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PAPER
Induced Synchronization of Chaos–Chaos Intermittency
Maintaining Asynchronous State of Chaotic Orbits by External
Feedback Signals

Sou NOBUKAWA†a), Haruhiko NISHIMURA††, Members, Teruya YAMANISHI†††, Nonmember,
and Hirotaka DOHO††,††††, Member

SUMMARY It is well-known that chaos synchronization in coupled
chaotic systems arises from conditions with specific coupling, such as com-
plete, phase, and generalized synchronization. Recently, several methods
for controlling this chaos synchronization using a nonlinear feedback con-
troller have been proposed. In this study, we applied a proposed reducing
range of orbit feedback method to coupled cubic maps in order to control
synchronization of chaos–chaos intermittency. By evaluating the system’s
behavior and its dependence on the feedback and coupling strength, we
confirmed that synchronization of chaos–chaos intermittency could be in-
duced using this nonlinear feedback controller, despite the fact that the
asynchronous state within a unilateral attractor is maintained. In particular,
the degree of synchronization is high at the edge between the chaos–chaos
intermittency parameter region for feedback strength and the non-chaos–
chaos intermittency region. These characteristics are largely maintained on
large-scale coupled cubic maps.
key words: synchronization, chaos-chaos intermittency, control

1. Introduction

In non-linear systems, fluctuating activity induces divergent
synchronization phenomena such as synchronization tran-
sitions and chimera states [1]–[6]. Stochastic resonance
is an example one of these synchronization phenomena in
which the responsiveness to a weak (under barrier) signal
in a nonlinear system is enhanced by noise when the sys-
tem satisfies several specific criteria related to the form of
the barrier/threshold, noise sources, and the weakness of the
input signal [7]–[9].

Chaotic oscillations have the characteristics of synchro-
nization with external input signals or with other oscillations
in a network consisting of chaotic oscillations [10]. In the
former type of synchronization, chaotic processes cause a
phenomenon similar to stochastic resonancewith a determin-
istic fluctuating activity instead of stochastic noise, known
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as chaotic resonance [11]. Chaotic resonance was first dis-
covered in systems with chaos–chaos intermittency (CCI),
which is the chaotic state in which the chaotic orbit goes
back and forth among the separated regions, as typified in
a one-dimensional cubic map and a Chua circuit [12]–[16].
In these systems, chaotic resonance is produced by synchro-
nization between the CCI and a weak input signal near the bi-
furcation point of the merging attractor [11]. Furthermore, it
was reported that chaotic resonance arises in neural systems
and has a higher sensitivity than stochastic resonance [17]–
[22]. However, few studies have focused on engineering
applications based on chaotic resonance despite the numer-
ous applications of stochastic resonance such as wearable
devices that enhance human tactile sensitivity [23], [24].
This could be because the chaotic state is induced by the
adjustment of internal parameters of the system. In many
cases, the external control of these parameters is difficult,
particularly in the case of biological systems. To overcome
this difficulty, we proposed a method for controlling chaotic
resonance based on the external feedback signal approach
discussed in our previous work [25]. In particular, the pro-
posed feedback signal reduces the range of orbit by adjusting
the local maximum andminimum values of the map function
and controls merging of the attractor and the CCI frequency,
instead of adjusting the internal parameters. This is called
the reducing the range of orbit (RRO) feedback method in
this study. Hence, the synchronization of CCI against a weak
external signal arises at an appropriate feedback strength.

In the latter type of synchronization among chaotic os-
cillators, several kinds of chaos synchronization [10] have
been widely observed under conditions with specific cou-
pled forms, such as complete [26]–[28], phase [29], and
generalized synchronization [30]. Several methods for con-
trolling chaos synchronization based on a nonlinear feedback
controller have been proposed [31]–[34]. In particular, these
non-linear controllers utilize Lyapunov stability [31], [32],
active control [33] and converse Lyapunov theories [34]. Out
of all these available methods, CCI synchronization was in-
duced in two coupled cubic maps using a RRO feedback sig-
nal in our previous work [35]. However, the characteristics
of synchronization in large-scale coupled oscillators and the
relationship between CCI synchronization and the stability
of chaotic orbits/synchronization have not been investigated.

In this study, we show that CCI synchronization can be
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controlled using our RRO feedback method in coupled cubic
maps based on our previous work [35]. We then, control
the merging of the attractor in coupled cubic maps expanded
from two to hundreds of map elements, and the synchro-
nization control was evaluated based on external feedback.
Finally, we evaluated the relationship between CCI synchro-
nization and the stability of chaotic orbits/synchronization
using the Lyapunov exponent and transverse Lyapunov ex-
ponent.

