In this paper, we propose new approaches to speech enhancement based on soft decision. In order to enhance the statistical reliability in estimating speech activity, we introduce the concept of a global speech absence probability (GSAP). First, we compute the conventional speech absence probability (SAP) and then modify it according to the newly proposed GSAP. The modification is made in such a way that the SAP has the same value of GSAP in the case of speech absence while it is maintained to its original value when the speech is present. Moreover, for improving the performance of the SAP's at voice tails (transition periods from speech to silence), we revise the SAP's using a hang-over scheme based on the hidden Markov model (HMM). In addition, we suggest a robust noise update algorithm in which the noise power is estimated not only in the periods of speech absence but also during speech activity based on soft decision. Also, for improving the SAP determination and noise update routines, we present a new signal to noise ratio (SNR) concept which is called the predicted SNR in this paper. Moreover, we demonstrate that the discrete cosine transform (DCT) enhances the accuracy of the SAP estimation. A number of tests show that the proposed method which is called the speech enhancement based on soft decision (SESD) algorithm yields better performance than the conventional approaches.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Joon-Hyuk CHANG, Nam Soo KIM, "Speech Enhancement: New Approaches to Soft Decision" in IEICE TRANSACTIONS on Information,
vol. E84-D, no. 9, pp. 1231-1240, September 2001, doi: .
Abstract: In this paper, we propose new approaches to speech enhancement based on soft decision. In order to enhance the statistical reliability in estimating speech activity, we introduce the concept of a global speech absence probability (GSAP). First, we compute the conventional speech absence probability (SAP) and then modify it according to the newly proposed GSAP. The modification is made in such a way that the SAP has the same value of GSAP in the case of speech absence while it is maintained to its original value when the speech is present. Moreover, for improving the performance of the SAP's at voice tails (transition periods from speech to silence), we revise the SAP's using a hang-over scheme based on the hidden Markov model (HMM). In addition, we suggest a robust noise update algorithm in which the noise power is estimated not only in the periods of speech absence but also during speech activity based on soft decision. Also, for improving the SAP determination and noise update routines, we present a new signal to noise ratio (SNR) concept which is called the predicted SNR in this paper. Moreover, we demonstrate that the discrete cosine transform (DCT) enhances the accuracy of the SAP estimation. A number of tests show that the proposed method which is called the speech enhancement based on soft decision (SESD) algorithm yields better performance than the conventional approaches.
URL: https://global.ieice.org/en_transactions/information/10.1587/e84-d_9_1231/_p
Copy
@ARTICLE{e84-d_9_1231,
author={Joon-Hyuk CHANG, Nam Soo KIM, },
journal={IEICE TRANSACTIONS on Information},
title={Speech Enhancement: New Approaches to Soft Decision},
year={2001},
volume={E84-D},
number={9},
pages={1231-1240},
abstract={In this paper, we propose new approaches to speech enhancement based on soft decision. In order to enhance the statistical reliability in estimating speech activity, we introduce the concept of a global speech absence probability (GSAP). First, we compute the conventional speech absence probability (SAP) and then modify it according to the newly proposed GSAP. The modification is made in such a way that the SAP has the same value of GSAP in the case of speech absence while it is maintained to its original value when the speech is present. Moreover, for improving the performance of the SAP's at voice tails (transition periods from speech to silence), we revise the SAP's using a hang-over scheme based on the hidden Markov model (HMM). In addition, we suggest a robust noise update algorithm in which the noise power is estimated not only in the periods of speech absence but also during speech activity based on soft decision. Also, for improving the SAP determination and noise update routines, we present a new signal to noise ratio (SNR) concept which is called the predicted SNR in this paper. Moreover, we demonstrate that the discrete cosine transform (DCT) enhances the accuracy of the SAP estimation. A number of tests show that the proposed method which is called the speech enhancement based on soft decision (SESD) algorithm yields better performance than the conventional approaches.},
keywords={},
doi={},
ISSN={},
month={September},}
Copy
TY - JOUR
TI - Speech Enhancement: New Approaches to Soft Decision
T2 - IEICE TRANSACTIONS on Information
SP - 1231
EP - 1240
AU - Joon-Hyuk CHANG
AU - Nam Soo KIM
PY - 2001
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E84-D
IS - 9
JA - IEICE TRANSACTIONS on Information
Y1 - September 2001
AB - In this paper, we propose new approaches to speech enhancement based on soft decision. In order to enhance the statistical reliability in estimating speech activity, we introduce the concept of a global speech absence probability (GSAP). First, we compute the conventional speech absence probability (SAP) and then modify it according to the newly proposed GSAP. The modification is made in such a way that the SAP has the same value of GSAP in the case of speech absence while it is maintained to its original value when the speech is present. Moreover, for improving the performance of the SAP's at voice tails (transition periods from speech to silence), we revise the SAP's using a hang-over scheme based on the hidden Markov model (HMM). In addition, we suggest a robust noise update algorithm in which the noise power is estimated not only in the periods of speech absence but also during speech activity based on soft decision. Also, for improving the SAP determination and noise update routines, we present a new signal to noise ratio (SNR) concept which is called the predicted SNR in this paper. Moreover, we demonstrate that the discrete cosine transform (DCT) enhances the accuracy of the SAP estimation. A number of tests show that the proposed method which is called the speech enhancement based on soft decision (SESD) algorithm yields better performance than the conventional approaches.
ER -