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XY-Separable Scale-Space Filtering by Polynomial Representations
and Its Applications

Gou KOUTAKI†a) and Keiichi UCHIMURA†, Members

SUMMARY In this paper, we propose the application of principal com-
ponent analysis (PCA) to scale-spaces. PCA is a standard method used
in computer vision. Because the translation of an input image into scale-
space is a continuous operation, it requires the extension of conventional
finite matrix-based PCA to an infinite number of dimensions. Here, we
use spectral theory to resolve this infinite eigenvalue problem through the
use of integration, and we propose an approximate solution based on poly-
nomial equations. In order to clarify its eigensolutions, we apply spectral
decomposition to Gaussian scale-space and scale-normalized Laplacian of
Gaussian (sLoG) space. As an application of this proposed method, we
introduce a method for generating Gaussian blur images and sLoG images,
demonstrating that the accuracy of such an image can be made very high
by using an arbitrary scale calculated through simple linear combination.
Furthermore, to make the scale-space filtering efficient, we approximate
the basis filter set using Gaussian lobes approximation and we can obtain
XY-Separable filters. As a more practical example, we propose a new Scale
Invariant Feature Transform (SIFT) detector.
key words: scale-space, spectral decomposition, SIFT

1. Introduction

Image features vary depending on object pose, camera view,
and illumination; therefore, extracting invariant image fea-
tures for such varying characteristics is an important task in
computer vision applications. Scale-space filtering is an im-
portant and basic technique for acquiring a scale-invariant
image feature. Previously, there has been extensive research
on scale-space filtering [1]–[4]. The family of Gaussian
scale-space filtering (i.e., Gaussian, derivative Gaussian,
and Gaussian of Laplacian) are used to extract image fea-
tures, such as multi-scale edges, keypoints, and saliency [5]–
[7]. To obtain the scale-invariant filter’s response, filter ker-
nels are normalized by a scale parameter called the scale-
normalized scale-space [8].

To construct the scale-space, multiple images are gen-
erated by filtering with multiple scales by performing dis-
cretization along the scale axis. However, increasing the
number of scale-space images increases computational cost.
Thus, a trade-off between the scale resolution and the com-
putational cost exists. To construct the scale-space effi-
ciently, Perona applied singular value decomposition (SVD)
to scale-space images [9]. In their approach, an anisotropic
directional filter’s kernel, such as a 2D-Gabor filter, is de-
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composed (steerable filter [10]–[12] and scalable-steerable
filter [13]). Then, multi-scale edges are extracted. This
method has been improved by using a fast XY-separable
filter [33]. By using scalable-steerable decomposition, a
multiple-filter kernel can be represented by a small number
of basis functions. Note that the decomposed filter functions
are discretized with a unit step of scale, angle, and XY.

Koutaki et al. represented a scale-space filter as the
continuous cubic polynomials of scale parameters using
spectral decomposition [14]. A scale-space image with ar-
bitrary scale can be represented by a simple linear combi-
nation of basis images and scale parameters. The analytical
form of the eigen filter’s kernel was given, and the Gaussian
or sLoG images within scale range s ∈ [1.0, 5.0] were ac-
curately reconstructed from only 4-basis images [15], [16].
This cubic polynomial representation is reasonable for many
vision applications because image features can be detected
at the zero-crossing point along the scale parameter, such as
∂I(x, y, s)/∂s = 0. Thus, it is easy to determine the optimal
scale analytically. This scale-space filtering has been ex-
tended to Affine scale-space [17]. However, those obtained
eigen filter is not XY-separable; therefore, computational
bottleneck occurs when filtering in a practical application.

In this paper, we introduce the polynomial represented
scale-space filtering using spectral decomposition of scale-
space filters such as Gaussian and sLoG. Furthermore, we
improve the filtering to XY-separable form by Gaussian
lobes approximation. In conclusion, our contributions are
as follows.

1. We propose and demonstrate a method for compress-
ing scale-space images using continuous PCA (through
spectral decomposition) to obtain numerical solutions.

