryptology
- EUROCRYPT 2013, 32nd Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Athens,
Greece, May 2013. Proceedings, T. Johansson and P.Q. Nguyen, eds.,
Lecture Notes in Computer Science, vol.7881, pp.177–193, Springer,
2013. doi:10.1007/978-3-642-38348-9_11.

[4] A. Joux, “A new index calculus algorithm with complexity L(1/4 +
o(1)) in very small characteristic,” IACR Cryptology ePrint Archive,
vol.2013, p.95, 2013. URL: http://eprint.iacr.org/2013/095

[5] F. Göloglu, R. Granger, G. McGuire, and J. Zumbrägel, “On the
function field sieve and the impact of higher splitting probabilities:
Application to discrete logarithms in F21971 ,” IACR Cryptology ePrint
Archive, vol.2013, p.74, 2013. URL: http://eprint.iacr.org/2013/074

[6] R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé, “A quasi-
polynomial algorithm for discrete logarithm in finite fields of small

http://dx.doi.org/10.1007/978-3-662-53015-3_14
http://dx.doi.org/10.1007/978-3-662-53015-3_14
http://dx.doi.org/10.1007/978-3-662-53015-3_14
http://dx.doi.org/10.1007/978-3-662-53015-3_14
http://dx.doi.org/10.1007/978-3-662-53015-3_14
http://dx.doi.org/10.1007/978-3-662-53015-3_14
http://dx.doi.org/10.1007/978-3-662-53015-3_14
http://dx.doi.org/10.1016/j.dam.2007.12.010
http://dx.doi.org/10.1016/j.dam.2007.12.010
http://dx.doi.org/10.1016/j.dam.2007.12.010
http://dx.doi.org/10.1007/978-3-642-38348-9_11
http://dx.doi.org/10.1007/978-3-642-38348-9_11
http://dx.doi.org/10.1007/978-3-642-38348-9_11
http://dx.doi.org/10.1007/978-3-642-38348-9_11
http://dx.doi.org/10.1007/978-3-642-38348-9_11
http://dx.doi.org/10.1007/978-3-642-38348-9_11
http://dx.doi.org/10.1007/978-3-642-38348-9_11
http://eprint.iacr.org/2013/095
http://eprint.iacr.org/2013/095
http://eprint.iacr.org/2013/095
http://eprint.iacr.org/2013/074
http://eprint.iacr.org/2013/074
http://eprint.iacr.org/2013/074
http://eprint.iacr.org/2013/074
http://eprint.iacr.org/2013/400
http://eprint.iacr.org/2013/400

ABE et al.: FAST AND SCALABLE BILINEAR-TYPE CONVERSION METHOD FOR LARGE SCALE CRYPTO SCHEMES
265

characteristic,” IACR Cryptology ePrint Archive, vol.2013, p.400,
2013. URL: http://eprint.iacr.org/2013/400

[7] R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé, “A heuristic
quasi-polynomial algorithm for discrete logarithm in finite fields
of small characteristic,” Advances in Cryptology - EUROCRYPT
2014 - 33rd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Copenhagen, Denmark,
May 2014. Proceedings, P.Q. Nguyen and E. Oswald, eds., Lecture
Notes in Computer Science, vol.8441, pp.1–16, Springer, 2014.
doi:10.1007/978-3-642-55220-5_1.

[8] A. Joux, “Discrete logarithms in small characteristic finite fields:
A survey of recent advances (invited talk),” 34th Symposium on
Theoretical Aspects of Computer Science, STACS 2017, March 2017,
Hannover, Germany, H. Vollmer and B. Vallée, eds., LIPIcs, vol.66,
pp.3:1–3:1, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2017. doi:10.4230/LIPIcs.STACS.2017.3.

[9] B. Libert, M. Joye, M. Yung, and T. Peters, “Secure efficient history-
hiding append-only signatures in the standard model,” in Katz [58],
pp.450–473. doi:10.1007/978-3-662-46447-2_20.

[10] B. Libert and M. Joye, “Group signatures with message-dependent
opening in the standard model,” Topics in Cryptology - CT-RSA
2014 - The Cryptographer’s Track at the RSA Conference 2014, San
Francisco, CA, USA, Feb. 2014. Proceedings, J. Benaloh, ed., Lecture
Notes in Computer Science, vol.8366, pp.286–306, Springer, 2014.
doi:10.1007/978-3-319-04852-9_15.

[11] M. Abe, B. David, M. Kohlweiss, R. Nishimaki, and M. Ohkubo,
“Tagged one-time signatures: Tight security and optimal tag size,”
Public-Key Cryptography - PKC 2013 - 16th International Conference
on Practice and Theory in Public-Key Cryptography, Nara, Japan,
Feb–March 2013. Proceedings, K. Kurosawa and G. Hanaoka, eds.,
Lecture Notes in Computer Science, vol.7778, pp.312–331, Springer,
2013. doi:10.1007/978-3-642-36362-7_20.

[12] M. Backes, D. Fiore, and R.M. Reischuk, “Verifiable delegation of
computation on outsourced data,” in A. Sadeghi, V.D. Gligor, and
M. Yung, eds., [59], pp.863–874. doi:10.1145/2508859.2516681.

[13] B. Waters, “Dual system encryption: Realizing fully secure IBE
and HIBE under simple assumptions,” Advances in Cryptology -
CRYPTO 2009, 29th Annual International Cryptology Conference,
Santa Barbara, CA, USA, Aug. 2009. Proceedings, S. Halevi, ed.,
Lecture Notes in Computer Science, vol.5677, pp.619–636, Springer,
2009. doi:10.1007/978-3-642-03356-8_36.

