1556

IEICE TRANS. INF. & SYST., VOL.E100-D, NO.8 AUGUST 2017

| INVITED PAPER Special Section on Multiple-Valued Logic and VLS| Computing

Power of Enumeration — Recent Topics on BDD/ZDD-Based
Techniques for Discrete Structure Manipulation

SUMMARY Discrete structure manipulation is a fundamental tech-
nique for many problems solved by computers. BDDs/ZDDs have attracted
a great deal of attention for twenty years, because those data structures
are useful to efficiently manipulate basic discrete structures such as logic
functions and sets of combinations. Recently, one of the most interesting
research topics related to BDDs/ZDDs is Frontier-based search method,
a very efficient algorithm for enumerating and indexing the subsets of a
graph to satisfy a given constraint. This work is important because many
kinds of practical problems can be efficiently solved by some variations of
this algorithm. In this article, we present recent research activity related to
BDD and ZDD. We first briefly explain the basic techniques for BDD/ZDD
manipulation, and then we present several examples of the state-of-the-art
algorithms to show the power of enumeration.

key words: BDD, ZDD, discrete structure, graph algorithm

1. Introduction

Discrete structures are foundational materials for computer
science and mathematics, which are related to set theory,
symbolic logic, inductive proof, graph theory, combina-
torics, probability theory, etc. Many problems are decom-
posed into discrete structures using simple primitive alge-
braic operations.

A Binary Decision Diagram (BDD) is a representation
of a Boolean function, one of the most basic models of dis-
crete structures. After the epoch-making paper [1] by Bryant
in 1986, BDD-based methods have attracted a great deal
of attention. The BDD was originally developed for the
efficient Boolean function manipulation required in VLSI
logic design, however, later they are also used for sets of
combinations which represent many kinds of combinato-
rial patterns. A Zero-suppressed BDD (ZDD) [2] is a vari-
ant of the BDD, customized for representing a set of com-
binations. ZDDs have been successfully applied not only
to VLSI design, but also for solving various combinatorial
problems, such as constraint satisfaction, frequent pattern
mining, and graph enumeration. Recently, ZDDs have be-
come more widely known, since D. E. Knuth intensively
discussed ZDD-based algorithms in the latest volume of his
famous series of books [3].

Although a quarter of a century has passed since Bryant
first put forth his idea, there are still many interesting and ex-
citing research topics related to BDDs and ZDDs [4]. One of

Manuscript received October 21, 2016.
Manuscript publicized May 19, 2017.

"The author is with the Graduate School of Information Sci-
ence and Technology, Hokkaido University, Sapporo-shi, 060—
0814 Japan.

a) E-mail: minato @ist.hokudai.ac.jp
DOI: 10.1587/transinf.2016LOI10002

Shin-ichi MINATO'?, Senior Member

the most important topics would be that, Knuth presented an
extremely fast algorithm “Simpath” [3] to construct a ZDD
which enumerates all the paths connecting two points in a
given graph structure. This work is important because many
kinds of practical problems are efficiently solved by some
variations of this algorithm. We generically call such ZDD
construction methods “frontier-based methods.”

The above techniques of data structures and algorithms
have been implemented and published as an open software
library, named “Graphillion” [5], [6]. Graphillion is a library
for manipulating very large sets of graphs, based on ZDDs
and frontier-based method. Graphillion is implemented as a
Python extension in C++, to encourage easy development of
its applications without introducing significant performance
overhead.

In order to organize an integrated method of algebraic
operations for manipulating various types of discrete struc-
tures, and to construct standard techniques for efficiently
solving large-scale and practical problems in various fields,
a governmental agency in Japan executed a nation-wide
project: ERATO MINATO Discrete Structure Manipulation
System Project [7] from 2009 to 2016. Many interesting re-
search results were produced in this project, and some of
topics are still attractive to be explored more.

This article presents recent research activity related
to BDD and ZDD. We first briefly explain the basic tech-
niques for BDD/ZDD manipulation, and then we present
several examples of the state-of-the-art algorithms to show
the power of enumeration.

2. BDDs and ZDDs
A Binary Decision Diagram (BDD) is a graph representation

for a Boolean function, developed in VLSI design area. As
illustrated in Fig. 1, it is derived by reducing a binary deci-

F(a,b,c)

F(a,b,c)

Binary Decision Tree

Fig.1 Binary Decision Tree, BDDs and ZDDs.