2. We clarify the eigensolutions of Gaussian scale-space
and sLoG space.

3. We demonstrate XY-separable scale-space filtering us-
ing Gaussian lobes approximation.

4. As a vision application, we introduce a new keypoint
detector that is faster and has better repeatability than
speeded up robust features (SURF) and scale invariant
feature transform (SIFT).

1.1 Related Works

Many studies have explored image feature detection us-
ing scale-space, i.e., edge, keypoint, and saliency detec-
tion. Some examples of applications include object detec-
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tion, tracking, image registration, 3D reconstruction, and
image retrieval. In particular, the keypoint detector and de-
scriptor for a corresponding search has been used frequently
in recent years.

In the early 1980s, Marr et al. approximated the LoG as
a Differential of Gaussian (DoG) [1]. In the 1990s, Lindberg
proposed blob detector using 3D-local max search in sLoG
space [8]. In 1999, Lowe proposed SIFT [18]. The SIFT
detector is blob detector using a DoG. SIFT consists of a
scale-orientation invariant detector and a descriptor. SIFT
has been used in many applications. Other scale-invariant
detectors have been proposed, e.g., the Hessian-Laplace and
the Hessian-Harris detector [19].

After the rise of SIFT, many improved methods have
also been proposed [20], [21]. SURF uses a fast Hessian
that approximates the second derivative of a Gaussian as
a combination of box filters [22]. In addition, box filter-
ing can be applied quickly using an integral image tech-
nique. Features from accelerated segment test (FAST) is
a previously proposed keypoint detector [23]. FAST does
not use scale-space, and it must handle changes of scale
by resizing an image. Oriented FAST and Rotated BRIEF
(ORB) apply the same approach [24]. Those detectors are
widely used with smartphones or microcomputers with low
CPU power. KAZE features use non-linear scale-space [25],
and the scale-invariant feature detector with error resilience
(SIFER) uses a cosine-modulated Gaussian filter to con-
struct scale-space [26], [27]. In addition, methods that em-
ploy direct polynomial approximation of filter kernels or
multi-template images have also been proposed [28]–[30].

The remainder of this paper is organized as follows.
Section 2 describes an analysis of scale-space filtering of
Gaussian and a sLoG. Section 3 provides some numerical
examples and the simulation results by proposed method.
Section 4 presents a new improvement of the scale-space fil-
tering using Gaussian lobes approximation for XY-separable
filtering. Section 5 provides an application of the image
matching, which demonstrated that the proposed method
improves the repeatability and the computational time. Sec-
tion 6 provides the concluding remarks.

2. Scale-Space Analysis

In this section, we analyze two-types of scale-spaces:
Gaussian scale-space, sLoG space.

2.1 Gaussian Scale-Space

For a given input image f (x, y), its corresponding scale-
space image I(x, y, s) with scale parameter s (s1 ≤ s ≤ s2)
can be defined using convolution with a Gaussian kernel
g(x, y, s):

I(x′, y′, s) =
�
g(x, y, s) f (x − x′, y − y′)dxdy. (1)

The 2D-Gaussian kernel g(x, y, s) is defined using:

g(x, y, s) =
1

2πs2
exp

(
− x2 + y2

2s2

)
, s1 ≤ s ≤ s2.

This can be expanded in a series of eigenfunctions ϕi(s) in
the scale parameter s:

g(x, y, s) =
∞∑

i=0

(∫ s2

s1

g(x, y, t)ϕi (t) dt

)
ϕi (s) .

The series in the equation above can be approximated by
truncating it to N terms:

g(x, y, s) ≈
N∑

i=0

(∫ s2

s1

g(x, y, t)ϕi (t) dt

)
ϕi (s) . (2)

Substituting this into Eq. (1), we obtain:

I(x′, y′, s) ≈
� N∑

i=0

(∫ s2

s1

g(x, y, t)ϕi (t) dt

)
ϕi (s)

· f (x − x′, y − y′)dxdy.