[14] B. Waters, “Efficient identity-based encryption without random ora-
cles,” Advances in Cryptology - EUROCRYPT 2005, 24th Annual
International Conference on the Theory and Applications of Cryp-
tographic Techniques, Aarhus, Denmark, May 2005, Proceedings,
R. Cramer, ed., Lecture Notes in Computer Science, vol.3494, pp.114–
127, Springer, 2005. doi:10.1007/11426639_7.

[15] D. Boneh and H. Shacham, “Group signatures with verifier-local
revocation,” Proc. 11th ACM Conference on Computer and Com-
munications Security, CCS 2004, Washington, DC, USA, Oct. 2004,
V. Atluri, B. Pfitzmann, and P.D. McDaniel, eds., pp.168–177, ACM,
2004. doi:10.1145/1030083.1030106.

[16] N.P. Smart and F. Vercauteren, “On computable isomorphisms in
efficient asymmetric pairing-based systems,” Discrete Appl. Math.,
vol.155, no.4, pp.538–547, 2007. doi:10.1016/j.dam.2006.07.004.

[17] S. Chatterjee andA.Menezes, “On cryptographic protocols employing
asymmetric pairings - The role of Ψ revisited,” IACR Cryptology
ePrint Archive, vol.2009, p.480, 2009. URL: http://eprint.iacr.org/
2009/480

[18] S. Chatterjee, D. Hankerson, E. Knapp, and A. Menezes, “Compar-
ing two pairing-based aggregate signature schemes,” Des. Codes
Cryptogr., vol.55, no.2-3, pp.141–167, 2010. doi:10.1007/s10623-
009-9334-7.

[19] S. Chatterjee andA.Menezes, “On cryptographic protocols employing
asymmetric pairings - The role of Ψ revisited,” Discrete Appl. Math.,
vol.159, no.13, pp.1311–1322, 2011. doi:10.1016/j.dam.2011.04.021.

[20] J.A. Akinyele, M. Green, and S. Hohenberger, “Using SMT solvers

to automate design tasks for encryption and signature schemes,”
in A. Sadeghi, V.D. Gligor, and M. Yung, eds., [59], pp.399–410.
doi:10.1145/2508859.2516718.

[21] M. Abe, J. Groth, M. Ohkubo, and T. Tango, “Converting crypto-
graphic schemes from symmetric to asymmetric bilinear groups,” in
J.A. Garay and R. Gennaro, eds., [60], pp.241–260. doi:10.1007/978-
3-662-44371-2_14.

[22] J.A. Akinyele, C. Garman, and S. Hohenberger, “Automating fast and
secure translations from Type-I to Type-III pairing schemes,” Proc.
22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, Oct. 2015, I. Ray, N. Li, and C. Kruegel,
eds., pp.1370–1381, ACM, 2015. doi:10.1145/2810103.2813601.

[23] T. Tango, M. Abe, T. Okamoto, and M. Ohkubo, “Polynomial-
time algorithm for deciding possibility of converting cryptographic
schemes from Type-I to III pairing groups,” Proc. SCIS 2015 The
32nd Symposium on Cryptography and Information Security, IEICE,
Kokura, Japan, Jan. 2015 (in japanese).

[24] Gurobi Optimization, Inc., “Gurobi optimizer reference man-
ual,” In http://www.gurobi.com/. URL: http://www.gurobi.com/
documentation/6.5/refman.pdf

[25] T. Achterberg, “CIP: Solving constraint integer programs,” Mathe-
matical Programming Computation, vol.1, no.1, pp.1–41, 2009. URL:
http://mpc.zib.de/index.php/MPC/article/view/4

[26] G. Gamrath andM.E. Lübbecke, “Experiments with a generic dantzig-
wolfe decomposition for integer programs,” Experimental Algorithms,
9th International Symposium, SEA 2010, Ischia Island, Naples, Italy,
May 2010. Proceedings, P. Festa, ed., Lecture Notes in Computer
Science, vol.6049, pp.239–252, Springer, 2010. doi:10.1007/978-3-
642-13193-6_21

[27] T. Koch, Rapid Mathematical Prototyping, Ph.D. thesis, Tech-
nische Universität Berlin, 2004. URL: http://nbn-resolving.de/
urn:nbn:de:0297-zib-8346

[28] M. Melnick, “LiPS.” URL: http://lipside.sourceforge.net/
[29] LINDO Systems, “LINDO.” URL: http://www.lindo.com/
[30] J. Groth and A. Sahai, “Efficient noninteractive proof systems for

bilinear groups,” SIAM J. Comput., vol.41, no.5, pp.1193–1232,
2012. doi:10.1137/080725386.

[31] B. Blanchet, “Cryptoverif: A computationally sound mech-
anized prover for cryptographic protocols,” Dagstuhl semi-
nar Formal Protocol Verification Applied, Oct. 2007. URL:
http://prosecco.gforge.inria.fr/personal/bblanche/talks/Dagstuhl07.pdf

[32] G. Barthe, E. Fagerholm, D. Fiore, J.C. Mitchell, A. Scedrov, and
B. Schmidt, “Automated analysis of cryptographic assumptions in
generic group models,” in J.A. Garay and R. Gennaro, eds., [60],
pp.95–112. doi:10.1007/978-3-662-44371-2_6.

[33] G. Barthe, E. Fagerholm, D. Fiore, A. Scedrov, B. Schmidt, and
M. Tibouchi, “Strongly-optimal structure preserving signatures from
type II pairings: Synthesis and lower bounds,” in J. Katz, ed., [58],
pp.355–376. doi:10.1007/978-3-662-46447-2_16.

[34] M. Abe, M. Chase, B. David, M. Kohlweiss, R. Nishimaki, and
M. Ohkubo, “Constant-size structure-preserving signatures: Generic
constructions and simple assumptions,” Advances in Cryptology -
ASIACRYPT 2012 - 18th International Conference on the Theory
and Application of Cryptology and Information Security, Beijing,
China, Dec. 2012. Proceedings, X. Wang and K. Sako, eds., Lecture
Notes in Computer Science, vol.7658, pp.4–24, Springer, 2012.
doi:10.1007/978-3-642-34961-4_3.

