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SUMMARY Since cyber attacks such as cyberterrorism against Indus-
trial Control Systems (ICSs) and cyber espionage against companies man-
aging them have increased, the techniques to detect anomalies in early
stages are required. To achieve the purpose, several studies have devel-
oped anomaly detection methods for ICSs. In particular, some techniques
using packet flow regularity in industrial control networks have achieved
high-accuracy detection of attacks disrupting the regularity, i.e. normal
behaviour, of ICSs. However, these methods cannot identify scanning at-
tacks employed in cyber espionage because the probing packets assimilate
into a number of normal ones. For example, the malware called Havex is
customised to clandestinely acquire information from targeting ICSs using
general request packets. The techniques to detect such scanning attacks
using widespread packets await further investigation. Therefore, the goal of
this study was to examine high performance methods to identify anomalies
even if elaborate packets to avoid alert systems were employed for attacks
against industrial control networks. In this paper, a novel detection model
for anomalous packets concealing behind normal traffic in industrial con-
trol networks was proposed. For the proposal of the sophisticated detection
method, we took particular note of packet flow regularity and employed the
Markov-chain model to detect anomalies. Moreover, we regarded not only
original packets but similar ones to them as normal packets to reduce false
alerts because it was indicated that an anomaly detection model using the
Markov-chain suffers from the ample false positives affected by a number
of normal, irregular packets, namely noise. To calculate the similarity be-
tween packets based on the packet flow regularity, a vector representation
tool called word2vec was employed. Whilst word2vec is utilised for the
culculation of word similarity in natural language processing tasks, we ap-
plied the technique to packets in ICSs to calculate packet similarity. As a
result, the Markov-chain with word2vec model identified scanning packets
assimulating into normal packets in higher performance than the conven-
tional Markov-chain model. In conclusion, employing both packet flow
regularity and packet similarity in industrial control networks contributes
to improving the performance of anomaly detection in ICSs.
key words: industrial control systems, anomaly detection, natural language
processing, machine learning, word2vec

1. Introduction

ICSs control the devices managing critical infrastructure in-
cluding electric power, gas and water. Whilst supplying core
services to support the social lives of people, they are threat-
ened with cyber attacks, i.e. cyberterrorism. Moreover, the
companies managing ICSs face a threat of exfiltration for
confidential information, i.e. cyber espionage. Cyberterror-
ism and cyber espionage have caused critical cyber incidents
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such as disruption of uranium enrichment facility in Iran and
spying activity against US and European energy companies.
It is said that origins of the incidentswere themalware, called
Stuxnet [1] and Havex [2], and they performed persistent re-
connaissance against targeting industrial control networks
[3].

Recently, there has been a great discussion about
anomaly detection systems for ICSs. Some studies have
claimed that the methods using packet flow regularity in in-
dustrial control networks achieved the high-accuracy detec-
tion of attacks disrupting normal behaviour of ICSs [4], [5].
In other words, it is shown that employing the packet flow
regularity is effective to detect critical attacks against ICSs,
i.e. cyberterrorism. The reason is that the regularity is caused
from the normal behaviour of ICSs and that detecting abnor-
mity of the regularity results in indentifying disruption of
periodic processes of ICSs.

On the other hand, it is also important to detect prelim-
inary scanning attacks because they are followed by cyber
espionage and cyberterrorism. For example, Havex is the
elaborate malware to gather the information on the target-
ing ICSs. It carries out cyber espionage through following
four steps: infection, system information grabbing, network
scanning and credential exfiltration [6]. In particular, the
network scanning aims to make a thorough survey of com-
ponents and software of ICSs such as Object Linking and
Embedding for Process Control (OPC), Supervisory Control
And Data Acquisition (SCADA) and Programmable Logic
Controller (PLC). Based on the results of the investigation,
further malware is employed to conduct more serious attacks
against the ICSs such as cyberterrorism. Therefore, to pre-
vent the following critical damages, it is essential to detect
the preliminary scanning attacks against industrial control
networks whilst such attacks are designed to be concealed
behind general packets including TCP, UDP, ICMP and ARP
packets, namely “noise.”