By then changing the order of integration of dxdy and dt,
we obtain:

I(x′, y′, s) ≈
N∑

i=0

{� (∫ s2

s1

g(x, y, t)ϕi (t) dt

)

· f (x − x′, y − y′)dxdy
}
ϕi (s)

=

N∑
i=0

ϕi (s) ·
{�

Fi (x, y) f (x − x′, y − y′)dxdy

}

≡
N∑

i=0

ϕi (s) qi(x′, y′). (3)

where Fi (x, y) is defined as:

Fi (x, y) =
∫ s2

s1

g(x, y, t)ϕi (t) dt. (4)

Here, Fi (x, y), which can be considered as a 2D-image, is
called an eigenimage. Equation (3) can be interpreted as
a Gaussian blurred image of scale s obtained by a linear
combination of qi and ϕi (s), where the qi are obtained by
convolving the input image f and N-eigenimages Fi (x, y).

To calculate the eigenfunctions, we try applying PCA
to the Gaussian kernel. In the field of computer vision,
PCA is generally understood as a standard method of com-
pressing data and is used in processes such as the eigenface
method or the subspace method. In the subspace method,
for example, the eigenfunctions are obtained by solving the
following N × N matrix eigenvalue problem:

Cϕ = λϕ. (5)

The factor C above represents a covariance matrix defined
by N images g1, g2, . . . , gN :



KOUTAKI and UCHIMURA: XY-SEPARABLE SCALE-SPACE FILTERING BY POLYNOMIAL REPRESENTATIONS AND ITS APPLICATIONS
647

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈g1, g1〉 〈g1, g2〉 · · · 〈g1, gN〉
〈g2, g1〉 〈g2, g2〉 · · · 〈g2, gN〉
...

...
...

...
〈gN , g1〉 〈gN , g2〉 · · · 〈gN , gN〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6)

where 〈gi, g j〉 is the inner product of gi and g j.
However, because the scale parameter s is continuous,

it is difficult to apply this matrix-based PCA to scale-space
compression. In the case where N → ∞, it is necessary to
expand the eigenvalue problem; in the functional analysis
of mathematics, this approach is known as spectral theory.
By applying spectral theory to Eq. (5), the matrix eigenvalue
problem can be transformed into the following Fredholm in-
tegral equation:∫ s2

s1

K (t, s)ϕ (t) dt = λϕ (s) , (7)

where K(t, s) is the integral kernel and is defined as:

K (s, t) =
�
g (x, y, s) g (x, y, t) dxdy

=
1

2π
(
s2 + t2

) . (8)

If the integral kernel is non-zero, symmetric, and finite,
Eq. (7) has a unique solution; nevertheless, the integral
equation remains difficult to be solved exactly except with
a set of specific integral kernels. Therefore, we propose a
solution by using a polynomial approximation:

ϕi (s) = a0
i + sai,1 + s2ai,2 + · · · + sNai,N

=
(
1, s, s2, · · · , sN

)
· ai. (9)

By multiplying both sides of Eq. (7) by the polyno-
mials 1, s, s2, · · · , sN and then integrating, Eq. (7) is trans-
formed into the following generalized eigenvalue problem
of an (N + 1) × (N + 1) matrix:

Ka = λSa. (10)

The elements of K, S here are defined as:

Ki+1 j+1 =
1

2π

�
s jti

s2 + t2
dsdt, (11)

S i+1 j+1 =

∫
si+ jds =

s1+i+ j

1 + i + j
. (12)

Here, 0 ≤ i, j ≤ N. By solving for the (N +1) eigenvalues λi

and the eigenvector ai in Eq. (10), the eigenfunctions ϕi (s)
in Eq. (9) can be obtained.

To calculate the eigenimage Fi the following equation
can be obtained by substituting Eq. (4) into Eq. (9):

Fi (x, y) =
∫ s2

s1
g(x, y, s)ϕi (s) ds (13)

= −
N∑

n=0

ai,n

23/2πr

( r

21/2

)n
Γ

⎛⎜⎜⎜⎜⎝1 − n
2
,

r2

2s2
1

,
r2

2s2
2

⎞⎟⎟⎟⎟⎠ ,

where r =
√

x2 + y2 and Γ is a complete gamma function

defined as:

Γ (p, t1, t2) =
∫ t2

t1

tp−1 exp (−t) dt, (14)

which can be calculated accurately using a continued frac-
tion expansion [31].

