
2674
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.11 NOVEMBER 2017

SURVEY PAPER

Software Analysis Techniques for Detecting Data Race

Pilsung KANG†a), Member

SUMMARY Data races are a multithreading bug. They occur when
at least two concurrent threads access a shared variable, and at least one
access is a write, and the shared variable is not explicitly protected from
simultaneous accesses of the threads. Data races are well-known to be hard
to debug, mainly because the effect of the conflicting accesses depends on
the interleaving of the thread executions. Hence there have been a multitude
of research efforts on detecting data races through sophisticated techniques
of software analysis by automatically analyzing the behavior of computer
programs. Software analysis techniques can be categorized according to
the time they are applied: static or dynamic. Static techniques derive pro-
gram information, such as invariants or program correctness, before run-
time from source code, while dynamic techniques examine the behavior at
runtime. In this paper, we survey data race detection techniques in each of
these two approaches.
key words: concurrency, program analysis, data race

1. Introduction

Multithreading is very popular in today’s software. Typ-
ical examples include high-concurrency Internet servers
which deal with simultaneous requests from large number
of clients, and GUI (Graphical User Interface) components
that have to repaint itself, respond to user input events, and
perform spell-checking or play a song at the same time.
However, multithreaded programming is error-prone and it
is very easy to make synchronization mistakes, which causes
data races. These data races occur when the programmer
fails to properly protect a shared variable from concurrent
accesses of multiple threads. Specifically, a data race occurs
when at least two concurrent threads access a shared vari-
able, and at least one access is a write, and the threads use
no explicit mechanism to prevent the accesses from being
simultaneous.

Data races are hard to debug. They are difficult to re-
produce since the interleaving of thread execution depends
on the scheduler, and sometimes they just remain undetected
and change data structure invariants. This causes program
failure later in the future, which makes it hard to trace back
and can sometimes result in severe consequences [1]–[3].

There has been much effort to develop automatic tools
for detecting data races. The detection techniques are
broadly categorized according to the time they are applied to
the subject program: static and dynamic. Static techniques

Manuscript received June 9, 2017.
Manuscript publicized August 9, 2017.
†The author is with Department of Computer Engineering,

Youngsan University, South Korea.
a) E-mail: pilsungk@ysu.ac.kr

DOI: 10.1587/transinf.2017EDR0004

try to extract the program information from source code be-
fore program runtime, while dynamic techniques examine
the behavior at runtime. In this paper, we survey the data
race detection techniques in line with these two approaches,
together with a set of evaluation points.

The remainder of this paper is organized as follows.
In Sect. 2, we describe two most commonly used data race
detection models: the happens-before relation and the lock-
sets. Then, we present representative tools and techniques
for data race detectors in Sect. 3 for static approaches and
Sect. 4 for dynamic approaches, respectively. In Sect. 5, we
present design issues in race detection techniques. Finally,
we summarize the survey and make conclusions in Sect. 6.

2. Models of Data Race Detection

In this section, we present two major models for detecting
data race: happens-before relation and locksets.

2.1 Happens-Before Relation

One of the common approaches used in detecting data races
is Lamport’s happens-before relation [4], which is a partial
order on all events of all threads in a system. The happens-
before relation was originally developed to establish causal-
ity between the events in a distributed system. The happens-
before relation, denoted by→, is defined as follows.

• Definition: The relation → on the set of events of a
system is the smallest relation satisfying the following
three conditions: (1) If a and b are events in the same
process, and a comes before b, then a → b. (2) If a
is the sending of a message by one process and b is
the receipt of the same message by another process,
then a → b. (3) If a → b and b → c then a → c.
Two distinct events a and b are said to be concurrent if
a �→ b and b �→ a.

The data race verification procedure using the happens-
before relation can be described by applying this definition
to multithreaded programs as follows.

1. Within a thread, order the events as they occurred using
the condition (1) in the above definition. Note that the
scheduling of the events is nondeterministic depending
on the execution platforms.

2. Between threads, determine the happens-before rela-
tion using the condition (2) in the above definition.

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers



KANG: SOFTWARE ANALYSIS TECHNIQUES FOR DETECTING DATA RACE
2675

In particular, consider the unlocking function call in
one thread in multithreading as sending a message by
one process, and also consider the locking call in an-
other thread as receiving the message in another pro-
cess. This is because unlocking by one thread in
multithreaded programs should happen before another
thread can grab the lock, as the message sending by one
process should causally happen before another process
receives the message in distributed systems.

3. Check whether there is a pair of accesses to the same
memory location that are concurrent. Based on the
ordering of events determined by the steps above, we
can say that a potential race is reported if two or more
threads access a shared variable and the accesses are
concurrent, which indicates that the variable is not
properly protected and can be accessed simultaneously.

Figure 1 is a simple example of one possible execution
ordering of a multithreaded program, where two threads ex-
ecute a common code segment. Inside thread 1, three pro-
gram statements are ordered sequentially and we can apply
the rules (1) and (3) of the happens-before relation to get
1 → 2, 2 → 3, and 1 → 3. Similarly for thread 2, we get
4 → 5, 5 → 6, and 4 → 6. Between the two threads, we
note that the locking of the mtx object for mutual exclusion
by thread 2 follows the unlocking of mtx by thread 1, result-
ing in 3 → 4 when the rule (2) of the definition is applied.
Considering the accesses to the shared variable x, 2 → 5
holds and there are no concurrent accesses. Hence, no races
are detected by the happens-before relation based tools.