[35] M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo,
“Structure-preserving signatures and commitments to group elements,”
J. Cryptol., vol.29, no.2, pp.363–421, 2016. doi:10.1007/s00145-014-
9196-7.

[36] O. Blazy, G. Fuchsbauer, M. Izabachène, A. Jambert, H. Sibert,
and D. Vergnaud, “Batch groth-sahai,” Applied Cryptography and
Network Security, 8th International Conference, ACNS 2010, Bei-
jing, China, June 2010. Proceedings, J. Zhou and M. Yung, eds.,
Lecture Notes in Computer Science, vol.6123, pp.218–235, 2010.
doi:10.1007/978-3-642-13708-2_14.

http://eprint.iacr.org/2013/400
http://eprint.iacr.org/2013/400
http://eprint.iacr.org/2013/400
http://dx.doi.org/10.1007/978-3-642-55220-5_1
http://dx.doi.org/10.1007/978-3-642-55220-5_1
http://dx.doi.org/10.1007/978-3-642-55220-5_1
http://dx.doi.org/10.1007/978-3-642-55220-5_1
http://dx.doi.org/10.1007/978-3-642-55220-5_1
http://dx.doi.org/10.1007/978-3-642-55220-5_1
http://dx.doi.org/10.1007/978-3-642-55220-5_1
http://dx.doi.org/10.1007/978-3-642-55220-5_1
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.3
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.3
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.3
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.3
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.3
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.3
http://dx.doi.org/10.1007/978-3-662-46447-2_20
http://dx.doi.org/10.1007/978-3-662-46447-2_20
http://dx.doi.org/10.1007/978-3-662-46447-2_20
http://dx.doi.org/10.1007/978-3-662-46447-2_20
http://dx.doi.org/10.1007/978-3-319-04852-9_15
http://dx.doi.org/10.1007/978-3-319-04852-9_15
http://dx.doi.org/10.1007/978-3-319-04852-9_15
http://dx.doi.org/10.1007/978-3-319-04852-9_15
http://dx.doi.org/10.1007/978-3-319-04852-9_15
http://dx.doi.org/10.1007/978-3-319-04852-9_15
http://dx.doi.org/10.1007/978-3-642-36362-7_20
http://dx.doi.org/10.1007/978-3-642-36362-7_20
http://dx.doi.org/10.1007/978-3-642-36362-7_20
http://dx.doi.org/10.1007/978-3-642-36362-7_20
http://dx.doi.org/10.1007/978-3-642-36362-7_20
http://dx.doi.org/10.1007/978-3-642-36362-7_20
http://dx.doi.org/10.1007/978-3-642-36362-7_20
http://dx.doi.org/10.1145/2508859.2516681
http://dx.doi.org/10.1145/2508859.2516681
http://dx.doi.org/10.1145/2508859.2516681
http://dx.doi.org/10.1145/2508859.2516681
http://dx.doi.org/10.1007/978-3-642-03356-8_36
http://dx.doi.org/10.1007/978-3-642-03356-8_36
http://dx.doi.org/10.1007/978-3-642-03356-8_36
http://dx.doi.org/10.1007/978-3-642-03356-8_36
http://dx.doi.org/10.1007/978-3-642-03356-8_36
http://dx.doi.org/10.1007/978-3-642-03356-8_36
http://dx.doi.org/10.1007/11426639_7
http://dx.doi.org/10.1007/11426639_7
http://dx.doi.org/10.1007/11426639_7
http://dx.doi.org/10.1007/11426639_7
http://dx.doi.org/10.1007/11426639_7
http://dx.doi.org/10.1007/11426639_7
http://dx.doi.org/10.1145/1030083.1030106
http://dx.doi.org/10.1145/1030083.1030106
http://dx.doi.org/10.1145/1030083.1030106
http://dx.doi.org/10.1145/1030083.1030106
http://dx.doi.org/10.1145/1030083.1030106
http://dx.doi.org/10.1016/j.dam.2006.07.004
http://dx.doi.org/10.1016/j.dam.2006.07.004
http://dx.doi.org/10.1016/j.dam.2006.07.004
http://eprint.iacr.org/2009/480
http://eprint.iacr.org/2009/480
http://eprint.iacr.org/2009/480
http://eprint.iacr.org/2009/480
http://dx.doi.org/10.1007/s10623-009-9334-7
http://dx.doi.org/10.1007/s10623-009-9334-7
http://dx.doi.org/10.1007/s10623-009-9334-7
http://dx.doi.org/10.1007/s10623-009-9334-7
http://dx.doi.org/10.1016/j.dam.2011.04.021
http://dx.doi.org/10.1016/j.dam.2011.04.021
http://dx.doi.org/10.1016/j.dam.2011.04.021
http://dx.doi.org/10.1145/2508859.2516718
http://dx.doi.org/10.1145/2508859.2516718
http://dx.doi.org/10.1145/2508859.2516718
http://dx.doi.org/10.1145/2508859.2516718
http://dx.doi.org/10.1145/2508859.2516718
http://dx.doi.org/10.1007/978-3-662-44371-2_14
http://dx.doi.org/10.1007/978-3-662-44371-2_14
http://dx.doi.org/10.1007/978-3-662-44371-2_14
http://dx.doi.org/10.1007/978-3-662-44371-2_14
http://dx.doi.org/10.1007/978-3-662-44371-2_14
http://dx.doi.org/10.1145/2810103.2813601
http://dx.doi.org/10.1145/2810103.2813601
http://dx.doi.org/10.1145/2810103.2813601
http://dx.doi.org/10.1145/2810103.2813601
http://dx.doi.org/10.1145/2810103.2813601
http://www.gurobi.com/documentation/6.5/refman.pdf
http://www.gurobi.com/documentation/6.5/refman.pdf
http://www.gurobi.com/documentation/6.5/refman.pdf
http://mpc.zib.de/index.php/MPC/article/view/4
http://mpc.zib.de/index.php/MPC/article/view/4
http://mpc.zib.de/index.php/MPC/article/view/4
http://dx.doi.org/10.1007/978-3-642-13193-6_21
http://dx.doi.org/10.1007/978-3-642-13193-6_21
http://dx.doi.org/10.1007/978-3-642-13193-6_21
http://dx.doi.org/10.1007/978-3-642-13193-6_21
http://dx.doi.org/10.1007/978-3-642-13193-6_21
http://dx.doi.org/10.1007/978-3-642-13193-6_21
http://nbn-resolving.de/urn:nbn:de:0297-zib-8346
http://nbn-resolving.de/urn:nbn:de:0297-zib-8346
http://nbn-resolving.de/urn:nbn:de:0297-zib-8346
http://lipside.sourceforge.net/
http://www.lindo.com/
http://dx.doi.org/10.1137/080725386
http://dx.doi.org/10.1137/080725386
http://dx.doi.org/10.1137/080725386
http://prosecco.gforge.inria.fr/personal/bblanche/talks/Dagstuhl07.pdf
http://prosecco.gforge.inria.fr/personal/bblanche/talks/Dagstuhl07.pdf
http://prosecco.gforge.inria.fr/personal/bblanche/talks/Dagstuhl07.pdf
http://prosecco.gforge.inria.fr/personal/bblanche/talks/Dagstuhl07.pdf
http://dx.doi.org/10.1007/978-3-662-44371-2_6
http://dx.doi.org/10.1007/978-3-662-44371-2_6
http://dx.doi.org/10.1007/978-3-662-44371-2_6
http://dx.doi.org/10.1007/978-3-662-44371-2_6
http://dx.doi.org/10.1007/978-3-662-44371-2_6
http://dx.doi.org/10.1007/978-3-662-46447-2_16
http://dx.doi.org/10.1007/978-3-662-46447-2_16
http://dx.doi.org/10.1007/978-3-662-46447-2_16
http://dx.doi.org/10.1007/978-3-662-46447-2_16
http://dx.doi.org/10.1007/978-3-642-34961-4_3
http://dx.doi.org/10.1007/978-3-642-34961-4_3
http://dx.doi.org/10.1007/978-3-642-34961-4_3
http://dx.doi.org/10.1007/978-3-642-34961-4_3
http://dx.doi.org/10.1007/978-3-642-34961-4_3
http://dx.doi.org/10.1007/978-3-642-34961-4_3
http://dx.doi.org/10.1007/978-3-642-34961-4_3
http://dx.doi.org/10.1007/978-3-642-34961-4_3
http://dx.doi.org/10.1007/s00145-014-9196-7
http://dx.doi.org/10.1007/s00145-014-9196-7
http://dx.doi.org/10.1007/s00145-014-9196-7
http://dx.doi.org/10.1007/s00145-014-9196-7
http://dx.doi.org/10.1007/978-3-642-13708-2_14
http://dx.doi.org/10.1007/978-3-642-13708-2_14
http://dx.doi.org/10.1007/978-3-642-13708-2_14
http://dx.doi.org/10.1007/978-3-642-13708-2_14
http://dx.doi.org/10.1007/978-3-642-13708-2_14
http://dx.doi.org/10.1007/978-3-642-13708-2_14