2.2 Scale Normalized LoG Space

In the same way as Sect. 2.1, we show the eigensolutions of
Scale normalized LoG space (sLoG). sLoG is used for scale
invariant edge detection and scale invariant feature trans-
form (SIFT). It is important on computer vision’s applica-
tion.

The sLoG space is defined as the following equa-
tion which is second-order differentiation and normalization
constant s2 for the Gaussian kernel.

ILoG(x′, y′, s) = (15)�
s2∇2g(x, y, s) f (x − x′, y − y′)dxdy,

Here, ∇2 = ∂2

∂x2 +
∂2

∂y2 . Then, by using the relationship of the
diffusion equation,

s∇2g(x, y, s) =
∂

∂s
g(x, y, s),

Equation (15) is transformed to the following equation.

ILoG(x′, y′, s) =�
s
∂g(x, y, s)
∂s

f (x − x′, y − y′)dxdy. (16)

In the same way as Eq. (1)∼Eq. (4), Eq. (16) can be
expanded by eigenfunctions. The integral kernel of sLoG
(equivalent to Eq. (8)) is defined as:

KLoG (s, t)

=

�
st
∂g(x, y, s)
∂s

∂g(x, y, t)
∂t

dxdy

=
4s2t2

π
(
s2 + t2

)3
. (17)

In order to solve the above integral equation, we trans-
form the integral equation to the matrix-based generalized
eigenvalue problem by the polynomial approximation. Then
the elements of the matrix are obtained as:

KLoG
i+1 j+1 =

4
π

�
s j+2ti+2

(
s2 + t2

)3
dsdt, (18)

S LoG
i+1 j+1 =

∫
si+ jds =

s1+i+ j

1 + i + j
. (19)

Here, 0 ≤ i, j ≤ N. Then, the eigenimage of sLoG FLoG
i is

defined as follows.

FLoG
i (x, y) =

∫ s2

s1
s
∂g(x, y, s)
∂s

ϕLoG
i (s) ds
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Fig. 1 Left: Eigenimages and eigenfunctions of Gaussian scale-space. Right: Eigenimages and eigen-
functions of sLoG space.

= −
N∑

n=0

aLoG
i,n

21/2πr

( r

21/2

)n
× (20)

⎡⎢⎢⎢⎢⎣−Γ
⎛⎜⎜⎜⎜⎝1 − n

2
,

r2

2s2
1

,
r2

2s2
2

⎞⎟⎟⎟⎟⎠ + Γ
⎛⎜⎜⎜⎜⎝3 − n

2
,

r2

2s2
1

,
r2

2s2
2

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ .

Here, aLoG
i,n is the coefficient of polynomial of eigensolu-

tion ϕLoG
i (s) obtained by solving the generalized eigenvalue

problem.

3. Numerical Examples

In this section, we show numerical examples of eigensolu-
tions of Eq. (7) and show the linear generation of Gaussian
and sLoG image.

3.1 Gaussian Scale-Space

In order to approximate the eigenfunction of Eq. (9), we use
second or third-order polynomials (N = 2 or N = 3) and
set the integral range of the scale parameter s to s1 = 1.0,
s2 = 5.0. Based on this, we solve the 3 × 3 or 4 × 4 matrix
generalized eigenvalue problem of Eq. (10). The solutions
ai, j and eigenvalues λi (0 ≤ i ≤ N) are shown in Tables 1
and 2.

From the tables, it can be seen that λ2 ≈ 0.0007 is only
1 [%] of λ0 = 0.070. From this rapid decrease, it is appar-
ent that the original Gaussian function can be approximated
by using a low-order of series expansion. The eigenimages
for N = 2 are shown in the left of Fig. 1. The upper-part of
the figure shows the eigenimages on the xy-plane, while the
middle-part of the figure shows a graph of the eigenimages
on r =

√
x2 + y2. As they depend only on r, these eigen-

images are isotropic functions. The lower-part of the fig-
ure shows the eigenfunctions. The first-order’s eigenimage
looks like Gaussian and the second and third-order’s eigen-
image looks like Laplacian, however it is slight difference.