Copyright © 2017 The Institute of Electronics, Information and Communication Engineers

MINATO: POWER OF ENUMERATION — RECENT TOPICS ON BDD/ZDD-BASED TECHNIQUES

F

BDD \ FaNp G

(compressed data)

A (compressed data)

(compressed data)

Fig.2 Framework of BDD logic operation.

sion tree graph, which represents a decision making process
by the input variables. If we fix the order of input variables,
and apply the following two reduction rules, then we have a
compact canonical form for a given Boolean function:

(1) Delete all redundant nodes whose two edges point to a
same child node, and

(2) Share all equivalent nodes having a same pair of child
nodes and a same variable.

The compression ratio of a BDD depends on the prop-
erties of Boolean function to be represented, but it can be 10
to 100 times more compact in some practical cases. Even
though the BDD gives good compression, still we might
need an exponential time and space when we start from a
non-reduced binary decision tree. However, we can sys-
tematically construct a reduced BDD that is the result of
a binary logic operation (i.e., AND or OR) for a given pair
of BDDs, as shown in Fig. 2. This algorithm, proposed by
Bryant[1], is based on a recursive procedure with hash ta-
ble techniques, and it is much more efficient than generating
binary decision trees when the BDDs have a good compres-
sion ratio. The computation time is bounded by the product
of the BDD sizes of the two operands, and in many practical
cases, it is linearly bounded by the sum of input and output
BDD sizes.

BDD is based on the on-memory data processing tech-
niques, and it enjoys the advantage of using random access
memories. Recently, commodity PCs are equipped with
Giga-Bytes of main memory, and we can solve larger-scale
problems which used to be impossible due to memory short-
age. Thus, especially after 2000s, the BDD application areas
are spreading.

Zero-suppressed BDD (ZDD) is a variant of BDD, cus-
tomized for manipulating sets of combinations. This data
structure was first introduced by Minato[2]. ZDDs are
based on the special reduction rules different from the or-
dinary one, as follows.

(1’) Delete all nodes whose 1-edge directly points to the O-
terminal node, but do not delete the nodes which were
deleted in ordinary BDDs. (Fig. 3)

(2) Share all equivalent nodes as well as ordinary BDDs.

An example of ZDD is also shown in Fig. 1. Here the three
graphs represent a same instance of Boolean function.

1557

0 | Jump
-

F F n
BDD ZDD
Fig.3 ZDD reduction rule.

This alternative reduction rule is extremely effective if
we handle a set of sparse combinations. If the average ap-
pearance ratio of each item is 1%, ZDDs are possibly more
compact than ordinary BDDs, up to 100 times. Such sit-
uations often appear in real-life problems, for example, in
a supermarket, the number of items in a customer’s bas-
ket is usually much less than all the items displayed there.
Because of such an advantage, ZDD is now widely rec-
ognized as the most important variant of BDD. In 2009,
D. Knuth presented a new fascicle of his famous book se-
ries [3], which has a section of ZDDs discussed minutely in
30 pages with 70 exercises.

3. Modern Applications of BDDs/ZDDs

BDD/ZDD-based algorithm was originally invented, and
have been developed mainly in VLSI logic design area since
early 1990’s. However, after 2000, BDDs/ZDDs are applied
for not only VLSI design but also for more various pur-
poses. Such modern applications of BDDs/ZDDs include
data mining (frequent pattern mining) [8]-[10], probabilis-
tic modeling [11]-[13], solving graph enumeration prob-
lems [3], [14], etc. Here we will present some of those ap-
plications.

3.1 Data Mining (Frequent Itemset Mining)

Discovering useful knowledge from large-scale databases
has attracted considerable attention during the last decade.
Frequent itemset mining is one of the most fundamental
problems in knowledge discovery. The task is to find all
frequent patterns each of which is a combinatorial items in-
cluded in at least 6 records of a given transaction database,
where 6 is called minimum support, the user specified
threshold. An example is shown in Fig. 4. Since the pioneer-
ing work by Agrawal et al. [15], various algorithms have
been proposed to solve the frequent itemset mining problem
(cf, [16], [17]). In 2008, Minato et al. [10] proposed a fast
algorithm LCM over ZDDs (LCM-ZDD) for generating very
large-scale frequent itemsets using ZDDs. Their method
is based on LCM algorithm [18], one of the most efficient
state-of-the-art techniques for itemset mining, and directly
generates compact output data structures on the main mem-
ory, to be efficiently post-processed by using ZDD-based al-
gebraic operations.