However, the conventional alert systems using the
packet flow regularity peculiar to ICSs have no capability
to detect the probing attacks because the attacks do not con-
stitute the regularity due to the fact that they are irregularly
conducted to assimilate into noise. For example, exclud-
ing all the packets constituting TCP 3-way handshake, such
as TCP SYN packets, the detection method proposed by
Barbosa et al. cannot identify the scanning attacks with the
general packets. The reason for the exclusion is that the gen-
eral packets interrupt discovery of obvious cycles, i.e. the
regularity, consisting of a series of regular packets peculiar
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to ICSs. Another method implemented by Maglaras et al.
distinguishes general packets from anomalies by the regular-
ity based on the time differences between two consecutive
packets and on the size of each packet. Therefore, whilst
the method can detect anomalies with extremely intensive
packets or large-size ones such as Denial of Service (DoS)
attacks, preliminary scanning attacks assimilating into the
noise are not properly alerted.

The purpose of this study was to examine a novel de-
tection method not only for anomalies against ICSs but for
preliminary scanning attacks concealing behind the noise.
To achieve the purpose, we built the Markov-chain model
to represent the packet flow regularity originated with all
the packets including the noise in industrial control net-
works. Also, we employed packet similarity based on the
regularity to reduce false positives because it was indicated
that the Markov-chain models for anomaly detection suffer
from a number of false alerts [7]. Specifically, To calculate
packet similarity, we adopted a vector representation tech-
nique, called word2vec, used in natural language processing
tasks.

Finally, we demonstrated that our method can detect
probing attacks with long intervals in higher performance
than the Markov-chain model without applying packet sim-
ilarity. The reason for adding the function of long intervals
to the scanning attacks is because the attacks simulated slow
scan [9]. The characteristic of the scan is that it is difficult
for anomaly detection systems to detect the scanning with
long intervals because it assimilates into a number of nor-
mal packets. In particular, anomaly detection systems using
time differences between packets as proposed by [5] do not
have the capability to detect slow scans. On the other hand,
our proposal method employing the packet flow regularity
can detect even slow scans.

2. Industrial Control Systems

ICSs are divided into two kinds: batch control systems and
continuous control systems [8]. A fundamental character-
istic of batch control systems is that a series of processes
such as raw material inputs, heating, cooling and reactions
is performed in one tank. For example, food and chemical
plants are typical batch control systems. On the other hand,
continuous control systems perform one process in a tank.
After each process is completed, the product is transmitted to
the next tank and is processed there. Oil refinery plants and
steel mills are representative examples of continuous control
systems.

2.1 Construction

In many cases, ICSs are installed with dedicated construc-
tions, including software and network configurations, to each
plant. To explain some features of ICSs, a sample construc-
tion of an ICS is shown in Fig. 1. The SCADA, OPC server
and PLC in the Process Control Network of Fig. 1 are de-
scribed as specific zones of SCADA Zone, DCS Zone and

Fig. 1 Sample construction of ICS.

Control Zone, respectively, in a vendor’s reference model
[12]. The model was proposed based on the cyber security
standard for ICSs of ISA99 [13]. The basic roles of the
components are as follows:

SCADA The computer transmitting commands by operators
to the OPC server and displaying the status of field
devices for the operators

OPC server The server computer mediating communica-
tion between SCADA and PLC

PLC The equipment controlling field devices by the com-
mands transmitted from SCADA through OPC server

Field devices The equipment behaving in accordance with
the commands from PLC and transmitting values mea-
sured by sensors to the PLC

2.2 Traffic in Industrial Control Networks

There are two kinds of network packets in industrial control
networks. One is general packets irregularly communicated
between Operating Systems (OSs) including Windows and
Linux. The packets are necessary for operating basic services
of OSs. For example, SCADAs andOPC servers constituting
time critical ICSs are in need of communication based on
Network Time Protocol (NTP). Also, Server Message Block
(SMB) or Common Internet File System (CIFS) is employed
to share files in ICSs. The other is ICSs-specific pack-
ets regularly communicated between components in ICSs.
Compared with general enterprise information systems, the
packets have two features: limited communication variety,
and constant transmission rate and traffic volume.