Table 1 Eigen solutions �a of Gaussian scale-space at N = 2

i ai,0 ai,1 ai,2 λi

0 −1.51664 0.63295 −0.07352 0.07028
1 −1.98457 1.51593 −0.21841 0.01003
2 1.41248 −1.44794 0.29090 0.00077

Table 2 Eigen solutions �a of Gaussian scale-space at N = 3

i ai,0 ai,1 ai,2 ai,3 λi

0 −1.96331 1.47595 −0.40397 0.03729 0.07055
1 −2.52465 3.31488 −1.09824 0.11097 0.01088
2 2.20392 −3.77154 1.58800 −0.18386 0.00140
3 1.04991 −2.15040 1.14305 −0.16560 0.00008

Table 3 Eigen solutions �a of sLog space at N = 2

i aLoG
i,0 aLoG

i,1 aLoG
i,2 λLoG

i

0 −1.66680 0.66306 −0.07074 0.09065
1 −2.45391 1.77823 −0.25326 0.02621
2 1.86269 −1.70701 0.32655 0.00354

Table 4 Eigen solutions �a of sLog space at N = 3

i aLoG
i,0 aLoG

i,1 aLoG
i,2 aLoG

i,3 λLoG
i

0 −1.78134 0.80365 −0.12157 0.00560 0.09067
1 −4.48103 4.32614 −1.19007 0.10394 0.02773
2 6.27885 −7.62290 2.65264 −0.27408 0.00624
3 4.07331 −5.69794 2.35606 −0.29145 0.00054

3.2 sLoG Space

Tables 3 and 4 show an example of solution (coefficient of
polynomial and eigenvalue) of sLoG for N = 2 and N = 3,
s1 = 1.0, s2 = 5.0. Then, the right-up part of Fig. 1 shows
the eigenimages and eigenfunctions of sLoG.
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Fig. 3 Left: Generated Gausian blurred images for some scales. Right: Generated sLoG images for
some scales.

Fig. 2 Flowchart of Gaussian blurred image generation. Gaussian
blurred image with arbitrary scale cen be obtained by simple linear combi-
nations of qi.

3.3 Linear Generation of Gaussian Image

In this section, we introduce a method of Gaussian blur im-
age generation with an arbitrary scale as an application of
scale-space compression.

A Gaussian blur image of scale s can be defined as:

I(x′, y′, s) =
N∑

i, j=0

qi(x′, y′)s jai, j. (21)

Here, qi ≡ f ∗ Fi. This equation means that Gaussian blur
image with a scale s can be obtained by a linear combination
of qi and ai, j. The factors qi can be obtained by convolving
the eigenimage Fi into an input image f .

Figure 2 shows a flowchart detailing the steps of im-
age generation at scale s = 1.2. The blue window on the
left shows the step in which qi is calculated; this indicates
that a Gaussian blur image with an arbitrary scale s can be
obtained immediately by linear combination once qi is cal-
culated.

In order to evaluate the proposed method we compared
generated blur images in the range 1 ≤ s ≤ 5 with references
generated by convolving the Gaussian kernel g(x, y, s).

The left of Fig. 3 shows the generated images for 128×
128 Fruit image. The figure shows references, the blur im-
ages generated by proposed method for N = 2 and N = 3,
and the difference images between the generated images and
references for s = 1.2, 2.4, 3.6, and 4.8. It can be seen that
the results for N = 2 and N = 3 show few errors.

The left of Fig. 4 shows the PSNR between the gener-
ated and reference images at scales ranging from N = 1, 2
and 3, s = 1.0 to s = 5.0 for Lenna and Fruit. Then,
the graph shows the PSNR of Scalable Filter (5-kernels
used) [32]. The average of PSNR error of our method for
N = 3 is 68 [dB], and it can be seen from this that the pro-
posed method can generate Gaussian blur images accurately
by using simple linear operations.