LCM-ZDD does not touch the core algorithm of LCM,

1558

Transaction database 6: minimym Frequent itemsets

Suppo
Record ID Tuple 0=10 b
1 abc > o}
2 ab 6=8
3 abc _ {ab,a, b, c}
4 bc
5 ab 0=17
5 e > {ab, bc,a, b, c}
7 c 0=5
8 abc Z -5 { abc, ab, be, ac, a, b, ¢ }
9 abc
1? Z? E, { abc, ab, bc, ac, a, b, ¢ }

Fig.4 Frequent itemset mining.

Transaction database A ZDD indexing
all frequent itemsets

Record ID Tuple

1 abc
ab
ahe LCM-ZDD
ab min. support =7
abc

G {ab, bc,a b, c}
abc
abc
ab
bc

©| 00| N O O B W| N

RN N
o

Fig.5 LCM over ZDDs method.

Il previous method (original LCM)
[new method (LCM over ZDDs)

CPU time (sec)

S
& Q

measured by a Linux PC, > %,4@’

Core2Duo E6600, 2.4GHz, 2GB memory. &

Fig.6 Performance of LCM-ZDD.

and just generates a ZDD for the solutions obtained by
LCM. It constructs a ZDD which is the union of all the item-
sets found in the backtracking search, and finally returns a
pointer to the root node of the ZDD. Figure 6 shows the
experimental results [10] to compare the performances be-
tween LCM-ZDD and the original LCM. We can observe
that LCM-ZDD is much efficient than the original one, es-
pecially when large numbers of frequent itemsets are output.

By utilizing LCM-ZDD, we can compare multiple sets
of frequent itemsets generated under different conditions.
As shown in Fig. 7, our ZDD-based method can store and
index the two sets of frequent itemsets for the datasets of

IEICE TRANS. INF. & SYST., VOL.E100-D, NO.8 AUGUST 2017

————) LCM-ZDD

Dataset 1 »> :@
— L CM-ZDD
Dataset 2

Fig.7 Post-processing after LCM-ZDD.

Distinctive
Frequent
ltemsets

All Frequent
ltemsets

{eieses, ejey, eresey, eres})

Fig.8 ZDD representing the paths from s to ¢.

different time, and easily compute the intersection, union,
and difference between the frequent itemsets. When many
similar ZDDs are generated, their ZDD nodes are effec-
tively shared within a monolithic multi-rooted graph, requir-
ing much less memory than that required to store each ZDD
separately.

3.2 Graph Enumeration Problems

Many real-life problems can be modeled by a kind of graph
structures. ZDDs can be utilized for enumerating and index-
ing the solutions of a graph problem. When we assume a
graph G = (V, E) with the vertex set V = {v{,v,...,v,} and
the edge set E = {ej, ez, ..., ey}, a graph enumeration prob-
lem is to compute a subset of the power set 2F (or 2V), each
element of which satisfies a given property. In this model,
we can consider that each solution is a combination of edges
(or vertices), and a set of solutions can be represented by a
ZDD. For example, Fig. 8 shows the ZDD representing the
set of paths connecting the two vertices s and ¢ of the graph.
Each path can be represented as a combination of the edges,
{e1ezes, ejes, erezes, eres). The ZDD also has four paths
from the root node to the 1-terminal node, and each path
corresponds to the solution of the problem, where e¢; = 1
means to use the edge ¢;, and e¢; = 0 means not to use e;.
There are a number of literature on ZDDs for solv-
ing graph problems since early 1990’s, however, in 2009,
D. E. Knuth has presented the surprisingly fast algorithm
Simpath [3] to construct a ZDD which represents all the
paths connecting two points s and 7 in a given graph
(not necessarily the shortest ones but ones not passing
through the same point twice). A part of the book page