2.2.1 Limited Communication Variety

The types of packets peculiar to ICSs are limited because
it is only necessary to communicate between components,
namely SCADA, OPC server, PLC and field devices, to oper-
ate ICSs. Furthermore, the order of communication between
the components obeys a certain order to perform a series of
processes properly. For example, two-headed arrows shown
in Fig. 1 represent the ICSs-specific communication. A se-
quence of the communication depicted by downward arrows
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and upward ones is respectively as follows:

• Downward arrows

1. SCADA transmits commands to OPC server.
2. OPC server transfers the commands to PLC.
3. PLC controls field devices based on the com-

mands.
4. Field devices behave in accordance with the com-

mands.

• Upward arrows

1. Field devices transmit measured values to PLC.
2. PLC transfers the values to OPC server.
3. OPC server transfers the values to SCADA.
4. SCADA displays the status of each field device

based on the values.

2.2.2 Constant Transmission Rate and Traffic Volume

The transmission rate in industrial control networks remains
approximately constant. This is the reason that all the com-
ponents regularly communicate with each other. For exam-
ple, assuming that PLCs gather the values from field devices
every second, the values are transmitted from PLCs to OPC
servers with 1 second intervals. Similarly, OPC servers re-
ceiving the values from PLCs transmit them to SCADAs
with the same intervals. Finally, SCADAs receiving the val-
ues update the status of field devices based on the values
every second. In the case of command transmission from
SCADAs to field devices, commands are transmitted in re-
verse order with the same intervals. In addition, the data size
of the values and commands do not fluctuate dramatically.
Therefore, since the traffic peculiar to ICSs regularly occurs
and the size of data transmitted is approximately constant,
the transmission rate and the traffic volume remain stable.

3. Related Work

Several studies have proposed anomaly detection techniques
for ICSs using the packet flow regularity in industrial control
networks [4], [5]. Specifically, these proposals take an ap-
proach to detect packets interrupting the regularity as anoma-
lies. In this section, existing anomaly detection techniques
based on the regularity are introduced and those problems
are also clarified.

To develop ICSs-specific anomaly detection systems,
Barbosa et al. [4] utilise the characteristic that a sequence of
packets peculiar to ICSs is limited and periodic as described
in 2.2.1. The key to detecting anomalies by focusing on the
periodic communication based on packet flow is to deter-
mine packet cycles in the ample traffic. To be specific, all
the irrelevant packets to obvious packet cycles are excluded
because the packets interrupt detection of the periodic pack-
ets peculiar to ICSs. For example, all the general packets to
establish 3-way handshake, e.g. TCP SYN and ACK pack-
ets, are eliminated from the training dataset. The method has

a detectable capability for scanning attacks using the pack-
ets peculiar to ICSs including Modbus TCP. However, the
scanning attacks using TCP SYN packets to investigate the
services of OPC servers or SCADAs cannot be alerted by
the method. The reason is that all the general packets inter-
rupting a sequence of packets peculiar to ICSs are excluded
from the training dataset to ascertain clear cycles of packets
in industrial control networks.

