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PAPER
A Closed-Form of 2-D Maximally Flat Diamond-Shaped Half-Band
FIR Digital Filters with Arbitrary Difference of the Filter Orders

Taiki SHINOHARA†a), Nonmember, Takashi YOSHIDA††b), and Naoyuki AIKAWA†††c), Members

SUMMARY Two-dimensional (2-D) maximally flat finite impulse re-
sponse (FIR) digital filters have flat characteristics in both passband and
stopband. 2-D maximally flat diamond-shaped half-band FIR digital filter
can be designed very efficiently as a special case of 2-D half-band FIRfilters.
In some cases, this filter would require the reduction of the filter lengths
for one of the axes while keeping the other axis unchanged. However, the
conventional methods can realize such filters only if difference between
each order is 2, 4 and 6. In this paper, we propose a closed-form frequency
response of 2-D low-pass maximally flat diamond-shaped half-band FIR
digital filters with arbitrary filter orders. The constraints to treat arbitrary
filter orders are firstly proposed. Then, a closed-form transfer function is
achieved by using Bernstein polynomial.
key words: 2-D diamond-shaped filter, maximally flat, half-band filter,
arbitrary different filter orders, closed-form expression

1. Introduction

One of the basic operations in multirate digital signal pro-
cessing is sampling rate conversion by upsampling and
downsampling [1]–[4]. Especially, the 2 : 1 sampling rate
conversion from the orthogonal to quincuncial sampling pat-
tern is very important in the field of two dimensional (2-D)
signal processing [5], [6]. 2-D low-pass diamond-shaped
half-band FIR digital filters (2-D DH filters) are used to
avoid aliasing after decimation. It is very easy to implement
these filters because impulse response of them has a quin-
cuncial sampling pattern and approximately half of the filter
coefficients are zero.

Many design methods for 2-D DH filter have been
proposed [7]–[18]. An optimization based design method
[10], [16]–[18] are well-known. These methods realize a
steep cut-off characteristic, however, it causes passband rip-
ples that may distort input signals. On the other hand, many
design methods for 2-D low-pass maximally flat diamond-
shaped half-band FIR digital filter (2-D MFDH filter) have
been proposed [11]–[15]. This filter can achieve high accu-
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rate extraction of input signal. This filter is often preferred for
image signal processing because it usually has less ringing in
the step response compared with filters having passband rip-
ple. A design method of this filter was proposed by solving
the linear simultaneous equations obtained from constraints
about the magnitude flatness at (ω1, ω2) = (0, 0) [11]. How-
ever, in this method, the linear simultaneous equations need
to be formulated and solved each time when design specifi-
cation is changed. To solve this problem, design methods of
this filter was proposed by formulating the closed-form trans-
fer function based on Bernstein polynomial [13]–[15], [19].
There is no need to solve a set of linear simultaneous equa-
tions.

In recent years, 2-D MFDH filters is required to have
the different filter order for each axis [12]. 2-D MFDH
filters with different orders are required in some applica-
tions, for example, interlace-to-noninterlace scanning con-
verter in TV signal processing [12], [16], sampling rate
conversion for different aspect ratio images, and sampling
structure conversion for array systems. The design method
of this filter by using linear equations was proposed [12]. In
this method, the degree of freedom for frequency response
of the filter increases according to difference of filter or-
ders. Therefore, this method employs additional constraints
at (ω1, ω2) = (0, 0), in the ω1 = ω2 direction and for equi-
amplitude line. However, the difference of filter orders of
this method only can be set among 2, 4 and 6. Furthermore,
as shown in Fig. 1(a) and 1(b), this method realize the mag-
nitude response having peaks which may distort an input
signal.

In this paper, we propose a designmethod for 2-D linear
phase MFDH filters with arbitrary difference of filter orders
and monotonically decreasing magnitude response. First,
we propose novel constraints which are imposed only at
(ω1, ω2) = (0, 0). Next, the proposed magnitude response is
achieved as a closed-form solution by using Bernstein poly-
nomial. The parameter of the proposed method is only the
flatness degree for magnitude response at (ω1, ω2) = (0, 0).
Then, we show design examples to confirm that the proposed
method can design the filters regardless the filter order differ-
ence and realize the flat magnitude response. Furthermore,
we show that all the impulse responses of the proposed filter
has quincuncial sampling patterns.