MINATO: POWER OF ENUMERATION — RECENT TOPICS ON BDD/ZDD-BASED TECHNIQUES

‘We can also use ZDDs to represent simple paths in an undirected graph. *-o-®

For example, there ate 12 ways to go from the upper left corner of a 3 x 3 P ’E
. . . PR FOROZ0)
grid to the lower right corner, without visiting any point twice: -

HHHHHBHEEBEHHEHAEBE

Fig.9 Result of Simpath algorithm for a 2x2 grid (3x3 vertices) graph
written in the Knuth’s book [3] (Vol.4, Fascicle 1, p.121, or p.254 of
Vol.4A).

is shown in Fig.9. This work is important because many
kinds of practical problems can be efficiently solved by
some variations of this algorithm. Knuth provides his
own C source codes on his web page for public access,
and the program is surprisingly fast. For example, in a
14 x 14 grid graph (420 edges in total), the number of
self-avoiding paths between opposite corners is as great as
227449714676812739631826459327989863387613323440
(= 2.27 x 10*") ways. By applying the Simpath algorithm,
the set of paths can be compressed into a ZDD with only
144759636 nodes, and the computation time is only a few
minutes.

Here we will not describe the detailed mechanism of
Simpath algorithm. One may refer to another survey pa-
per [4] written by the author. Roughly speaking, the Sim-
path algorithm belongs to a dynamic programming method,
based on the topological structure by scanning the graph
from the start vertex to the goal vertex. Knuth calls the scan-
ning line frontier. If the frontier grows larger in the com-
putation process, more ZDD nodes are generated and more
computation time is required. Thus, we had better keep the
frontier small. The maximum size of the frontier is bounded
by the path width of the given graph structures. Empirically,
planar or narrow graphs are favorable.

Knuth described in his book [3] that the Simpath algo-
rithm can easily be modified to generate not only s-f paths
but also Hamilton paths, directed paths, some kinds of cy-
cles, and many other problems by slightly changing the in-
ternal data structure. We generically call such ZDD con-
struction method Frontier-based search. (or, em Frontier
method in short.)

The Frontier method is different from the conventional
ZDD construction, which repeats primitive set operations
between two ZDDs. In general, the primitive set opera-
tions are efficiently implemented based on Bryant’s BDD
construction algorithm, but do not directly use the proper-
ties of the specific problem. Frontier method is sometimes
much more efficient because it is a dynamic programming
method based on the frontier, a kind of structural property
of the given problem.

Graph enumeration problems are strongly related to
many kinds of real-life problems. For example, path enu-
meration is of course important in geographic information
systems, and is also used for dependency analysis of a pro-
cess flow chart, fault analysis of industrial systems, etc.
In order to utilize such state-of-the-art techniques, our re-
search project developed an integrated software tool set,
named “Graphillion” [5]. This tool provides an efficient
means of ZDD construction by frontier-based method for

W
=1 == A
<37

Fig.10 Sign and picture of the exhibition at Miraikan.

a given graph problem, and also gives various ZDD oper-
ations in a simple user interface based on a graph library
package written in Python. An interesting tutorial video
and the open source codes are provided at the web page of
“Graphillion.org.”. We hope that many researchers and en-
gineers will be interested in this tool and will utilize it for
various kinds of problems.

4. Recent Topics on BDD/ZDD-Based Discrete Struc-
ture Manipulation

4.1 Exhibition on “Power of Enumeration”

In 2012, our research project collaborated with “Miraikan”
(National Future Science Museum of Japan) to design an
exhibition presenting the power of combinatorial explosion
and the state-of-the-art techniques for solving such hard
problems. As a work of the exhibition, we supervised a short
educational animation video (Fig. 11). The video is mainly
designed for junior high school to college students, so it
does not use any difficult technical terms, and it is some-
thing like a funny science fiction story.

In this video, we used the simple path enumeration
problem for n X n grid graphs. The story is that the teacher
counts the total number of paths for children starting from
n = 1, but she will be faced with a difficult situation since the
number grows unbelievably fast. She would spend 250,000
years to count the paths for the 10 x 10 grid graph by us-
ing a super computer if she used a naive method. The story
ends by telling that a state-of-the-art algorithm can finish the
same problem in a few seconds.

The video is now shown in the official museum channel
of YouTube [20] and already got 1.8 million views, which is
an extraordinary in the case of scientific educational con-
tents. In addition, it was our great pleasure to hear that
Knuth also enjoyed this video and shared it to several his
friends.