Maglaras et al. [5] also proposed anomaly detection
techniques using the regularity of packets in industrial con-
trol networks as described in 2.2.2. In particular, themethods
utilise two kinds of regularities: the time differences between
two consecutive packets and the size of each packet. The spe-
cific approach is that packets with outlier values were alerted
as anomalies. The values are detected by the one-class sup-
port vector machine (OCSVM) using the time differences
and the size normalised based on the data of normal packets.
The anomalies using extremely intensive packets, e.g. DoS
attacks, are detectable because the time differences between
two consecutive packets would be incomparably smaller than
those of normal ones. However, the detection method could
be bypassed by scanning attacks with long intervals, called
slow scan [9], because the time differences between the at-
tack packets are not distinct. The disadvantage is critical
especially because the cyber espionage and the cyber attacks
against ICSs would be performed in obscurity [3].

4. Approach

The purpose of this study was to examine a novel detection
technique not only for anomalies against ICSs but for pre-
liminary scanning attacks using general packets. As even
past studies have performed, the fundamental approach of
detection methods for anomalies of ICSs is to employ the
packet flow regularity in industrial control networks. Based
on the approach of discovering the packet flow regularity,
the framework of our method is as follows:

1. Learning the packet sequences based on the regularity
in normal communication

2. Prediction of the following packet based on the packet
sequences

3. Comparison between the predicted packet and the ar-
rival packet

4. Evaluation of the differences between the packets

4.1 Learning and Prediction

Since existing studies have achieved high performance de-
tection of critical attacks against ICSs, we took an approach
along the lines of them. Specifically, we also focused on the
packet flow regularity in industrial control networks. More-
over, to learn the regularity and to predict the following
packet, we employed the Markov-chain model by regard-
ing each packet as a state. The predicted packets are more
likely to follow the latest packet in normal situation because



68
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.1 JANUARY 2019

the prediction is performed based on the normal packet se-
quences.

4.2 False Alerts Reduction

Reducing false alerts was important for this study because
high error ratio based on a number of false positives was in-
dicated as a disadvantage of the Markov-chain model in [7].
Therefore, we tried to add some flexibility to the results pre-
dicted by the Markov-chain model. To be more specific, we
designed our method to accept not only the packets predicted
by the model but their similar packets as normal ones. In this
paper, the similar packets were defined as the packets having
some similarity originated with the packet flow regularity in
industrial control networks. As a result, since our approach
accepted the similar packets as well as the predicted ones, the
coverage of normal packets predicted by the Markov-chain
model was expanded. Therefore, it is important to evaluate
the effects of the expansion using the number of false alerts.

4.2.1 Packet Similarity

In this study, we employed packet similarity to reduce the
number of false alerts. The technique to calculate the similar-
ity between packets was inspired by a vector representation
tool, called word2vec [10], utilised to calculate the similar-
ity between words in natural language processing tasks. The
main reason for the inspiration was that packet flow regular-
ity, i.e. a sequence of packets, in industrial control networks
would be regarded as a sequence of words in sentences. It
was expected that prediction accuracy would be improved
by incorporating packet similarity estimated by word2vec to
the predicted packets.

4.2.2 word2vec

The word2vec builds the vector representation of words in
natural language processing tasks. It has the advantage of
calculating the similarity between words using the cosine
distances between corresponding vectors. The basic hypoth-
esis is that words used in contextually similar cases are se-
mantically similar. The word2vec estimates the surrounding
words, called contexts, from a given word or vice versa. In
actual, the word2vec is designed to train a corpus to enable
words with similar contexts to have higher similarity values.

5. Experiment

Weevaluated the performance of our detectionmethod by ex-
periments. In this section, experimental environment, meth-
ods and evaluation are described.

5.1 Environment

Figure 2 illustrates the experimental environment. The com-
ponents are deployed in the Process Control Network in
Fig. 1. In particular, the environment shows two operations

Fig. 2 Experimental environment.

areas [14] where SCADA 1 and SCADA 2 observe PLC 1
and PLC 2 through OPC server 1 and OPC server 2, respec-
tively. Each component, i.e. PLC, OPC server and SCADA,
was installed a different software and played a role explained
in 2.1.

