The search functionality is under construction.
The search functionality is under construction.

Estimation of Blood Pressure Measurements for Hypertension Diagnosis Using Oscillometric Method

Youngsuk SHIN

  • Full Text Views

    0

  • Cite this

Summary :

Blood pressure is the measurement of the force exerted by blood against the walls of the arteries. Hypertension is a major risk factor of cardiovascular diseases. The systolic and diastolic blood pressures obtained from the oscillometric method could carry clues about hypertension. However, blood pressure is influenced by individual traits such as physiology, the geometry of the heart, body figure, gender and age. Therefore, consideration of individual traits is a requisite for reliable hypertension monitoring. The oscillation waveforms extracted from the cuff pressure reflect individual traits in terms of oscillation patterns that vary in size and amplitude over time. Thus, uniform features for individual traits from the oscillation patterns were extracted, and they were applied to evaluate systolic and diastolic blood pressures using two feedforward neural networks. The measurements of systolic and diastolic blood pressures from two neural networks were compared with the average values of systolic and diastolic blood pressures obtained by two nurses using the auscultatory method. The recognition performance was based on the difference between the blood pressures measured by the auscultation method and the proposed method with two neural networks. The recognition performance for systolic blood pressure was found to be 98.2% for 20 mmHg, 93.5% for 15 mmHg, and 82.3% for 10 mmHg, based on maximum negative amplitude. The recognition performance for diastolic blood pressure was found to be 100% for 20 mmHg, 98.8% for 15 mmHg, and 88.2% for 10 mmHg based on maximum positive amplitude. In our results, systolic blood pressure showed more fluctuation than diastolic blood pressure in terms of individual traits, and subjects with prehypertension or hypertension (systolic blood pressure) showed a stronger steep-slope pattern in 1/3 section of the feature windows than normal subjects. The other side, subjects with prehypertension or hypertension (diastolic blood pressure) showed a steep-slope pattern in front of the feature windows (2/3 section) than normal subjects. This paper presented a novel blood pressure measurement system that can monitor hypertension using personalized traits. Our study can serve as a foundation for reliable hypertension diagnosis and management based on consideration of individual traits.

Publication
IEICE TRANSACTIONS on Fundamentals Vol.E94-A No.2 pp.806-812
Publication Date
2011/02/01
Publicized
Online ISSN
1745-1337
DOI
10.1587/transfun.E94.A.806
Type of Manuscript
PAPER
Category
Neural Networks and Bioengineering

Authors

Keyword