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 The magnitude response of (8 × 14) order 2-D MFDH filters
designed by the conventional method [12].

2. Design Method

2.1 Definition of 2-D Half-Band FIR Digital Filters

In general, the frequency response of a (2N1 × 2(N1 + d))
order liner phase 2-D FIR digital filter is given as

H (ω1, ω2) =
2N1∑
n1=0

2(N1+d)∑
n2=0

h(n1, n2)e−jω1n1e−jω2n2

= H0(ω1, ω2)e−jω1N1e−jω2 (N1+d), (1)

where h(n1, n2), d, and H0(ω1, ω2) are the filter coefficients,
an integer equal to or greater than 0, and the zero-phase
frequency response. Here, the frequency response of the
filter given by equation (1) is symmetric with respect to
(ω1, ω2) = (0, 0) in the frequency plane. Furthermore, the
frequency response of equation (1) is symmetric with respect
to the ω1 and ω2 axes because the coefficients of the linear
phase 2-D FIR digital filter hold

h(n1, n2) = h(2N1 − n1, n2)
= h(n1, 2(N1 + d) − n2)
= h(2N1 − n1, 2(N1 + d) − n2). (2)

Consequently, the frequency response of 2-D zero-phase FIR

digital filters is given as

H0(ω1, ω2) =
N1∑
n1=0

N1+d∑
n2=0

h̃(n1, n2) cos n1ω1 cos n2ω2,

(3)

where h̃(n1, n2) is a coefficient led by h(n1, n2) as shown in
[13]. In this paper, we will introduce the design method for
2-D zero-phase DH filter because the filter coefficients of the
linear phase filter are derived as time-shifted coefficients of
the zero-phase filter.

A 2-D zero-phase FIR digital filter is said to be 2-D
zero-phase DH filter if

H0(ω1, ω2) + H0(π − ω1, π − ω2) = 1 (4)

is satisfied for arbitrary ω1 and ω2. Equation (1) in-
dicates that the frequency response is symmetric about
(ω1, ω2, H0) = (π/2, π/2, 0.5) in the space {(ω1, ω2, H0) |0 ≤
ω1, ω2 ≤ π}. Then, the coefficients of 2-D zero-phase DH
FIR digital filters must satisfy [12]




h̃(n1, n2) =
1
2

(n1 = n2 = 0)

h̃(n1, n2) = 0 (n1 + n2 = even)
. (5)

2.2 The Proposed Method

To design the (2N1×2(N1+d)) order 2-D zero-phaseMFDH
filter, it is necessary to match the number of the coefficients
and the number of constraints. That is, the frequency re-
sponse of this filter must satisfy the following constraints:

H0(ω1, ω2) |ω1=0
ω2=0

= 1 (6a)

H0(ω1, ω2) |ω1=0
ω2=π

= 0.5 (6b)

∂iH0

∂ω
j
1∂ω

i−j
2

������ω1=0
ω2=0

= 0
(

i = 2, 4, · · · , 2(N1 + d − 1)
j = 0, 2, · · · , 2(s(i) − 1)

)
.

(6c)

Note that the constraints at (ω1, ω2) = (π, π) and (ω1, ω2) =
(π, 0) are derived to satisfy (4) from (6). In (6c), s(i) is
the flatness degree for the magnitude response at (ω1, ω2) =
(0, 0) and (ω1, ω2) = (π, π) and given by

s(i)=




i
2
+1 (i ≤ 2(N1 − 1))

m(i)
(
2N1 ≤ i ≤ 2

(
N1 +

d
2

))
N1−m(4N1+2d−i)+1

(
i > 2

(
N1 +

d
2

)) ,

(7)

where m(i) is an integer parameter to control the shape of
equi-amplitude line, and it is determined as follows:
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Fig. 2 The magnitude response of (8 × 14) order 2-D MFDH filter de-
signed by the proposed method.