The video story tells the computation result up to n =
11, but it is interesting to know how large n we can compute
for. We have worked for improving the algorithm for solving
the large-scale problems as much as possible, and succeeded
in counting the total number of self-avoiding s-r paths for
the 26x26 grid graph. This is the current world record and is
officially registered in the On-Line Encyclopedia of Integer
Sequences [19] in Nov. 2013. The results of big numbers are
listed in Table 1. The detailed techniques for solving larger
problems are presented in the report by Iwashita et al. [21].

The power of enumeration is also demonstrated in a

IEICE TRANS. INF. & SYST., VOL.E100-D, NO.8 AUGUST 2017

1560
Table 1 The world record of the self-avoiding path enumeration problems [19].

n The number of paths

1 2
2 12
3 184
4 8512
5 1262816
6 575780564
7 789360053252
8 3266598486981642
9 41044208702632496804
10 1568758030464750013214100
11 182413291514248049241470885236
12 64528039343270018963357185158482118
13 69450664761521361664274701548907358996488
14 227449714676812739631826459327989863387613323440
15 2266745568862672746374567396713098934866324885408319028
16 68745445609149931587631563132489232824587945968099457285419306
17 6344814611237963971310297540795524400449443986866480693646369387855336
18 1782112840842065129893384946652325275167838065704767655931452474605826692782532
19 1523344971704879993080742810319229690899454255323294555776029866737355060592877569255844
20 3962892199823037560207299517133362502106339705739463771515237113377010682364035706704472064940398
21 31374751050137102720420538137382214513103312193698723653061351991346433379389385793965576992246021316463868
22 755970286667345339661519123315222619353103732072409481167391410479517925792743631234987038883317634987271171404439792
23 55435429355237477009914318489061437930690379970964331332556958646484008407334885544566386924020875711242060085408513482933945720
24 12371712231207064758338744862673570832373041989012943539678727080484951695515930485641394550792153037191858028212512280926600304581386791094
25 8402974857881133471007083745436809127296054293775383549824742623937028497898215256929178577083970960121625602506027316549718402106494049978375604247408

26 17369931586279272931175440421236498900372229588288140604663703720910342413276134762789218193498006107082296223143380491348290026721931129627708738890853908108906396

Fig.11 Screenshots of the animation video [20].

problem of railway route search. Figure 12 shows one of our
original tool Ekillion [22], to enumerate self-avoiding paths
in a railway network of a large city area in Japan. For exam-
ple, in Tokyo, Ochanomizu-station and Suidobashi-station
are adjacent to each other, but we may find more than six
million of self-avoiding path from and to the two stations in
Tokyo metropolitan area. The longest self-avoiding paths of
them includes as many as 343 stations. This tool is available
at a web site for public.

4.2 Analysis of Power Distribution Networks

In 2011, a big earthquake was occurred in Japan. After
the severe accident of the nuclear plants, the electric power
supply networks receive more attentions from the society in
Japan, since solar and wind power generators are not stable
as the traditional systems. Thus, our research group accel-
erate our collaborative work with the researchers in power
electric community.

As an output of our research project, Inoue et al. [23]
presented the design method of electric power distribution
systems using ZDDs. Figure 13 shows a trivial example
of power distribution network. Here we have a number
of switches to connect or disconnect the adjacent districts.
Each district must be connected to a power substation, or
black out otherwise. We have another constraint that any
two power substations must not directly connected. We
also need to consider that too much currency may burn a
line, and that too long distance connection may cause volt-

go! | [tokyo 1131203 1131204 weight=stations order=dsc topk=10 inc= exc= outmode=1 Pe 1041
WASREC R
ite Matbasm
AR = ws J etz 9 ?cshm,
atgiroto S i
L P ~d N ?ﬁ ::

rsukuba
Longest self- av0|d|ng cycles

(343 statlons)

BER 7 /7K - R
BER) AGig JREF‘BJ

Rl wer TN koto TOKY, -:" .
= ° T /-
YaANESHy \vokn ma / 74
T 10 oot kanacHfls 7 4§
— fatose Ei’;) '
= 6,482,787 self-avoiding paths £ ¥
From Ochanomizu to Suidobashi L~ =

J—HIZB7L

v 10/ b — Htha6482787

JL—}0000001] ER£¢: 344 ERRA%6:343
)= F000000] ER #%: :343
L=t 0
=001

)L} 0000005] R 3¢: 343 BRIIAE:

Fig.12 Ekillion: path enumeration tool for railway networks.

