Complex bandpass ΔΣAD modulators can provide superior performance to a pair of real bandpass ΔΣAD modulators of the same order. They process just input I and Q signals, not image signals, and AD conversion can be realized with low power dissipation, so that they are desirable for such low-IF receiver applications. This paper proposes a new architecture for complex bandpass Δ ΣAD modulators with cross-noise-coupled topology, which effectively raises the order of the complex modulator and achieves higher SQNDR (Signal to Quantization Noise and Distortion Ratio) with low power dissipation. By providing the cross-coupled quantization noise injection to internal I and Q paths, noise coupling between two quantizers can be realized in complex form, which enhances the order of noise shaping in complex domain, and provides a higher-order NTF using a lower-order loop filter in the complex ΔΣAD modulator. Proposed higher-order modulator can be realized just by adding some passive capacitors and switches, the additional integrator circuit composed of an operational amplifier is not necessary, and the performance of the complex modulator can be effectively raised without more power dissipation. We have performed simulation with MATLAB to verify the effectiveness of the proposed architecture. The simulation results show that the proposed architecture can achieve the realization of higher-order enhancement, and improve SQNDR of the complex bandpass ΔΣAD modulator.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Hao SAN, Haruo KOBAYASHI, "Cross-Noise-Coupled Architecture of Complex Bandpass ΔΣAD Modulator" in IEICE TRANSACTIONS on Fundamentals,
vol. E92-A, no. 4, pp. 998-1003, April 2009, doi: 10.1587/transfun.E92.A.998.
Abstract: Complex bandpass ΔΣAD modulators can provide superior performance to a pair of real bandpass ΔΣAD modulators of the same order. They process just input I and Q signals, not image signals, and AD conversion can be realized with low power dissipation, so that they are desirable for such low-IF receiver applications. This paper proposes a new architecture for complex bandpass Δ ΣAD modulators with cross-noise-coupled topology, which effectively raises the order of the complex modulator and achieves higher SQNDR (Signal to Quantization Noise and Distortion Ratio) with low power dissipation. By providing the cross-coupled quantization noise injection to internal I and Q paths, noise coupling between two quantizers can be realized in complex form, which enhances the order of noise shaping in complex domain, and provides a higher-order NTF using a lower-order loop filter in the complex ΔΣAD modulator. Proposed higher-order modulator can be realized just by adding some passive capacitors and switches, the additional integrator circuit composed of an operational amplifier is not necessary, and the performance of the complex modulator can be effectively raised without more power dissipation. We have performed simulation with MATLAB to verify the effectiveness of the proposed architecture. The simulation results show that the proposed architecture can achieve the realization of higher-order enhancement, and improve SQNDR of the complex bandpass ΔΣAD modulator.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E92.A.998/_p
Copy
@ARTICLE{e92-a_4_998,
author={Hao SAN, Haruo KOBAYASHI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Cross-Noise-Coupled Architecture of Complex Bandpass ΔΣAD Modulator},
year={2009},
volume={E92-A},
number={4},
pages={998-1003},
abstract={Complex bandpass ΔΣAD modulators can provide superior performance to a pair of real bandpass ΔΣAD modulators of the same order. They process just input I and Q signals, not image signals, and AD conversion can be realized with low power dissipation, so that they are desirable for such low-IF receiver applications. This paper proposes a new architecture for complex bandpass Δ ΣAD modulators with cross-noise-coupled topology, which effectively raises the order of the complex modulator and achieves higher SQNDR (Signal to Quantization Noise and Distortion Ratio) with low power dissipation. By providing the cross-coupled quantization noise injection to internal I and Q paths, noise coupling between two quantizers can be realized in complex form, which enhances the order of noise shaping in complex domain, and provides a higher-order NTF using a lower-order loop filter in the complex ΔΣAD modulator. Proposed higher-order modulator can be realized just by adding some passive capacitors and switches, the additional integrator circuit composed of an operational amplifier is not necessary, and the performance of the complex modulator can be effectively raised without more power dissipation. We have performed simulation with MATLAB to verify the effectiveness of the proposed architecture. The simulation results show that the proposed architecture can achieve the realization of higher-order enhancement, and improve SQNDR of the complex bandpass ΔΣAD modulator.},
keywords={},
doi={10.1587/transfun.E92.A.998},
ISSN={1745-1337},
month={April},}
Copy
TY - JOUR
TI - Cross-Noise-Coupled Architecture of Complex Bandpass ΔΣAD Modulator
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 998
EP - 1003
AU - Hao SAN
AU - Haruo KOBAYASHI
PY - 2009
DO - 10.1587/transfun.E92.A.998
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E92-A
IS - 4
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - April 2009
AB - Complex bandpass ΔΣAD modulators can provide superior performance to a pair of real bandpass ΔΣAD modulators of the same order. They process just input I and Q signals, not image signals, and AD conversion can be realized with low power dissipation, so that they are desirable for such low-IF receiver applications. This paper proposes a new architecture for complex bandpass Δ ΣAD modulators with cross-noise-coupled topology, which effectively raises the order of the complex modulator and achieves higher SQNDR (Signal to Quantization Noise and Distortion Ratio) with low power dissipation. By providing the cross-coupled quantization noise injection to internal I and Q paths, noise coupling between two quantizers can be realized in complex form, which enhances the order of noise shaping in complex domain, and provides a higher-order NTF using a lower-order loop filter in the complex ΔΣAD modulator. Proposed higher-order modulator can be realized just by adding some passive capacitors and switches, the additional integrator circuit composed of an operational amplifier is not necessary, and the performance of the complex modulator can be effectively raised without more power dissipation. We have performed simulation with MATLAB to verify the effectiveness of the proposed architecture. The simulation results show that the proposed architecture can achieve the realization of higher-order enhancement, and improve SQNDR of the complex bandpass ΔΣAD modulator.
ER -