2. Material and Methods

2.1 Cubic Map Model with External Feedback and Cou-
pled Cubic Maps

A one-dimensional cubic map model is a relatively simple
model in which CCI occurs, i.e., the chaotic orbit goes back
and forth between the positive and negative regions [11].
In this study, RRO feedback Ku(x) is applied to the one-
dimensional cubic map model:

x(t + 1) = F (x(t)) + Ku(x(t)), (1)
F (x) = (ax − x3) exp(−x2/b), (2)
u(x) = −(x − xd) exp(−(x − xd)2/(2σ2)), (3)

where K and xd are the amplitude related to the feedback
control intensity and the point dividing each attractor, respec-
tively. The cubic map in Eq. (2) has two symmetric attractor
regions, i.e., positive and negative x(t) regions. Therefore,
we set xd = 0. The RRO feedback term Ku(x) reduces
the absolute values for the local maximum and minimum of
F (x). The parameter set (a = 2.86, b = 10, σ = 0.6) is
used in this study. In the K = 0 case, a chaotic orbit of x(t)
distributes across the positive and negative x regions.

We use a ring-type network consisting of N cubic maps
near a gap junction with strength J:

xi (t + 1) = F (xi (t)) + Ku(xi (t))
+J (2xi − xi−1 − xi+1) (i = 1, · · · , N ), (4)

where the periodic boundary condition is applied in the i =
1, N cases. In Eq. (4), if the ordinal diffusive coupling is
set such that (xi−1 + xi+1 − 2xi), the cubic maps induce
synchronization with opposite phase at a sufficient coupling
strength. Therefore, to evaluate synchronization with the
coordinate phase, the inverse sign of diffusive coupling is
defined.

2.2 Evaluation Index

CCI synchronization was evaluated using the correlation co-
efficient between Xi (t) and X j (t) (i, j = 1, 2, · · · , N , i , j),
which are binarized time series of xi (t) and x j (t) (Xi, j (t) = 1
in the xi, j (t) ≥ 0 case, Xi, j (t) = −1 in the xi, j (t) < 0 case)
as follows:

C(τ) =
Ci j (τ)√
CiiCj j

(5)

Ci j (τ) = 〈(Xi (t + τ) − 〈Xi〉)(X j (t) − 〈X j〉)〉 (6)
Cii = 〈(Xi (t) − 〈Xi〉)2〉 (7)
Cj j = 〈(X j (t) − 〈X j〉)2〉, (8)

where 〈·〉 denotes the average in t.
To evaluate the chaos in the coupled cubic maps, we

use the maximum Lyapunov exponent [36]:

λ1 =
1
τlM

M∑
k=1

ln(
|dk (tl = τl) |
|dk (tl = 0) |

). (9)

Here, dk (tl = 0) are M the perturbed initial conditions for
{x1(t), x2(t), · · · , xN (t)} applied at t = t0 + (k − 1)τl , which
are given by:

dk+1(tl = 0) = |d0 |
dk (tl = τl)
|dk (tl = τl) |

, (10)

where d1(tl = 0) = d0, (d0: an initial vector). In addition,
dk (tl = τl) indicates the time evolution of the perturbed
vector for tl ∈ [0 : τl]. In this study, we use τl = 1 and
d0 = 10−6.

Furthermore, in the case of the coupled cubic maps, the
synchronization stability was evaluated from the maximum
transverse Lyapunov exponent [10]. To perform this esti-
mation, we utilized a method proposed by Dabrowski [37].
According to this method, the time evolution of the pertur-
bation vector ds

k (t⊥) (k = 1, 2, · · · , M) from the synchro-
nization manifold during t⊥ ∈ [0 : τ⊥] is calculated. Here,
the initial perturbation ds

k (0) is applied at t = t0+ (k−1)τ⊥.
Then, the inner product between the perturbation vector and
its temporal derivative is calculated as follows:

λks =
ds

k (τ⊥) · dds
k (τ⊥)
dt

|ds
k (τ⊥) |2

, (11)

where · indicates the inner product. The maximum trans-
verse Lyapunov exponent is given by

λ⊥ =
1

τ⊥M

M∑
k=1

λks . (12)

In this study, τ⊥ = 5 and the initial perturbation amplitude
ds

k (0) = 10−6 are set.