1o3

Fig.13 An example of power distribution network.

age down. Now we have a combinatorial problem to find a
good switching pattern. Even for this trivial example with
14 switches, we will find 210 feasible switching patterns out
of 16384 combinations. A typical realistic benchmark net-
work contains 468 switches and the search space becomes
about 10" combinations.

Most of civil engineering systems can be modeled by
planar (or nearly planar) graphs, so the Frontier method is
very effective in many cases. We succeeded in generating a
ZDD to enumerate all the possible switching patterns for the
realistic benchmark with 468 switches. The obtained ZDD
represents as many as 10% of valid switching patterns but
the actual ZDD size is less than 100MByte, and computa-
tion time is around 30 minutes. After generating the ZDD,

MINATO: POWER OF ENUMERATION — RECENT TOPICS ON BDD/ZDD-BASED TECHNIQUES

Fig.14 Layout of evacuation regions in Kyoto city [24].

Fig.15 Partitioning for electoral districts.

all valid switch patterns are compactly represented, and we
can efficiently discover the switching patterns with maxi-
mum, minimum, and average cost. We can also apply other
various additional constraints to the current solutions. Now
our research project are collaborating with TEPCO (Tokyo
Electric Power Company) to make experiments for evaluat-
ing energy loss on the real commercial network.

4.3 Evacuation Planning for Disasters

Evacuation planning in a city is an important problem in
civil engineering. Figure 14 shows a layout problem of evac-
uation regions in North Ward of Kyoto city. Here we have a
number of refuge spots in the city, and now we have a prob-
lem that which region may evacuate to which refuge spot.
Every region must be assigned to a refuge spot. We also
have constraints that too many refugees into one refuge spot
may cause overflow, and that too long distance route takes
too long time for evacuation. Thus, we can see that this
is a very similar problem as the power distribution prob-
lem. ZDD construction using Frontier method is also ef-
fective for enumerating all possible solutions and analyzing
the best solution of this problem. We presented our result at
an international conference on operation research [24], col-
laborating with researchers in the civil engineering research
community.

4.4 Partitioning Electoral Districts
Partitioning electorial districts is another important prob-

lem to support democratic social systems. Suppose that
we would like to elect k representatives from a prefecture,

1561

which is composed of a number of cities. We divide the
prefecture into k connected components to elect one repre-
sentative for each component under the condition that any
city must not be split and all the components are desired to
be balanced. For this purpose, we represent the prefecture
as a vertex-weighted graph, where its vertex corresponds
to a city, two vertices are adjacent if and only if the cor-
responding cities have the common border, and the weight
of a vertex means the population in the city. In this situ-
ation, we should reduce the disparity of weights (the ratio
of maximum and minimum weights) as much as possible,
under various geographical and social constraints. Kawa-
hara, Hotta, et al. [25] developed a method for enumerating
all the possible solutions of partitions satisfying a given dis-
parity thresholds. For example, Ibaraki prefecture of Japan
includes 41 city units to be partitioned into 7 districts. It can
be represented in a graph including 41 vertices and 87 edges.
They developed an algorithm based on Frontier method, and
they enumerated 11,893,998,242,846 partitions of 7 con-
nected components. After that they found 25,730,669 so-
lutions which satisfies the condition of 1.4 or less disparity
of voting weight. Computation time was about a half hour
in a commodity PC. The disparity threshold can easily be
changed as 1.3, 1.2, etc., and thus the politicians and gov-
ernors may evaluate the feasibility of the current solution of
electoral partition.

5. Conclusion

In this article, we presented recent research activities on
BDD/ZDD-based discrete structure manipulation. Although
many years have passed since BDDs/ZDDs were developed,
there are still many interesting and exciting research top-
ics related to them. Especially, the frontier-based search
method is important because many kinds of practical prob-
lems are efficiently solved by some variations of this algo-
rithm.