The experiment simulated the processes to create a
product in a chemical plant. A series of processes is as
follows:

1. Input materials and water
2. Heat them to a set degree
3. Maintain them during a certain time period
4. Wait for reaction
5. Cool them to a set degree
6. Acquire the product

In general, these steps are performed in cooperationwith field
devices such asmotors, physical tanks and sensors connected
to PLCs. However, since the physical field devices were not
deployed, the environment used the data virtually created in
PLCs. In addition, a batch sequence (process 1 - 6) took
approximately ten minutes.

Both training and test data were acquired at OPC server
1 (OPC 1) depicted in Fig. 2. Whilst training data consists
of normal packets, test data includes attack ones. Also, the
normal packets are composed not only of the regular packets
peculiar to ICSs but of the irregular ones transmitted between
OSs.

5.2 Attack Simulation

The experimental attacks simulated possible malware infec-
tion incidents. The purpose of the malware is to gather the
information on ICSs-specific components, namely SCADAs,
PLCs andOPC servers. To achieve the purpose, it performed
scanning attacks to investigate opening ports of the compo-
nents. Specifically, we evaluated the detection performance
in each of three cases. In each case, one of OPC server 2
(OPC 2), SCADA 1 and SCADA 2 was infected and per-
formed scanning attacks against OPC 1. Also, all the com-
ponents including OPC 1 transmitted normal packets to the
other components to operate the normal batch processes of
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the experimental chemical plant. As a result, OPC 1 received
the following packets in each case:

Case 1 (OPC 2 infected) Normal packets and scanning
packets from OPC 2

Case 2 (SCADA 1 infected) Normal packets and scanning
packets from SCADA 1

Case 3 (SCADA 2 infected) Normal packets and scanning
packets from SCADA 2

In this study, the data in each case is called test data. In
addition, the scanning packets simulating investigative at-
tacks to check opening ports of OPC 1 were generated by the
following command:

nmap [OPC 1’s IP address] --scan-delay 2000ms

The command means that the component transmits TCP
SYN packets to OPC 1 every two seconds. According to
the Nmap Reference Guide [15], the scanning technique
using TCP SYN packets is the most popular one to recognise
running services on a host. Every parameter except for
interval time between scan packets is set as the default value.
The interval of two seconds is longer than that of the default
settings of “nmap.” It means that this scanning attack is
relatively slow. Each component such as OPC 2, SCADA 1
and SCADA 2 generates TCP SYN packets which consist of
random source port numbers and destination port numbers
originally defined in “nmap” command. In the experiment,
the length of the TCP SYN packets in both the test data
and the normal data is between 60 and 66 bytes. Therefore,
TCP SYN packets generated by the command assimilate into
normal packets.

5.3 Method

To detect the slow scanning attacks, we employed the
Markov-chain model. The reason for our choice of the
Markov-chain model is that it can represent the packet flow
regularity, namely a sequence of packets, as the state tran-
sition. In addition, independent of time data, the Markov-
chain model would have a capability to detect slow scan.
Moreover, implementing the word2vec to calculate packet
similarity, we tried to reduce the number of false alerts using
the similarity.

Finally, to evaluate the detection performance of slow
scan, we compared the following anomaly detection meth-
ods:

Method 1 Using only the Markov-chain model
Method 2 Using the Markov-chain with word2vec model

Figures 3 and 4 illustrate processing flows of each method.
The elements depicted in Figs. 3 and 4 are explained in the
following sections.

5.3.1 Data Acquisition

In the data acquisition phases of Figs. 3 and 4, the normal
data for training and test data including attack packets were

Fig. 3 Processing flow of Markov-chain model.

Fig. 4 Processing flow of Markov-chain with word2vec model.