266
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.1 JANUARY 2019

[37] M. Abe, F. Hoshino, and M. Ohkubo, “IPConv,” on GitHub, 2018.
URL: https://github.com/security-kouza/IPConv.git

[38] L.M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” Tools
and Algorithms for the Construction and Analysis of Systems, 14th
International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March–April 2008. Proceedings, C.R.
Ramakrishnan and J. Rehof, eds., Lecture Notes in Computer Science,
vol.4963, pp.337–340, Springer, 2008. doi:10.1007/978-3-540-78800-
3_24.

[39] A. Escala and J. Groth, “Fine-tuning groth-sahai proofs,” in
H. Krawczyk, ed., [61], pp.630–649. doi:10.1007/978-3-642-54631-
0_36.

[40] M. Abe, F. Hoshino, and M. Ohkubo, “Design in Type-I, run in
Type-III: Fast and scalable bilinear-type conversion using integer
programming,” Cryptology ePrint Archive: 2016/570, 2016. URL:
http://eprint.iacr.org/2016/570

[41] E. Ghadafi, N.P. Smart, and B. Warinschi, “Groth-sahai proofs
revisited,” Public Key Cryptography - PKC 2010, 13th International
Conference on Practice and Theory in Public Key Cryptography, Paris,
France, May 2010. Proceedings, P.Q. Nguyen and D. Pointcheval,
eds., Lecture Notes in Computer Science, vol.6056, pp.177–192,
Springer, 2010. doi:10.1007/978-3-642-13013-7_11.

[42] A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J.L. Villar, “An algebraic
framework for diffie-hellman assumptions,” Advances in Cryptology -
CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, Aug. 2013. Proceedings, Part II, R. Canetti and J.A. Garay,
eds., Lecture Notes in Computer Science, vol.8043, pp.129–147,
Springer, 2013. doi:10.1007/978-3-642-40084-1_8.

[43] G. Herold, J. Hesse, D. Hofheinz, C. Ràfols, and A. Rupp, “Polyno-
mial spaces: A new framework for composite-to-prime-order trans-
formations,” in J.A. Garay and R. Gennaro, eds., [60], pp.261–279.
doi:10.1007/978-3-662-44371-2_15.