3.4 Linear Generation of sLoG Image

In the case of N = 3, the sLoG images ILoG(x, y, s) can be
obtained as follows:

ILoG(x′, y′, s) (22)

=

3∑
i=0

qLoG
i

(
aLoG

i,0 + saLoG
i,1 + s2aLoG

i,2 + s3aLoG
i,3

)
.

Here, qLoG
i ≡ f ∗ FLoG

i . The right of Fig. 3 shows the sLoG
images generated by proposed method, and conventional
(scale-normalized) DoG images. Here, DoG image is ob-
tained as follows:

DoG(x, y) ≡ g(x, y, kσ) − g(x, y, σ)
1 − k

. (23)

In this case, k = 1.2 is used. For better visibility, the
pixel value of those figures are enhanced. The right two
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Fig. 4 PSNR evaluation of Gausian blurred image and sLoG image.

Fig. 5 The decomposition filters Fi can be approximated well by the linear combination of Gaussian
lobes with different sigma.

columns of the figure shows the difference of a reference
s∇2g ∗ f (Ref. of the figure) and the generated image. The
figure shows that DoG image have more errors because of
a backward difference approximation Eq. (23). On the other
hand, the proposed method can approximate the sLoG im-
ages with various scale.

The right of Fig. 4 shows a numerical accuracy of the
above approximation for Lenna and Fruit. Scalable sLoG
filter is implemented by the same analogy of scalable filter
and 5-kernes is used. The average of PSNR error of our
method for N = 3 is 56 [dB], The proposed method can ap-
proximate the sLoG accurately with arbitrary scale by linear
combination of only four images qLoG

i .

4. Gaussian Lobes Approximation

The decomposition filter Fi of sLoG using polynomials is
not an XY-separable filter. Previously, to convolute such fil-
ters, a 2D-FFT operation was required [16], which requires
significant computational time. In order to accelerate fil-
tering, we approximate the decomposition filter by a linear
combination of some Gaussian kernels with different scale
(referred to as Gaussian lobes approximation) as follows:

Fi(x, y) ≈
T∑
j

wi jg(x, y, t j). (24)

Here, wi j are weight values and they can be computed by the
least squared fitting to an original basis functions of Fi(r).
Using the above equation, the approximated decomposition
filter is written as follows:

ĝ(x, y, s) ≈
L∑
i

⎛⎜⎜⎜⎜⎜⎜⎝
T∑
j

wi jg(x, y, t j)

⎞⎟⎟⎟⎟⎟⎟⎠ϕi(s) (25)

=

T∑
j

g(x, y, t j)ϕ
′
j(s). (26)

Here, ϕ′i is the transformed eigen function defined as fol-
lows:

ϕ′i =
L∑
i

wi jϕ
′
i . (27)

Thus, decomposition filtering can be achieved by some
number of Gaussian filtering. Such Gaussian filtering is XY-
separable, and there are extensive, efficient, and accurate fil-
tering algorithms, such as a cascade algorithm or recursive
filtering [33]–[36]. Such algorithms are used in spatial do-
mains and do not require FFT operations.

Figure 5 shows the decomposition filters and approxi-
mated filters by Gaussian lobes for a Gaussian kernel. Here,
the scale range is s = [1.0, 8.0], the number of Gaussian
lobes is T = 8, and their sigma parameters are t = {1.0, 1.2,
2.4, 3.2, 4.0, 5.0, 7.6, 8.0}. As is shown in the figure, Gaus-
sian lobes can approximate the decomposition filters accu-
rately.

5. Application: Spectral SIFT

We propose a new SIFT detector (Spectral SIFT) using the
sLoG space compression. The SIFT keypoints are detected
by finding the local extremum of sLoG. It is enough to find
the zero position of the partial differential of sLoG. In the
proposed model, because sLoG image is represented by the
polynomial of s, it is easy to find the exact local extremum
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Fig. 7 Results for simple test pattern. Red circles are the detected keypoints and the radius means
scale. Conventional SIFT cannot detect the circles correctly even an easy case is.