Table 1 Characteristics of training and test data.
Numbers show the number of batch process cycles, that of all the packets and
that of attack packets. The name of components, namely OPC 2, SCADA
1 and SCADA 2, shows the compromised component conducting scanning
attacks against OPC 1.
Type batch processes all packets attack packets
Training data 10 362,471 0
Case 1 (OPC 2) 1 24,440 336
Case 2 (SCADA 1) 1 23,623 344
Case 3 (SCADA 2) 1 24,186 344

collected. The normal one consists of the data gathered
by operating the batch processes ten times. As mentioned
above, the data includes not only regular packets peculiar
to ICSs but irregular ones transmitted between OSs. On
the other hand, the test data was collected by executing the
command shown in 5.2 during the acquisition of the normal
data generated by performing the normal batch processes
once. Table 1 shows the characteristics of the training data
and test data. Regarding the three kinds of test data, the
number of normal packets ismuchmore than that of scanning
packets. It seems natural in actual cases because scanning
attacks are performed behind a number of normal packets.

5.3.2 Pre-Processing

The pre-processing phases shown in Figs. 3 and 4 conducted
replacement of source and destination port numbers in pack-
ets of all the dataset and transformation of the header fields
in the packets.

The replacement of source and destination port numbers
included in header fields of packets was performed under a
rule to classify the port numbers into three groups: common
server ports, random ports and ICSs-specific ports. First,
the common server ports represent the well-known ports,
namely numbers of 0–1023. Common services are operated
on the port numbers. Therefore, these port numbers were
used without any replacement.

Secondly, the port numbers which appeared once in the
training data were regarded as random ones and substituted
with the number of 100,000. The reason for the replacement
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Table 2 Replacement and Transformation of packet header fields.
Packet header fields Source IP address Source port number Destination IP address Destination port number Protocol

Original packet header 1.2.3.4 12345 10.20.30.40 80 HTTP
Replaced port numbers 1.2.3.4 100000 10.20.30.40 80 HTTP
One-dimensional text 1.2.3.4_100000_10.20.30.40_80_HTTP

is that all the packets with random port numbers are treated
as irrelevant packets each other even if only the port numbers
are different. For example, in the communication between a
client and a server, an approximately random number is used
as a source port number of the client whilst the server uses the
commonly pre-determined port number. Anomaly detection
systems trained without replacement of port numbers would
detect almost all the communication as anomalies in spite
of the fact that the client used the same service on the same
server again and again. This reason is that it is practically
impossible that the training data, i.e. the actual communica-
tion data, includes all the random port numbers of the client.
Therefore, the port numbers changed every connection need
to be replaced with a certain number.

Finally, if a port number appeared more than once in
the training data and it was not the well-known port, the
number was replaced with the number of 200,000. It is
assumed that the port is used to operate the service necessary
for ICSs processes. As a result, the method to replace the
port numbers based on the above policy is performed in the
following order:

1. Well-known ports are not replaced to assume common
server ports.

2. Ports which appeared only once are replaced with
100,000 to assume source ports of clients, i.e. random
ports.

3. Ports which appeared more than once are replaced with
200,000 to assume ICSs-specific server ports.

In the case of actual industrial companies, the replacement
should be performed by the following procedures:

1. Well-known ports should not be replaced.
2. Ports used to operate ICSs should be replaced with a

certain number.
3. Other ports should be replaced with another certain

number.

After the replacement of port numbers, the values of
the header fields of packets needed to be transformed. In
this experiment, the fields consisted of source IP address,
destination IP address, source port number, destination port
number and protocol name. These fields were treated not
as multiple-dimensional data but as one-dimensional text by
jointing all fields by the symbol of “_” to emphasise the re-
lationships among the values of header fields in each packet.
An example of data pre-processed by port number replace-
ment and one-dimensional text transformation is shown in
Table 2.

5.3.3 Modelling

We implemented two kinds of anomaly detection methods
introduced as Method 1 and 2 in 5.3. Whilst Method 1 mod-
elled the sequence of normal packets using theMarkov-chain,
Method 2 incorporated packet similarity using word2vec in
the Markov-chain model based on the normal packet se-
quences. Specifically, building the Markov-chain models by
both methods means the creation of the Markov dictionaries
representing the packet sequences. In addition, word2vec in
Method 2 means the acquisition of the vector representation
of packets to calculate the similarity between packets.