[44] D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,”
Advances in Cryptology - CRYPTO 2004, 24th Annual International
CryptologyConference, Santa Barbara, California, USA, Aug. 2004,
Proceedings, M.K. Franklin, ed., Lecture Notes in Computer Science,
vol.3152, pp.41–55, Springer, 2004. doi:10.1007/978-3-540-28628-
8_3.

[45] D. Boneh and M.K. Franklin, “Identity-based encryption from the
weil pairing,” Advances in Cryptology - CRYPTO 2001, 21st Annual
International Cryptology Conference, Santa Barbara, California, USA,
Aug. 2001, Proceedings, J. Kilian, eds., Lecture Notes in Computer
Science, vol.2139, pp.213–229, Springer, 2001. doi:10.1007/3-540-
44647-8_13.

[46] P. Fouque and M. Tibouchi, “Indifferentiable hashing to barreto-
naehrig curves,” Progress in Cryptology - LATINCRYPT 2012 - 2nd
International Conference on Cryptology and Information Security in
Latin America, Santiago, Chile, Oct. 2012. Proceedings, A. Hevia
and G. Neven, eds., Lecture Notes in Computer Science, vol.7533,
pp.1–17, Springer, 2012. doi:10.1007/978-3-642-33481-8_1.

[47] F. Hoshino, M. Abe, and M. Ohkubo, “Pairing type optimization
problem and its hardness,” Proc. SCIS 2018 2018 Symposium on
Cryptography and Information Security 2018, IEICE, 2018.

[48] R.E. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
J. Comput., vol.1, no.2, pp.146–160, 1972. doi:10.1137/0201010.

[49] A.V. Aho, J.E. Hopcroft, and J. Ullman, “Kosaraju’s algorithm,”
in Data Structures and Algorithms, pp.222–229, Addison-Wesley
Longman Publishing, Boston, MA, USA, 1st ed., 1983. The authors
credit the algorithm of Section 6.7 to an unpublished paper from 1978
by S. Rao Kosaraju.

[50] M. Sharir, “A strong-connectivity algorithm and its applications in
data flow analysis,” Computers & Mathematics with Applications,
vol.7, no.1, pp.67–72, 1981. doi:10.1016/0898-1221(81)90008-0.

[51] T. Tango, M. Abe, and T. Okamoto, “Implementation of automated
translation for schemes on symmetric bilinear groups,” Proc. SCIS
2014 The 31st Symposium on Cryptography and Information Security,

IEICE, Kagoshima, Japan, Jan. 2014.
[52] R. Kohli, R. Krishnamurti, and P. Mirchandani, “The minimum

satisfiability problem,” SIAM J. Discrete Math., vol.7, no.2, pp.275–
283, 1994. doi:10.1137/S0895480191220836.

[53] P.S.L.M. Barreto and M. Naehrig, “Pairing-friendly elliptic curves
of prime order,” Selected Areas in Cryptography, 12th Interna-
tional Workshop, SAC 2005, Kingston, ON, Canada, Aug. 2005,
Revised Selected Papers, B. Preneel and S.E. Tavares, eds., Lecture
Notes in Computer Science, vol.3897, pp.319–331, Springer, 2005.
doi:10.1007/11693383_22.

[54] D. Boneh and X. Boyen, “Efficient selective-ID secure identity-
based encryption without random oracles,” Advances in Cryptology
- EUROCRYPT 2004, International Conference on the Theory and
Applications of Cryptographic Techniques, Interlaken, Switzerland,
May 2004, Proceedings, C. Cachin and J. Camenisch, eds., Lecture
Notes in Computer Science, vol.3027, pp.223–238, Springer, 2004.
doi:10.1007/978-3-540-24676-3_14.

[55] B. Libert, M. Yung, M. Joye, and T. Peters, “Traceable group encryp-
tion,” in H. Krawczyk, ed., [61], pp.592–610. doi:10.1007/978-3-642-
54631-0_34.

[56] E. Kiltz, “Chosen-ciphertext security from tag-based encryption,”
Theory of Cryptography, Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 2006, Proceedings, S. Halevi
and T. Rabin, eds., Lecture Notes in Computer Science, vol.3876,
pp.581–600, Springer, 2006. doi:10.1007/11681878_30.

[57] R. Barbulescu and S. Duquesne, “Updating key size estimations for
pairings,” J. Cryptol., pp.1–39, Jan. 2018. doi:10.1007/s00145-018-
9280-5.

[58] J. Katz, ed., Public-Key Cryptography - PKC 2015 - 18th IACR
International Conference on Practice and Theory in Public-Key
Cryptography, Gaithersburg, MD, USA, March–April 2015, Proceed-
ings, Lecture Notes in Computer Science, vol.9020, Springer, 2015.
doi:10.1007/978-3-662-46447-2.

[59] A. Sadeghi, V.D. Gligor, and M. Yung, eds., 2013 ACM
SIGSAC Conference on Computer and Communications Secu-
rity, CCS’13, Berlin, Germany, Nov. 2013, ACM, 2013. URL:
http://dl.acm.org/citation.cfm?id=2508859

[60] J.A. Garay and R. Gennaro, eds., Advances in Cryptology - CRYPTO
2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA,
Aug. 2014, Proceedings, Part I, Lecture Notes in Computer Science,
vol.8616, Springer, 2014. doi:10.1007/978-3-662-44371-2.

[61] H. Krawczyk, ed., Public-Key Cryptography - PKC 2014 - 17th
International Conference on Practice and Theory in Public-Key
Cryptography, Buenos Aires, Argentina, March 2014. Proceed-
ings, Lecture Notes in Computer Science, vol.8383, Springer, 2014.
doi:10.1007/978-3-642-54631-0.