3. Results

3.1 Control Method for Attractor Merging by External
Feedback

We consider a control method for separating the merged
attractor by applying an external feedback Ku(x). The upper
panel of Fig. 1(a) shows the orbit and map in the attractor-
merging case. The arrows indicate the attractor switching
points, i.e., the attractor switches from the positive region
(x(t) > 0) to the negative region (x(t) < 0) at x(t) ≈
1.7, whereas the attractor switches from the negative region
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Fig. 1 (a) Return map of the cubic map without a feedback term (K = 0) and its orbit (upper panel).
Time series of x(t) (lower panel). The arrows indicate the attractor switching points. The dashed lines
indicate the localmaximum ( fmax) andminimum ( fmin) values of the cubicmap at x ≈ ±0.916. (b) Return
map of the cubic map with the feedback term and its orbit (upper panel). Time series of x(t) (lower
panel). These figures are partially modified and quoted from Ref. [25] (a = 2.86, b = 10, σ = 0.6).

(x(t) < 0) to the positive region (x(t) > 0) at x(t) ≈ −1.7.
This attractor switching is also observed in the lower part
of Fig. 1(a). From this result, we confirm that CCI arises
when F ( fmax) < 0 and F ( fmin) > 0, where fmax, fmin,
and F ( fmax,min) indicate the local maximum and minimum
values of the map at x ≈ ±0.916, the intersections of the
map function, and the vertical dashed lines, respectively.
We adopted the feedback Ku(x) (K = 0.5) to suppress CCI.
This feedback has the effect of reducing the absolute value
of fmax,min. It leads to a break of the conditions F ( fmax) +
Ku( fmax) < 0 and F ( fmin) + Ku( fmin) > 0 (see Fig. 1(b)).
Consequently, as shown in Fig. 1(b), the orbit is confined in
the unilateral region corresponding to the region where the
initial value x(0) is located (see the solid black line in the
upper and lower parts).

3.2 Controlling the Synchronization of CCI by External
Feedback

Initially, CCI synchronization was evaluated in the two cou-
pled cubic maps (N = 2) given by Eq. (4). Figure 2(a)
shows the time series of x1(t) and x2(t) at the gap junction
J = 0.05. When K = 0.05, the CCI dynamics in x1(t)
and x2(t) do not synchronize. Meanwhile, when K = 0.25,
the CCI frequency decreases and CCI synchronization oc-
curs. At larger values of K (K = 0.3), x1(t) and x2(t) are
trapped in the unilateral attractor region. These temporal
expanded figures are presented in Fig. 2(b). The orbit of
each element (x1(t), x2(t)) in the internal unilateral regions

does not synchronize, even when CCI synchronization oc-
curs (K = 0.25). Figure 3 shows C(0) for the time series of
x1(t) and x2(t), λ1, and λ⊥ as functions of the gap junction
J and feedback strength K . Here, C(0) exhibits a high value
(C(0) & 0.7) at the edge between the CCI and the non-CCI
regions. The white region corresponding to C(0) in Fig. 3
represents the non-CCI region, i.e., the x1,2 orbits are con-
fined within the unilateral region. The peak values of C(0)
increases as J increases. In this region with a large C(0)
value, the dynamics exhibit chaos (λ1 > 0) and an unstable
synchronous state (λ⊥ > 0). This means that the chaotic
dynamics in the unilateral attractor region desynchronizes
each other for this weak coupling strength, even if CCI syn-
chronizes.

Secondly, we evaluated control synchronization of the
CCI in larger-scale coupled cubic maps. The upper pan-
els in Fig. 4 show the mean value of the correlation co-
efficient C(τ = 0) for the time series of xi (t) and x j (t)
(i, j = 1, 2, · · · N, i , j) for all pairs of cubic maps as a func-
tion of the gap junction J and feedback strength K . λ1 as a
function of J and K is presented in the lower panels in the
figure. Here, C(0), λ1, and λ⊥ exhibit the same tendency
as the case of the two coupled cubic maps. That is, for all
sizes of coupled cubic maps, C(0) has a large value at the
edge between the CCI and non-CCI regions. However, the
regions with a large value of C(0) are narrow, and these
values decrease as N increases. In addition, the maximum
C(0) values are plotted as a function of N with respect to
the parameter region for 0 ≤ J ≤ 0.1 and 0 ≤ K ≤ 0.3 in
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Fig. 2 (a) Time series of x1,2 (t) in K = 0.05 (top), 0.25 (middle), and 0.3 (bottom). (b) Temporally
expanded figures of the time series in (a) (a = 2.86, b = 10, σ = 0.6, J = 0.05, N = 2).