Fig. 6 Scale detection. In conventional SIFT, scale-space is discretized.
In our method, images of scale-space are represented by polynimials of
scale parameter s.

of sLoG by solving the following quadric equation.

∂ILoG(x′, y′, s)/∂s

=

3∑
i=0

qLoG
i

(
aLoG

i,1 + 2saLoG
i,2 + 3s2aLoG

i,3

)
(28)

≡ as2 + bs + c = 0.

Then, the optimal scales can be detect at s = −b±√b2−4ac
2a .

The keypoint with 2as + b > 0 is a bright keypoint, and
2as + b < 0 is dark keypoint. After detecting the scale, then
27-neighbor pixels of sLoG are checked for the XY-scale
extremum.

The conventional SIFT requires the 27-neightbor pixel
check for all scale layer (Fig. 6 (a)). It is time consuming
step of SIFT, especially if increasing the number of scale
layer L. On the other hand, the proposed method can detect
the optimal scale by simple algebraic operation (Fig. 6 (b)).
It is fast and accurate because it does not include the dis-
cretization error of scale layer and the interpolation artifact.

5.1 Simple Pattern Testing

We evaluate our method for simple test pattern in Fig. 7.
The 640 × 480 input image has black circle patterns with
from small to large radius (about 2∼15[pix]). Figure shows
the results of three conventional SIFTs and the proposed
method. The conventional SIFT has different number of
scale-layer L = 5, 10 and 15. Generally, L = 5 is used for
one octave. The same detection parameters such as thresh-
old were used. The SIFT at L = 5 could not detect the

small radius circles in the left of the image and could not
detect some large radius circles. In the case of increasing
the number of scale layer L, the scale-resolution was im-
proved and more number of the small circles were detected.
However, more number of the large circles were missed by
the scale discretization artifact. On the other hand, the pro-
posed method can detect all circles correctly.

5.2 Evaluation of Detector Repeatablity

We evaluated the repeatability of the proposed detector with
an Oxford dataset†. In this evaluation, we used six scenes,
i.e., two viewpoint change scene (Wall and Graffiti), one
zoom and rotation (Boat) scene, a lighting change (Leuven)
a scene, a blurring change (Trees) scene, and a JPEG com-
pression rate change (UBC) scene. Each scene includes six
different images, and the homography H, which relates to
the viewing of two images, is given.

The repeatability score was computed by Mikolajczyk’s
method [37]. This score indicates whether the detector lo-
calizes the keypoints of the same region in two different im-
ages. The region of interest of a keypoint is defined as a
circle with a radius 3s (s is the determined scale of the key-
point).

In the evaluation, after detecting keypoints for two im-
ages, each region of the keypoints in one image was trans-
formed by the given homography H. At this time, the circu-
lar region of interest was transformed to an ellipsoid region
and non-visible keypoints in the two images were removed
from the evaluation. Then, the overlap error ε of two regions
of interest was computed as ε = 1− a∩AtbA

a∪AtbA . Here, a and b are
the two regions of interest, and A is the linearization of the
homography H. In this evaluation, we counted the keypoint
pairs with ε < 0.5 as correspondings.

To compare the proposed detector, we used two DoG
detectors from SIFT (SIFT (L = 6) and SIFT (L = 10),
where L is the number of octave layer for DoG), the fast hes-
sian detector from SURF, and Spectral SIFT (SSIFT with-
out Gaussian lobes (GL); N = 3), which is the LoG detector
with polynomial representation. Spectral SIFT using Gaus-
sian lobes approximation (SSIFT with GL) represents the
proposed method with N = 3.

The code for SIFT, SURF, and the computation of re-
peatability was developed using OpenCV 2.4.6. The im-
plementation of SSIFT is also based on OpenCV. In SSIFT,

†http://www.robots.ox.ac.uk/ṽgg/data/data-aff.html
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Fig. 8 Repeatability evaluation for 6 scnens of Oxford dataset.

the scale range per octave was s = [1.6, 6.4] and T = 8.
This scale range specification is wide compared to SIFT and
SURF; therefore, SSIFT can reduce the time required for
image pyramid processing.