Appendix A: Details of Converted Schemes in Sect. 7

A.1 Converted GSZK for AHO signature

Let parameters for AHO signature scheme be asymmetric
bilinear groups gk := (p,G0,G1,GT , e,G, G̃), verification-
key pk := (gk, G̃z, G̃r, H̃z, H̃u, {G̃i, H̃i }

n
i=1, Ã0, A1, Ã1, A2, B̃0,

B1, B̃1, B2), message msg := (M1, . . . , Mn), and signature
σ := (Z, R,U, S̃,T, Ṽ,W). CRS ~u ∈ G3

0 and ~̃u ∈ G̃3
1 are

generated by using our fine-tuning technique. The relations
to prove are PPEs (4), (5), and (3) re-numbered as follows.

ê(Ã0, [A1]) ê(Ã2, [A3]) = ê(G̃z, [Z]) ×

ê(G̃r, [R]) ê(S̃′, [T ′])
n∏
i=1

ê(G̃i, [Mi]), (A· 1)

https://github.com/security-kouza/IPConv.git
https://github.com/security-kouza/IPConv.git
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-642-54631-0_36
http://dx.doi.org/10.1007/978-3-642-54631-0_36
http://dx.doi.org/10.1007/978-3-642-54631-0_36
http://dx.doi.org/10.1007/978-3-642-54631-0_36
http://eprint.iacr.org/2016/570
http://eprint.iacr.org/2016/570
http://eprint.iacr.org/2016/570
http://eprint.iacr.org/2016/570
http://dx.doi.org/10.1007/978-3-642-13013-7_11
http://dx.doi.org/10.1007/978-3-642-13013-7_11
http://dx.doi.org/10.1007/978-3-642-13013-7_11
http://dx.doi.org/10.1007/978-3-642-13013-7_11
http://dx.doi.org/10.1007/978-3-642-13013-7_11
http://dx.doi.org/10.1007/978-3-642-13013-7_11
http://dx.doi.org/10.1007/978-3-642-40084-1_8
http://dx.doi.org/10.1007/978-3-642-40084-1_8
http://dx.doi.org/10.1007/978-3-642-40084-1_8
http://dx.doi.org/10.1007/978-3-642-40084-1_8
http://dx.doi.org/10.1007/978-3-642-40084-1_8
http://dx.doi.org/10.1007/978-3-642-40084-1_8
http://dx.doi.org/10.1007/978-3-662-44371-2_15
http://dx.doi.org/10.1007/978-3-662-44371-2_15
http://dx.doi.org/10.1007/978-3-662-44371-2_15
http://dx.doi.org/10.1007/978-3-662-44371-2_15
http://dx.doi.org/10.1007/978-3-662-44371-2_15
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/978-3-642-33481-8_1
http://dx.doi.org/10.1007/978-3-642-33481-8_1
http://dx.doi.org/10.1007/978-3-642-33481-8_1
http://dx.doi.org/10.1007/978-3-642-33481-8_1
http://dx.doi.org/10.1007/978-3-642-33481-8_1
http://dx.doi.org/10.1007/978-3-642-33481-8_1
http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.1016/0898-1221(81)90008-0
http://dx.doi.org/10.1016/0898-1221(81)90008-0
http://dx.doi.org/10.1016/0898-1221(81)90008-0
http://dx.doi.org/10.1137/S0895480191220836
http://dx.doi.org/10.1137/S0895480191220836
http://dx.doi.org/10.1137/S0895480191220836
http://dx.doi.org/10.1007/11693383_22
http://dx.doi.org/10.1007/11693383_22
http://dx.doi.org/10.1007/11693383_22
http://dx.doi.org/10.1007/11693383_22
http://dx.doi.org/10.1007/11693383_22
http://dx.doi.org/10.1007/11693383_22
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/978-3-642-54631-0_34
http://dx.doi.org/10.1007/978-3-642-54631-0_34
http://dx.doi.org/10.1007/978-3-642-54631-0_34
http://dx.doi.org/10.1007/978-3-642-54631-0_34
http://dx.doi.org/10.1007/11681878_30
http://dx.doi.org/10.1007/11681878_30
http://dx.doi.org/10.1007/11681878_30
http://dx.doi.org/10.1007/11681878_30
http://dx.doi.org/10.1007/11681878_30
http://dx.doi.org/10.1007/s00145-018-9280-5
http://dx.doi.org/10.1007/s00145-018-9280-5
http://dx.doi.org/10.1007/s00145-018-9280-5
http://dx.doi.org/10.1007/978-3-662-46447-2
http://dx.doi.org/10.1007/978-3-662-46447-2
http://dx.doi.org/10.1007/978-3-662-46447-2
http://dx.doi.org/10.1007/978-3-662-46447-2
http://dx.doi.org/10.1007/978-3-662-46447-2
http://dl.acm.org/citation.cfm?id=2508859
http://dl.acm.org/citation.cfm?id=2508859
http://dl.acm.org/citation.cfm?id=2508859
http://dl.acm.org/citation.cfm?id=2508859
http://dx.doi.org/10.1007/978-3-662-44371-2
http://dx.doi.org/10.1007/978-3-662-44371-2
http://dx.doi.org/10.1007/978-3-662-44371-2
http://dx.doi.org/10.1007/978-3-662-44371-2
http://dx.doi.org/10.1007/978-3-642-54631-0
http://dx.doi.org/10.1007/978-3-642-54631-0
http://dx.doi.org/10.1007/978-3-642-54631-0
http://dx.doi.org/10.1007/978-3-642-54631-0
http://dx.doi.org/10.1007/978-3-642-54631-0

ABE et al.: FAST AND SCALABLE BILINEAR-TYPE CONVERSION METHOD FOR LARGE SCALE CRYPTO SCHEMES
267

ê(B̃0, [B1]) ê(B̃2, [B3]) = ê(H̃z, [Z]) ×

ê(H̃u, [U]) ê(Ṽ ′, [W ′])
n∏
i=1

ê(H̃i, [Mi]), (A· 2)

ê(G̃, [X]) ê([G̃], X−1) = 1GT (A· 3)

for each X ∈ {A1, A3, B1, B3, Mi }. Here pairing ê is defined
as

ê(X,Y) =

e(X,Y) (X ∈ G0 ∧ Y ∈ G1),
e(Y, X) (Y ∈ G0 ∧ X ∈ G1),
⊥ (otherwise).