In order to construct standard techniques discrete struc-
ture manipulation for efficiently solving large-scale and
practical problems in various fields, a nation-wide research
project, JST ERATO [7], was executed from 2009 to 2016.
The project was successfully finished, and a successor
project, JISPS KAKENHI(S) [26], is now running until 2020.
Many interesting research results were produced in those re-
search projects, and some of topics are still attractive to be
explored more. We hope to see many kinds of applications
in real-life problems.

Acknowledgment

This work is partly supported by JSPS KAKENHI(S)
15HO05711.

References
[1] R.E. Bryant, “Graph-based algorithms for Boolean function ma-

nipulation,” IEEE Transactions on Computers, vol.C-35, no.8,
pp-677-691, 1986.

http://dx.doi.org/10.1109/tc.1986.1676819

1562

(2]

[3]

(4]

(3]
(6]

(71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

S. Minato, “Zero-suppressed BDDs for set manipulation in combi-
natorial problems,” Proc. of 30th ACM/IEEE Design Automation
Conference (DAC’93), pp.272-277, 1993.

D.E. Knuth, The Art of Computer Programming: Bitwise Tricks &
Techniques; Binary Decision Diagrams, Addison-Wesley, 2009.

S. Minato, “Techniques of BDD/ZDD: Brief history and recent ac-
tivity,” IEICE Transactions on Information and Systems, vol.E96-D,
no.7, pp.1419-1429, 2013.

T. Inoue and et al., “Graphillion.” http://graphillion.org/, 2013.

T. Inoue, H. Iwashita, J. Kawahara, and S. Minato, “Graphillion:
software library for very large sets of labeled graphs,” International
Journal on Software Tools for Technology Transfer (STTT), vol.18,
no.l1, pp.57-66, 2016.

S. Minato, “Overview of ERATO Minato project: The art of discrete
structure manipulation between science and engineering,” New Gen-
eration Computing, vol.29, no.2, pp.223-228, 2011.

E. Loekit and J. Bailey, “Fast mining of high dimensional expres-
sive contrast patterns using zero-suppressed binary decision dia-
grams,” Proc. The Twelfth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD2006), pp.307—
316, 2006.

S. Minato, “VSOP (valued-sum-of-products) calculator for knowl-
edge processing based on zero-suppressed BDDs,” in Federation
over the Web, ed. K. Jantke, A. Lunzer, N. Spyratos, and Y. Tanaka,
Lecture Notes in Computer Science, vol.3847, pp.40-58, Springer
Berlin Heidelberg, 2006.

S. Minato, T. Uno, and H. Arimura, “LCM over ZBDDs: Fast gen-
eration of very large-scale frequent itemsets using a compact graph-
based representation,” in Advances in Knowledge Discovery and
Data Mining, ed. T. Washio, E. Suzuki, K. Ting, and A. Inokuchi,
Lecture Notes in Computer Science, vol.5012, pp.234-246, Springer
Berlin Heidelberg, 2008.

S. Minato, K. Satoh, and T. Sato, “Compiling bayesian networks by
symbolic probability calculation based on zero-suppressed BDDs,”
Proc. of 20th International Joint Conference of Artificial Intelligence
(IJCAI-2007), pp.2550-2555, 2007.

M. Ishihata, Y. Kameya, T. Sato, and S. Minato, “Propositionalizing
the EM algorithm by BDDs,” In Proc. of 18th International Confer-
ence on Inductive Logic Programming (ILP 2008), pp.44—49, 2008.
A. Darwiche, “SDD: A new canonical representation of proposi-
tional knowledge bases,” Proc. of 22nd International Joint Confer-
ence of Atrtificial Intelligence (IJCAI-2011), pp.819-826, 2011.

R. Yoshinaka, T. Saitoh, J. Kawahara, K. Tsuruma, H. Iwashita, and
S. Minato, “Finding all solutions and instances of numberlink and
slitherlink by ZDDs,” Algorithms, vol.5, no.4, pp.176-213, 2012.
R. Agrawal, T. Imielifiski, and A. Swami, “Mining association rules
between sets of items in large databases,” ACM SIGMOD Record,
vol.22, no.2, pp.207-216, 1993.