1. m(2N1) = N1

2. if d is an even integer, m
(
2
(
N1 +

d
2

))
= b

N1+1
2 c

3. For 2N1 < i < 2(N1 + d/2), m(i) is set to satisfy
m(i−n) ≥ m(i) > b N1+1

2 c with an even positive integer
n

In the above m(i) decision rules, bxc denotes the maximum
integer not exceeding x. From the last rule, the number of
m(i) to be set is b(d − 1)/2c. Therefore, there are (N1 −
bN1/2c − 1) b(d−1)/2c combinations of constraints (6c) by
changing parameter m(i).

In this paper, a closed-form frequency response satisfy-
ing (6) is proposed using Bernstein polynomial as

H0(ω1, ω2) =
N1∑
n1=0

N1+d∑
n2=0

f (n1, n2) bn1,N1 (x) bn2,N1+d (y),

(8a)

where

bi,N (x) =
(
N
i

)
xi (1 − x)N−i, (0 ≤ i ≤ N ) (8b)

x =
1 − cosω1

2

Fig. 3 The coefficients of (8 × 14) order zero-phase 2-D MFDH filter
designed by the proposed method.

Fig. 4 The magnitude response of (8 × 16) order 2-D MFDH filter with
m(10) = 3.

y =
1 − cosω2

2
.

In above equation,
(
a
n

)
is a binomial coefficient given as

(
a
n

)
=




a(a − 1)(a − 2) · · · (a − n + 1)
n!

(0 < n ≤ a)

1 (n = 0)
,

where a and n are an integer. In (8a), f (·) is the Bernstein
coefficient derived as:
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Fig. 5 The magnitude response of (8 × 16) order 2-D MFDH filter with
m(10) = 4.

f (n1, n2) =




1 , (n1, n2) ∈ N

0 , (N1 − n1, N1 + d − n2) ∈ N

0.5 , otherwise

(8c)

N = {(n1, n2) ∈ N | 0 ≤ n1 + n2 ≤ N1 + d − 1,
0 ≤ n1 ≤ s(2n1 + 2n2) − 1} . (8d)

It is shown in the appendix that derivation of f (·), and (8a)
satisfies (4).

By substituting x = (2− z1 − z−1
1 )/4 and y = (2− z2 −

z−1
2 )/4 in (8a) and (1) , we can obtain the coefficients of the
proposed filter.

3. Design Examples

In this section, we will illustrate some magnitude responses
of (2N1 × 2(N1 + d)) order 2-D MFDH filters designed by
the proposed method.

Example 1: In this example, we compare the proposed
method and the conventional method for N1 = 4 and d = 3
[12]. The magnitude response of the conventional method
are already shown in Fig. 1(a) and 1(b). In this case, the
parameter m(i) to be set is only m(10). From the decision
rules of m(i), m(10) is set as 3 or 4. Figures 2(a) and
2(b) show the magnitude response of the proposed filter

Fig. 6 The magnitude response of (8 × 18) order 2-D MFDH filter.

with N1 = 4, d = 3 and m(10) = 3. It is clear from
Fig. 1(b) that the magnitude response of conventional filter
is not monotonically decreasing at (ω1, ω2) = (0, 0). On
the other hand, it is clear from Fig. 2(b) that the magnitude
response of the proposed filter is monotonically decreasing
over the whole frequency. Figure 3 illustrates the coefficients
of the proposed filter. From Fig. 3, it is confirmed that
the proposed method can achieve the quincuncial sampling
pattern as same as the conventional method.

Example 2: In this example, we illustrate the 2-D
MFDH filter with d ≥ 4 design by the proposed method.
Such filter can be designed only by the proposed method.
In the case of design of filter with N1 = 4 and d = 4, the
parameter m(i) to be set is only m(10). From the decision
rules of m(i), the value of m(10) is 3 or 4. Figures 4 and 5
showmagnitude response of the proposed filter with N1 = 4,
d = 4 and m(10) = {3, 4}, respectively. From Figs. 4(a),
4(b), 5(a) and 5(b), it is confirmed that m(10) controls the
shape of the equi-amplitude lines.