(A· 4)

The relations can be regarded as linear PPEs. In the rest of
this section, we switch to additive notation for convenience
of presenting GS-proofs.
[Prover Algorithm]

For each Y ∈ {Z, R,U,T ′,W ′, A1, A3, B1, B3, Mi }, commit Y
by computing

[Y] := (O,O,Y) + SY ~u = (C1,Y,C2,Y,C3,Y) ∈ G3
0.

with independently uniform SY
$
← Z1×3

p where SY ~u denotes
elementwise scalar multiplication. Let SG̃ := (0, 0, 0) ∈ Z3

p ,

S>(A· 1) :=
(
SA1,SA3,SZ,SR,ST ′,SMi

)
,

S>(A· 2) :=
(
SB1,SB3,SZ,SU,SW ′,SMi

)
, and

S>(A· 3),X :=
(
SG̃,SX

)
.

Compute θ̃(A· 1) , θ̃(A· 2) and θ(A· 3),X for X ∈ {A1, A3, B1, B3,
M1, . . . , Mi } where:

θ̃(A· 1) := S>(A· 1)

*........
,

O O Ã0
O O Ã2
O O G̃−1

z

O O G̃−1
r

O O G̃−1
t

O O G̃−1
i

+////////
-

=
*.
,

O O θ̃1, (A· 1)
O O θ̃2, (A· 1)
O O θ̃3, (A· 1)

+/
-
∈ G̃3×3

1 ,

θ̃(A· 2) := S>(A· 2)

*........
,

O O B̃0
O O B̃2
O O H̃−1

z

O O H̃−1
u

O O H̃−1
w

O O H̃−1
i

+////////
-

=
*.
,

O O θ̃1, (A· 2)
O O θ̃2, (A· 2)
O O θ̃3, (A· 2)

+/
-
∈ G̃3×3

1 ,

θ(A· 3),X := S>(A· 3),X

(
O O G
O O X−1

)
=
*.
,

O O θ1, (A· 3),X
O O θ2, (A· 3),X
O O θ3, (A· 3),X

+/
-
∈ G3×3

0 .

Output all [Y], θ̃(A· 1) , θ̃(A· 2) , and θ(A· 3),X dropping redun-
dant O.

[Verifier Algorithm]

Let X̃•̃Y denote a binary operation for X̃ ∈ G3
1 and Y ∈ G

3
0

that results in 3 × 3 matrix consisting of elements of GT
obtained by computing pairings for every combination of
elements in X̃ and Y. Given the above proof and CRS as
input, output 1 (as accept) if all the following equations hold.
Output 0, otherwise.

*.
,

O

O

Ã0

+/
-
•̃
*.
,

C1,A1
C2,A1
C3,A1

+/
-
+
*.
,

O

O

Ã2

+/
-
•̃
*.
,

C1,A3
C2,A3
C3,A3

+/
-
+
*.
,

O

O

G̃−1
z

+/
-
•̃
*.
,

C1,Z
C2,Z
C3,Z

+/
-
+

*.
,

O

O

G̃−1
r

+/
-
•̃
*.
,

C1,R
C2,R
C3,R

+/
-
+
*.
,

O

O

S̃′
−1

+/
-
•̃
*.
,

C1,T ′
C2,T ′
C3,T ′

+/
-
+

n∑
i=1

*.
,

O

O

G̃−1
i

+/
-
•̃
*.
,

C1,Mi
C2,Mi
C3,Mi

+/
-

=
(
θ̃(A· 1)

)>
•̃
(
~u
)> ,

*.
,

O

O

B̃0

+/
-
•̃
*.
,

C1,B1
C2,B1
C3,B1

+/
-
+
*.
,

O

O

B̃2

+/
-
•̃
*.
,

C1,B3
C2,B3
C3,B3

+/
-
+
*.
,

O

O

H̃−1
z

+/
-
•̃
*.
,

C1,Z
C2,Z
C3,Z

+/
-
+

*.
,

O

O

H̃−1
u

+/
-
•̃
*.
,

C1,U
C2,U
C3,U

+/
-
+
*.
,

O

O

Ṽ ′
−1

+/
-
•̃
*.
,

C1,W ′
C2,W ′
C3,W ′

+/
-
+

n∑
i=1

*.
,

O

O

H̃−1
i

+/
-
•̃
*.
,

C1,Mi
C2,Mi
C3,Mi

+/
-

=
(
θ̃(A· 2)

)>
•̃
(
~u
)> ,

*.
,

C1,X
C2,X
C3,X

+/
-
•̃
*.
,

O

O

G̃

+/
-
+
*..
,

C̃1,G̃
C̃2,G̃
C̃3,G̃

+//
-
•̃
*.
,

O

O

X−1

+/
-
=

(
~̃u
)>
•̃
(
θ(A· 3),X

)> ,
for X ∈ {A1, A3, B1, B3, Mi } where (C̃1,G̃, C̃2,G̃, C̃3,G̃) :=

(O,O, G̃).