The Markov dictionaries were created by training the
normal data including both the periodic packets peculiar to
ICSs and the packets irregularly transmitted between OSs.
In particular, we modelled the second order Markov-chain
because it has been claimed that high order Markov-chain
would cause a decrease in the accuracy [11].

To calculate the packet similarity, the vector representa-
tion of packets was created by word2vec introduced in 4.2.2.
We obtained the vectors representing all the normal packets
by applying the same procedures as natural language pro-
cessing tasks because of the transformation of packet header
fields into one-dimensional text in pre-processing phase.

5.3.4 Detection

In Method 1 and 2, anomalies are alerted when the actual
arrival packet is different from the predicted one. In this
experiment, the prediction of the arrival packet is performed
based on past two packets. Using past packets, the anomaly
detection behaves every time a packet arrives.

Method 1 detects the packet as anomalies if the packet
is not included in the list of the packets predicted using the
Markov dictionaries. Figure 5 illustrates the flowchart to
decide whether or not the arrival packet is normal. Let the
pth packet be the arrival packet to be identified whether or
not it is normal. Define the ith packet as the last one (i.e.
(p − 1)th packet) and the j th packet as the one before the
last (i.e. (i − 1)th packet), respectively. If the pth packet
is predicted using the ith packet and the j th one, the pth

packet is normal. If not, j is traced back one by one to the
(i − 5)th packet. If the pth packet is not predicted using
the ith packet and each packet until the (i − 5)th one, both i
and initialised j (i.e. j = i − 1) are traced back one by one
similarly. Finally, if the pth packet is not predicted using
the i = (p − 4)th packet and the j = (p − 9)th one, the
system detects the pth packet as anomalous one. Although
the boundary values are not optimised for the experiment,
it is assumed that not all the four packets before the arrival
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packet (i.e. pth packet) are attack packets. If those packets
are not normal, the pth packet is absolutely alerted because
the combination of the ith packet and the j th one does not
exist in the Markov dictionaries created based on normal
data. Furthermore, to reduce the false alerts, the maximum
numbers of tracing back for i and j are limited to four and
five, respectively. This is the reason that the more i and
j trace back, the higher the accidental hitting ratio of the
prediction gets.

The flowchart of Method 2 is shown in Fig. 6. Let the
sth packet and the tth one be the similar one to the ith packet
and the j th one, respectively. The difference from Method

Fig. 5 Detection flow of Method 1.

Fig. 6 Detection flow of Method 2.

1 is that the prediction is performed not only using the ith

packet and the j th one but using the similar ones, i.e. the sth

packet and the tth one. The list of similar packets has n (n=10
in this experiment) packets in decreasing order of similarity
values calculated by the cosine similarity based on the vector
representation of packets obtained using word2vec.

5.3.5 Evaluation

We evaluated the detection performance of Method 1 and 2
using the three types of test data, i.e. Case 1–3, including
attack packets. The measures for evaluation are as follows:

• Accuracy = (T P + T N )/(T P + FP + FN + T N )
• Precision = T P/(T P + FP)
• Recall = T P/(T P + FN )
• F1score = 2 ∗ Precision ∗ Recall/(Precision +

Recall)

Where, TP, TN, FP and FN stand for the number of True Pos-
itives, True Negatives, False Positives and False Negatives,
respectively.