Fig. 3 Correlation coefficient C (τ = 0) for the time series of x1,2 (t)
(top), maximum Lyapunov exponent λ1 (middle), and transverse Lyapunov
exponent λ⊥ (bottom) as a function of feedback strengthK and gap junction
J . Here, the white region corresponding to C (τ = 0) represents the non-
CCI region, i.e., the x1,2 orbits are confined within the unilateral region
(a = 2.86, b = 10, σ = 0.6, N = 2).

Fig. 5. The synchronization state (C(0) ≈ 1.0) is maintained
at N ≈ 10. However, this state gradually becomes broken
when N & 10.

4. Discussion and Conclusions

In this study, we applied an RRO feedback controller that ad-
justs the existence range of chaotic orbits in a cubic map. It
was confirmed that the attractor merging and CCI frequency
can be controlled with this controller. Subsequently, it was
determined that CCI synchronization is induced at an ap-
propriate feedback strength in cubic maps coupled by a gap
junction. In particular, the parameter region where a high-
synchronization state arises is located at the border between
the CCI feedback strength parameter region and the non-CCI
region. It was determined that even if CCI synchronization
occurs, the orbit of each element within the unilateral region
does not synchronize. These characteristics of the induced
CCI synchronization are largely maintained for large-scale
coupled cubic maps.

The reasons for the enhancement of CCI synchroniza-
tion at the edge between the CCI and non-CCI regions must
be considered. Near the edge, attractor switching seldom
occurs in the uncoupled case (J = 0). However, in the cou-
pled case (J > 0), the influence of the attractor switching in
the other oscillators leads to the breaking of the condition
for the attractor to be separated into positive and negative
regions. Therefore, the CCIs in the cubic maps synchronize
with each other.

In conventional chaos control methods, chaotic states
that could degrade system performance should be elimi-
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Fig. 4 Mean value of the correlation coefficient C (τ = 0) between the xi (t) and x j (t) time series
(i, j = 1, 2, · · · N, i , j) for all pairs of cubic maps as a function of the gap junction J and the feedback
strength K (top panels). Here, the white region represents the non-CCI region, i.e., the orbits of xi are
confined within the unilateral region. The maximum Lyapunov exponent λ1 as a function of J and K
(middle panels). The maximum transverse Lyapunov exponent λ⊥ (bottom panels) as a function of J
and K . (a) N = 4. (b) N = 8. (c) N = 16. (d) N = 32.

Fig. 5 Mean value of correlation coefficient C (τ = 0) for all pairs of
cubic maps as a function of the size of the cubic map N .

nated, thereby achieving stable equilibrium and resulting
in a transit to a periodic state through external perturbations
such as OGY method and H∞ method [38]–[41]. Indeed, a
chaotic state transition to a periodic state in the high feed-

back strength region [25]. However, the chaotic state is
maintained in the region where high CCI coherence arises,
i.e., our proposedmethod induces an optimal chaotic state for
CCI synchronization, instead of eliminating chaotic states.

Several nonlinear feedback controllers based on Lya-
punov stability, active control and converse Lyapunov the-
ories, realize chaos synchronization [31]–[34]. However,
these methods do not permit an asynchronous state within
each divided attractor. In contrast, our proposed method
induces CCI synchronization, thus maintaining the asyn-
chronous state within each divided attractor (corresponding
to positive λ⊥).

In regard to plausible alternative solutions for realiz-
ing CCI synchronization, our previously proposed feedback
signal based on the utilization of the OGY method is a can-
didate [42]. This feedback signal was designed to induce
attractor merging by reducing the instability of the orbit.
However, after further evaluation of this solution, the OGY-
based method did not exhibit the effect of inducing attractor
merging to require CCI synchronization (see appendix). It is
considered that the control mechanism of the OGY method
is local, i.e., the effect of feedback cannot govern the wide
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area and is restricted to neighboring regions of the unstable
targets such as unstable equilibrium points. Therefore, CCI
and attractor merging which includes wide-range behavior,
cannot be controlled by the OGY based method.

With respect to the study of the application of coupled
chaotic oscillators [43]–[45], Park et al. demonstrated that
the movement patterns of snake-like robots are produced
by chaotic coupled oscillators [45]. This oscillation ex-
hibits chaotic itinerancy [46] which is the transition dynam-
ics switching between the chaotic synchronized and desyn-
chronized states. CCI synchronization and our proposed
RRO feedback method may be used to generate movement
patterns and control chaotic synchronized dynamics. How-
ever, for this application, the robustness and influence of
CCI synchronization against the external perturbation, and
the boundary condition for external environments must be
considered. Therefore, as part of our future studies, these
aspects will be evaluated.