A.2 Converted Automorphic Blind Signature Scheme

This section presents details of automorphic blind signature
scheme obtained by conversion. A full description includes
key generation, blinding, signing, unblinding, verification
algorithms, and also security proofs. Here, we focus on
presenting user’s and verifier’s algorithms in transferring a
blind signature. They actually consist of prover and verifier
algorithms like the previous case. CRS ~u ∈ G3

0 and ~̃u ∈ G̃
3
1 are

generated by using our fine-tuning technique Let parameters
be asymmetric bilinear groups gk := (p,G0,G1,GT , e,G, G̃),
verification-key pk := (gk, F, K,T, X (= Gx), Ỹ (= G̃x)), mes-
sage (M (= Gm), Ñ (= G̃m)). An automorphic blind signa-
ture is a witness indistinguishable GS-proof for relations as
re-numbered as follows.

ê([A], Ỹ) ê([A], [D̃]) = ê(K, G̃) ê(M, G̃) ê(T, [S]),
(A· 5)

ê([B], G̃) = ê(F, [D̃]), and (A· 6)
ê([R], G̃) = ê(G, [S]). (A· 7)

With pairing ê defined as (A· 4), the second and third relations
are regarded as linear PPEs. Again, we switch to additive
notation while describing GS-proofs in the following.

[Blind Signature Issuing Algorithm]

Commit to δ ∈ (A, B, R) and ρ̃ ∈ (D̃, S̃) by

[δ] :=(O,O, δ) + Sδ ~u = (C1,δ,C2,δ,C3,δ) ∈ G3
0, and

[ρ̃] :=(O,O, ρ̃) + Sρ̃ ~̃u = (C1,ρ̃,C2,ρ̃,C3,ρ̃) ∈ G3
1.

where Sδ
$
← Z1×3

p and Sρ̃
$
← Z1×3

p . Let Tp be a random 3× 3
matrix over Zp . Compute θ(A· 5) , θ(A· 6) , and θ(A· 7) as:

θ(A· 5) = S
>
A (O,O, X) + S>A (O,O, D) + S>

D̃
(O,O, A)

+ S>A SD̃ ~u − S>
S̃

(O,O,T) + (Tp − T>p) ~u,

θ(A· 6) = S
>
B (O,O,G) − S>

D̃
(O,O, F), and

268
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.1 JANUARY 2019

θ(A· 7) = S
>
R (O,O,G) − S>

S̃
(O,O,G).

Output all [δ], [ρ̃], θ(A· 5) , θ(A· 6) , and θ(A· 7) without redun-
dant O as a blind signature.

[Verifier Algorithm]

Given the above blind signature and message msg := (M, Ñ),
output 1 if all the following equations hold. Output 0,
otherwise.

*.
,

C1,A
C2,A
C3,A

+/
-
•̃
*.
,

O

O

Ỹ

+/
-
+
*.
,

C1,A
C2,A
C3,A

+/
-
•̃
*.
,

C1,D̃
C2,D̃
C3,D̃

+/
-
=
*.
,

O

O

K

+/
-
•̃
*.
,

O

O

G̃

+/
-

+
*.
,

O

O

M

+/
-
•̃
*.
,

O

O

G̃

+/
-
+
*.
,

O

O

T

+/
-
•̃
*.
,

C1,S̃
C2,S̃
C3,S̃

+/
-
+

(
θ(A· 5)

)>
•̃
(
~̃u
)>
,

*.
,

O

O

G̃

+/
-
•̃
*.
,

C1,B
C2,B
C3,B

+/
-
=
*.
,

O

O

F

+/
-
•̃
*.
,

C1,D̃
C2,D̃
C3,D̃

+/
-
+

(
θ(A· 6)

)>
•̃
(
~̃u
)>
,

*.
,

O

O

G̃

+/
-
•̃
*.
,

C1,R
C2,R
C3,R

+/
-
=
*.
,

O

O

G

+/
-
•̃
*.
,

C1,S̃
C2,S̃
C3,S̃

+/
-
+

(
θ(A· 7)

)>
•̃
(
~̃u
)>
.

Appendix B: Sample Dependency Graphs in Sect. 6.2

Fig. A· 1 A dependency graph for Tagged One-time Signature Scheme
in [11].

Fig. A· 2 A random dependency graph with the same number of pairing
nodes as above.

Fig. A· 3 A dependency graph of AHO signature scheme with GS Zero-
knowledge proof.

Fig. A· 4 An example of a random cluster dependency graph at n = 5.

Masayuki Abe has been working for NTT
(Nippon Telegraph and Telephone Corporation,
Japan) since 1992. He received Ph.D. from Uni-
versity of Tokyo in 2002. Currently, he is a senior
distinguished research scientist in NTT Secure
Platform Laboratories. He served as a program
chair for CT-RSA’07, ACM ASIACCS’08, and
Asiacrypt’10. His research interest includes digi-
tal signatures, public-key encryption, and efficient
instantiation of cryptographic protocols.

ABE et al.: FAST AND SCALABLE BILINEAR-TYPE CONVERSION METHOD FOR LARGE SCALE CRYPTO SCHEMES
269

Fumitaka Hoshino received the B.Eng. and
M.Eng. degrees from University of Tokyo, Japan,
in 1996 and 1998, respectively. He is a senior sci-
entist in NTT Secure Platform Laboratories, and
a doctoral student at Tokyo Institute of Technol-
ogy. His current research interests cover a wide
range of topics between applied mathematics and
computer science e.g. algorithmic number theory,
combinatorial optimization, and cryptology.

Miyako Ohkubo received the B.E., and
M.E. degrees from Shinshu University in 1995
and 1997, respectively, and Ph.D. degree from
the Chuo University in 2004. She had worked
at NTT from 1997 to 2010. She is currently a
senior researcher of security architecture labo-
ratory in National Institute of Information and
Communications Technology. She received the
SCIS Paper Award in 2000. She is a member
of the International Association for Cryptologic
Research (IACR).