To evaluate repeatability with the same number of key-
points, the detected keypoints were sorted according to key-
point response, such as absolute amplitude of the DoG, LoG,
or Hessian response. The top-1000 keypoints were then se-
lected for evaluation. For the computation of overlap of two
regions, we must closely consider scale because larger el-
lipsoid regions demonstrate superior repeatability; thus, tar-
geted over-estimation of scale improves repeatability. In this
study, the scale of the SIFT and SSIFT detectors are defined
as the local maximum of DoG and LoG, and the scale of
SURF can be transformed as s = 0.13 ×MaskSize.

Figure 8 shows the repeatability of the six scenes.
SSIFT demonstrated slightly better performance than SURF
with the view angle change scenes (i.e., Wall and Graffiti),
and in the scale change scene (i.e., Boat), SSIFT outper-
formed SURF. For other scenes (i.e., Leuven, Tree, and
UBC), SSIFT performance was comparable to SURF. In all
scenes, it was observed that SSIFT outperformed standard
SIFT. Note that SSIFT and SSIFT with GL demonstrated
approximately equal repeatability. This indicates that Gaus-
sian lobes can approximate the decomposition filter of poly-
nomials of sLoG.

It should be noted that increasing the number of octave
layers reduces repeatability; this has been established pre-
viously [38]. SSIFT can detect a continuous optimal scale
without discretization of the scale layer, similar to SIFT and
SURF; thus, results obtained with the scale change scene
(i.e., Boat) indicate good repeatability.

Table 5 Computational time for Boat-6 850 × 680 [pix]

#keypoints total time[msec]
SIFT (L = 6) 2260 228
SIFT (L = 10) 2260 319
SURF 2329 71
SSIFT 2369 217
SSIFT with GL 2355 39

Table 6 Computational time for Trees-1 1000 × 700 [pix]

#keypoints total time [msec]
SIFT (L = 6) 5570 297
SIFT (L = 10) 5537 413
SURF 5573 128
SSIFT GL 5539 141
SSIFT with GL 5719 65

5.3 Computational Time

We also measured computational time for each detector. Ta-
ble 5 and Table 6 show the total computational times and
number of detected keypoints. To measure computational
time, we used an Intel Core-i7 4770K 3.4 GHz, with 8 GB
memory running 64-bit Windows 7. Note that SURF was
implemented professionally by Intel TBB as multiproces-
sor programming, and SSIFT was implemented as multi-
processor programming using OpenMP. The edge threshold
for each method was adjusted manually to equal the num-
ber of detected keypoints for each method. Conventional
SIFT required approximately 200∼400 [msec], and increas-
ing the number of octave layers slowed performance. This
indicates that detection of the local min/max by 26-neighbor
pixel search results in a bottleneck relative to computational
time. SSIFT does not require a 26-neighbor search ; thus, its
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computational times can be accelerated. SSIFT without GL
was observed to be comparable to SURF, and SSIFT with
GL performed twice as fast as SURF.

6. Conclusions

In this paper, we proposed a method for applying PCA to
scale-spaces. PCA is the standard method used in com-
puter vision for tasks. However, in order to apply the
method to scale-spaces it is necessary to extend conven-
tional square matrix-based finite PCA to an infinite num-
ber of dimensions. To resolve this infinite eigenvalue prob-
lem, we used spectral theory to develop integral equations
for which approximate solutions could be developed using
polynomial equations. We applied spectral decomposition
to some scale-spaces and clarified its eigensolutions. Fur-
thermore, to make the scale-space filtering efficient, we ap-
proximated the basis filter set using Gaussian lobes approx-
imation and XY-Separable filters were obtained.

As an application of this proposed method, we in-
troduced a method for generating Gaussian blur images
and sLoG images of arbitrary scale that can be calculated
through simple linear combination. As a more practical ex-
ample, we proposed spectral SIFT detector using the spec-
tral theory. The experimental results showed that the pro-
posed detector outperformed the previous SIFT and SURF
in repeatablity and computational cost. Because the scale-
space processing is a basic technique, our method can apply
to many existing scale-space processing.
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