6. Result

The detection performance of Method 1 and 2 was evaluated
using the four measures, namely accuracy, precision, recall
and F1 score in the test cases shown in Table 1. Each re-
sult for Case 1–3 is illustrated in Figs. 7–9, respectively. In
addition, Table 3 summarises the number of false positives
and false negatives on each method. According to Figs. 7–9,
the results of all the three cases showed almost the same
tendency. To be more specific, the accuracy scores of both
Method 1 and 2 recorded almost 100% in all the test cases.
However, these accuracy scores would be influenced by the
imbalanced number of normal packets and malicious ones
as shown in 5.3.1. Regarding the precision score, the value
of Method 2 indicated higher precision than Method 1 be-
cause Method 2 succeeded in reducing false positives using
word2vec. According to Table 3, Method 2 achieved 60%,
32% and 59% decreases in the number of false positives of
Case 1, 2 and 3, respectively. On the other hand, their recall
values were approximately the same. It means that applying

Fig. 7 Performance comparison in Case 1: Attacks from OPC2.
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Fig. 8 Performance comparison in Case 2: Attacks from SCADA 1.

Fig. 9 Performance comparison in Case 3: Attacks from SCADA 2.

Table 3 Comparison results on the three types of attacks.
Attack The number of FP The number of FN

Method 1 Method 2 Method 1 Method 2
Case 1 162 65 6 6
Case 2 102 69 5 5
Case 3 170 69 5 6

packet similarity with word2vec to Method 2 had negligible
effects on an increase in the number of false negatives.

As a result, Method 2 outweighed Method 1 in F1
score taking both false positives and false negatives into
account. Therefore, it is evident from the experimental re-
sults that adopting packet similarity originated with packet
flow regularity in industrial control networks contributed to
the improvement of the detection performance of anomalies
in ICSs.

7. Discussion

The purpose of our study was to propose the sophisticated
detection technique for preliminary scanning attacks assim-
ilating into noise as well as for specific attacks against ICSs.
In this paper, a novel approach to detect investigative attacks
against industrial control networks was evaluated. As a re-
sult, performance-improved detection model was obtained
for scanning attacks with long intervals. The conventional

ICSs-specific detection methods of Maglaras et al. and Bar-
bosa et al. did not have a capability for identifying such slow
scanning attacks. However, our method solved this problem
using the detection technique based on packet flow regularity
peculiar to ICSs. Moreover, in the literature [7], a number
of false alerts based on the Markov-chain model have been
reported. However, the drawback can be overcome by our
approach employing packet similarity originated with the
packet flow regularity in industrial control networks.

Our approach and the results are applicable to real-
istic ICSs. The experimental environment was based not
only on the standard construction described in ISA99 but
also on multiple operations constructed by different ven-
dors. Also, although our approach conducted a specific way
to replace port numbers and to transform packet data into
one-dimensional text in pre-processing phase, we suggested
the methods to apply them to actual environment in 5.3.2.
Moreover, in the detection phase, the assumption that not all
the several continuous packets before the arrival packet to be
predicted are anomalous ones is not strict because the paper
aims at the detection of slow scanning attacks with relatively
long intervals to assimilate into normal ones.

In the future, from the standpoint of practicality, more
elaborate anomaly detection systems using calculated val-
ues both state transition probabilities in the Markov-chain
model and packet similarities in word2vec need to be devel-
oped. We conclude that ICSs-specific alert systems with im-
proved detection performance using packet similarity orig-
inated with packet flow regularity in industrial control net-
works can be obtained.

8. Conclusion

Weproposed a novel detection technique not only for anoma-
lies against ICSs but for preliminary scanning attacks us-
ing general packets. The key to improving detection per-
formance was to employ packet similarity originated with
packet flow regularity in industrial control networks. To
calculate the similarity, we utilised word2vec used in natu-
ral language processing tasks. The experimental results on
detection performance of anomalies demonstrated that our
model, i.e. the Markov-chain with word2vec model, had the
capability to identify scanning attacks with long intervals
in higher performance than the conventional Markov-chain
model. In conclusion, what has been observed from the
experiments indicates that investigative packets with long
intervals, e.g. slow scans, can be alerted using packet sim-
ilarity based on packet flow regularity in industrial control
networks.
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