Moreover, Figs. 6(a) and 6(b) showmagnitude response
of the proposed filter with N1 = 4, d = 5, m(10) = 4 and
m(12) = 3 and Figs. 7(a) and 7(b) show magnitude response
of the proposed filter with N1 = 9, d = 5, m(20) = 7
and m(22) = 5. From these figures, it is confirmed that
2-D MFDH filter with arbitrary d can be designed by the
proposed method. Note that all of these filters are half-band
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Fig. 7 The magnitude response of (18 × 28) order 2-D MFDH filters.

characteristics and the filter coefficients of each filter has a
quincuncial sampling pattern.

4. Conclusion

In this paper, we introduced a design method for 2-DMFDH
filters with arbitrary different filter orders. To solve this
problem, we proposed the new flatness constraints. Then,
a closed-form frequency response with arbitrary filter or-
ders were derived. The parameters of the proposed method
are m(i) which determines the shape of the equi-amplitude
line, and N1. Through design examples, it is confirmed that
the proposed method can realize monotonically decreasing
magnitude response for arbitrary d. Furthermore, it is also
confirmed that the proposedmethod can realize various equi-
amplitude line by setting m(i), and the line approaches to the
straight with appropriate m(i).
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·

N1−r∑
n1=0

N1+d−k+r∑
n2=0

r∑
l1=0

k−r∑
l2=0




(2(N1−r )
2n1

) (2(N1+d−k+r )
2n2

) (2r
2l1

) (2(k−r )
2l2

)(
N1−r
n1

) (
N1+d−k+r

n2

)
· (−1)2N1+d−n1−n2−l1−l2 f (n1 + l1, n2 + l2)
· bn1,N1−r (x) bn2,N1+d−k+r (y)

}
. (A· 2)

From (8b), we have b0,N (0) = 1, so that we obtain

∂2kH0

∂ω2r
1 ∂ω2(k−r )

2

������ω1=0
ω2=0

=

r∑
l1=0

k−r∑
l2=0

(
r
l1

) (
k − r

l2

)
f (l1, l2).

(A· 3)

From (6a), (6c), (8a), (A· 1) and (A· 3), we obtain

f (n1, n2) =



1 , (n1, n2) ∈ N

0 , (N1 − n1, N1 + d − n2) ∈ N
.

(A· 4)

On the other hand, there are only three combinations of n1
and n2 which satisfies (n1, n2) < N and (N1 − n1, N1 + d −
n2) < N , i.e. (n1, n2) = (N1, 0), (0, N1 + d) for any N1 and
d, and (n1, n2) = (N1/2, (N1 + d)/2) for even N1 and even
d. Hence, from (A· 1), we have (A· 5),

f (N1, 0) = f (0, N1 + d) = 0.5 (for any N1 and d)

f
(

N1
2
,

N1 + d
2

)
= 0.5 (for even N1 and even d).(A· 5)

Appendix B: The Proof that (8a) Satisfies (4)

We obtain from (8a)

H0(ω1, ω2)

=
∑

(n1,n2)∈N

bn1,N1 (x)bn2,N1+d (y)

+
1
2

bN1,N1 (x)b0,N1+d (y) +
1
2

b0,N1 (x)bN1+d,N1+d (y)

+
1
2

bN1/2,N1 (x)b(N1+d)/2,N1+d (y) (A· 6)

H0(π − ω1, π − ω2)

=
∑

(N1−n1,N1+d−n2)∈N

bn1,N1 (x)bn2,N1+d (y)

+
1
2

bN1,N1 (x)b0,N1+d (y) +
1
2

b0,N1 (x)bN1+d,N1+d (y)

+
1
2

bN1/2,N1 (x)b(N1+d)/2,N1+d (y). (A· 7)

Then, all these summations exhaust all possible values for
n1 and n2.

H0(ω1, ω2) + H0(π − ω1, π − ω2)

=

N1∑
n1=0

N1+d∑
n2=0

bn1,N1 (x)bn2,N1+d (y) = 1 (A· 8)

From (A· 8), this equation is always equal to 1 [13].
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