Furthermore, we consider the process of applying RRO
feedback to the general controlled chaotic system. In the
cubic map case dealt with in this study, the peak of the
map which induces attractor merging is initially specified by
return map of the orbit. Secondly, feedback signals are de-
signed with the effect of reducing the peak values. However,
the cubic map is the simplest system with CCI. Therefore, to
validate the applicability of this process, the design for RRO
feedbackmust be considered in systemswith amore complex
map. Furthermore, in the case of continuous chaotic systems
with CCI such as Chua’s circuit and the Lorenz system, the
RRO feedback for controlling attractor merging and CCI
synchronization must be considered. Additionally, in this
application stage, the comparison of applicability between
a conventional feedback controller to achieve complete syn-
chronization [31]–[34] and the RRO feedback method for
CCI synchronization is an important subject. Therefore, as
future works, we plan to evaluate these aspects.

In conclusion, the proposed nonlinear feedback con-
troller can realize CCI synchronization, thus maintaining an
asynchronous state within each divided attractor.
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Appendix:

In our previous study [42], we introduced the one-
dimensional cubic map model with external feedback u(x)

based on the OGY method. This system is given by:

x(t + 1) = (ax(t) − x(t)3) exp(−x(t)2/b) + Ku(x(t)),
(A· 1)

u(x(t)) = K+(x)(x+ − x(t)) + K−(x)(x− − x(t)),
(A· 2)

where K represents the amplitude related to the intensity of
the feedback control. x± are two symmetric (positive and
negative) nearest neighbor equilibrium points around x(t) =
0. Here, the values of x± are determined by numerically
solving the equation x − (ax − x3) exp(−x2/b) = 0. In our
previous study, we set the targets for the OGY method to x±

and added the feedback terms of (x+ − x(t)) and (x− − x(t))
related to the distance of the equilibrium points. To decrease
the instability for unstable equilibrium points in the region
where x(t), i.e., x+ if x(t) > 0 or x− if x(t) < 0, we adopted

K+(x) = exp(−
(x(t) − x+)2

2σ2 ), (A· 3)

K−(x) = exp(−
(x(t) − x−)2

2σ2 ), (A· 4)

as gain functions for (x+ − x(t)) and (x− − x(t)), respec-
tively. Here, σ represents the area of influence of u(t).
Thus, the influence of the gain function corresponding to the
chaotic attractor comprising x(t) increases in comparison
with the other gain function. We assume that chaos–chaos
intermittency arises when the system state of x(t) deviates
from the equilibrium points significantly (x(t) ≈ 0). There-
fore, increasing the residence time around x± diminishes the
frequency of chaos–chaos intermittency. In this study, we ex-
haustively checked whether the previously proposed method
in Ref. [42] can control attractor merging by stabilizing un-
stable equilibrium points. We confirmed that control u(x(t))
does not vanish at the region with a sufficiently large distance
from x± under the condition σ = 1.4 in Ref. [42]. However,
in the OGYmethod, feedback control only activates near the
target equilibrium points. Therefore, the setting for σ = 1.4
is too large for the OGY method.

We reduced the σ value in Eqs. (A· 3) and (A· 4). For
small values of σ (σ = 0.1), where u(x(t)) only activates
near x±, we did not observe merging of the chaotic attractor,
as shown in Fig. A· 1(b). Note that Fig. A· 1(a) shows the
result for a large value of σ(= 1.4) (corresponding to the
result of Ref. [42]). Therefore, we conclude that stabilization
of unstable equilibrium points x±, that is, the mechanism of
the OGY method, does not contribute to attractor merging.

Subsequently, we evaluated the maps of Eqs. (A· 1)–
(A· 4) for the cases of K = 0.5 and 0 (σ = 1.4 corresponding
to Fig. A· 1(a)), as shown in Fig. A· 2. We confirmed that this
feedback has the effect of reducing the local maximum and
minimum values of the map at x ≈ ±0.916, similar to RRO
feedback [25]. Therefore, the attractor merging observed in
Fig. A· 1(a) are induced by themechanism for RRO feedback,
not the OGY method.
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Fig. A· 1 Bifurcation diagram of x(t) as function of K in Eqs. (A· 1)–
(A· 4) (b = 10, A = 0, a = 2.86, and x± ≈ ±1.29) (a) σ = 1.4 case
corresponding to the parameter set in our previous work [42]. (b) σ = 0.1
case.

Fig. A· 2 Map of Eqs. (A· 1)–(A· 4) for σ = 1.4 case corresponding the
parameter set in our previous investigation (b = 10, A = 0, a = 2.86, and
x± ≈ ±1.29) [42].
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