B. Goethals, “Survey on frequent pattern mining,” 2003. http://www.
cs.helsinki.fi/u/goethals/publications/survey.ps.

M.J. Zaki, “Scalable algorithms for association mining,” IEEE
Trans. Knowl. Data Eng., vol.12, no.3, pp.372-390, 2000.

T. Uno, Y. Uchida, T. Asai, and H. Arimura, “LCM: an efficient
algorithm for enumerating frequent closed item sets,” Proc. Work-
shop on Frequent Itemset Mining Implementations (FIMI’03), 2003.
http://fimi.cs.helsinki.fi/src/.

“Number of nonintersecting (or self-avoiding) rook paths joining op-
posite corners of an n X n grid, the on-line encyclopedia of integer
sequences,” 2013. https://oeis.org/A007764.

S. Doi and et al., “Time with class! let’s count! (the art of 1094 —
understanding vastness —),” 2012. YouTube video, http://www.
youtube.com/watch?v=Q4gTV4r0zRs.

H. Iwashita, Y. Nakazawa, J. Kawahara, T. Uno, and S. Minato, “Ef-
ficient computation of the number of paths in a grid graph with mini-
mal perfect hash functions,” Hokkaido University, Division of Com-
puter Science, TCS Technical Reports, vol. TCS-TR-A-10-64, 2013.
Y. Hamuro and et al., “Ekillion.” http://www.nysol.jp/en/home/apps/

IEICE TRANS. INF. & SYST., VOL.E100-D, NO.8 AUGUST 2017

ekillion/, 2014.

[23] T. Inoue, K. Takano, T. Watanabe, J. Kawahara, R. Yoshinaka, A.
Kishimoto, K. Tsuda, S. Minato, and Y. Hayashi, “Distribution loss
minimization with guaranteed error bound,” IEEE Transactions on
Smart Grid, vol.5, no.1, pp.102-111, 2014.

[24] A. Takizawa, Y. Takechi, A. Ohta, N. Katoh, T. Inoue, T. Horiyama,
J. Kawahara, and S. Minato, “Enumeration of region partitioning
for evalcuation planning based on zdd,” Proc. of International sym-
posium on Operation Research & its Applications (ISORA2013),
pp.64-71,2014.

[25] J. Kawahara, T. Horiyama, K. Hotta, and S. Minato, “Gener-
ating all patterns of graph partitions within a disparity bound,”
Proc. of the 11th International Workshop of Algorithms and Com-
putation (WALCOM2017), (LNCS 10167, Springer), vol.10167,
pp-119-131, 2007.

[26] Japan Society for the Promotion of Science (JSPS), KAKENHI(S)
15HO5711: Research on Core Algorithms for Discrete Structure Ma-
nipulation Systems, 6 2015. https://www.jsps.go.jp/english/e-grants/
grants07_2015.html#sogo.

Shin-ichi Minato is a Professor at the Grad-
uate School of Information Science and Tech-
nology, Hokkaido University. He received the
B.E., M.E., and D.E. degrees in Information Sci-
ence from Kyoto University in 1988, 1990, and
1995, respectively. He worked for NTT Labo-
ratories from 1990 until 2004. He was a Vis-
iting Scholar at the Computer Science Depart-
ment of Stanford University in 1997. He joined
Hokkaido University as an Associate Professor
in 2004, and has been a Professor since October
2010. He also serves a Visiting Professor at National Institute of Informat-
ics from 2015. His research interests include efficient representations and
manipulation algorithms for large-scale discrete structures, such as Boolean
functions, sets of combinations, sequences, permutations, etc. He served
a Research Director of JST ERATO MINATO Discrete Structure Manip-
ulation System Project from 2009 to 2016, and now he is leading JSPS
KAKENHI(S) Project until 2020. He is a senior member of IEICE and
IPSJ, and is a member of IEEE and JSAIL

http://dx.doi.org/10.1145/157485.164890
http://dx.doi.org/10.1587/transinf.e96.d.1419
http://dx.doi.org/10.1007/s00354-011-0105-4
http://dx.doi.org/10.1007/11605126_3
http://dx.doi.org/10.3390/a5020176
http://dx.doi.org/10.1145/170036.170072
http://dx.doi.org/10.1109/69.846291
http://dx.doi.org/10.1109/tsg.2013.2288976
http://dx.doi.org/10.1007/978-3-319-53925-6_10