The key feature of the tools based on the happens-
before relation is that they theoretically report no false posi-
tives [5], since when they report a data race, it means that
there is at least one alternative execution schedule where
the accesses happen simultaneously. Another advantage is
that the happens-before relation based tools do not depend
upon specific synchronization styles. Since the timing rela-
tions for detecting races are used, the tools can handle any
synchronization primitives including locks and semaphores.
But historically this approach has been hard to implement
efficiently, because it requires per-thread information about
concurrent accesses to each shared-memory location, which
can be significant to store and manage (see Sect. 5.2).

Another serious drawback is that the effectiveness of
the tools is highly dependent on the interleaving produced
by scheduler, which causes it to miss valid data races in
some cases. Figure 2 explains this with a simple example.

Fig. 1 Ordering of events in multiple threads by happens-before relation.

The program execution here is a valid ordering with respect
to the happens-before relation. Each statement within each
thread is sequentially ordered and the locking of mtx by
thread 2 happens after the unlocking of the same synchro-
nization primitive by thread 1. However, there is a poten-
tial race with the shared variable y between the two threads
since it is not properly protected by some locks. This poten-
tial race can be a real data race in another program execution
where the two statements that access y occur concurrently.
A major approach for overcoming this problem uses weaker
or relaxed versions of the happens-before relation to explore
a bigger set of event reorderings [6], [7].

2.2 Locksets

A lock is a simple synchronization object used for mutual
exclusion of a shared variable. Locksets-based tools are
based on the following simple observation: A shared vari-
able must be protected at the time of access by a nonempty
set of locks, which should supposedly protect the variable.
Hence lockset-based tools maintain a set of locks, C(x), for
each shared variable x, and compares and refines C(x) with
the locks currently held by an accessing thread whenever
it is accessed, and issues a warning if the thread does not
own any locks common with C(x). Figure 3 illustrates how
lockset-based tools operate.

In Fig. 3, the candidate set of locks C(x) is inferred dur-
ing the previous execution history, and initialized to mtx1,
mtx2. After the program starts and a thread t grabs the lock
mtx1, the set locks held(t) changes from an empty set to
contain mtx1. And when t accesses the shared variable x,
C(x) is intersected with the current locks held(t) and is re-

Fig. 2 Missed data race on y by the happens-before relation.

Fig. 3 Refining locksets for detecting data races.



2676
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.11 NOVEMBER 2017

fined to mtx1. Later, when t accesses x again with only
mtx2, the current C(x) which contain only mtx1 is inter-
sected again with locks held(t) and it becomes an empty set
since these two sets have no common locks. Therefore, the
detector issues a warning.

The concept of locksets was first introduced by Din-
ning and Schonberg [8], with the name of lock covers tech-
nique. A major disadvantage of the lockset-based tools
is that they are not very applicable to the programs that
use other synchronization primitives than locks, such as
semaphores. This is because the concept of locksets is based
on the ownership of locks by thread, which makes it difficult
for the lockset-based tools to infer which variables are sup-
posed to be protected when other synchronization primitives
are used.

3. Representative Cases: Static Techniques

Static techniques try to analyze the program to obtain infor-
mation that is valid for possible executions. The foremost
advantage of using static techniques is that actual applica-
tion execution is not required. Unlike dynamic techniques
where the application is actually executed and runtime over-
head is unavoidable in doing so, static techniques find er-
rors, even in hard-to-reach areas at runtime, in a program by
source code analysis.

The major weakness of static techniques is that the ex-
tracted properties by static analysis are only approximations
of the properties that actually hold when the program runs.
This imprecision means that static analysis may provide not
so accurate information to be useful. In addition, static tech-
niques suffer from false positives in general because they are
inherently conservative and tend to overestimate the number
of shared locations in memory. However, with the wider use
of strongly typed languages and increased hardware capa-
bilities, the research in exhaustive and rigorous static ap-
proaches is getting more active [9]–[11]. In this section, we
summarize major static techniques and tools for detecting
data race.

3.1 RacerX

RacerX [12] is a static detector that uses flow-sensitive, in-
terprocedural analysis to detect both race conditions and
deadlocks. The system is composed of the following five
phases: Retargeting with user input, control flow graph
(CFG) extraction, running checkers over the CFG, post-
processing and ranking likely races, and inspection. De-
tection method is based on the static application of lock-
set analysis to the extracted CFG. RacerX infers checking
information such as which locks protect which operations,
which code contexts are multithreaded, and which shared
accesses are dangerous, by performing depth-first search
(DFS) over the CFG. During the DFS traversal, RacerX
adds and removes locks as needed, and calls race check-
ers on each statement in the graph. For efficiency, caching
is used to remove redundant checking along the DFS traver-

sal. User supplied information is substantial for effective
operation of RacerX. This information is needed to cap-
ture the synchronization styles used in the test cases, such
as locking/unlocking functions or enabling/disabling inter-
rupts. Also users may provide annotator routines that mark
whether routines are single-threaded, multi-threaded, or in-
terrupt handlers. The annotation overhead is reported as
modest: less than 100 lines of annotations for millions lines
of checked code, which makes RacerX attractive for large
programs.

RacerX seems to be the first try to detect races against
large programs. They applied RacerX to three operating
systems code bases, including Linux, FreeBSD, and a com-
mercial system which they call system X. The performance
measurement shows quite promising results. First of all, it
is fast. They reported that it took only 2 to 14 minutes to
analyze 1.8 million line system. With respect to accuracy,
RacerX found 3 bugs for Linux and 7 bugs for System X,
although it generated false positives too.

3.2 Chord

Chord [13] is a static race detector for Java programs. Start-
ing from an initial set of all the memory access pairs, Chord
applies a series of static analysis steps to narrow down po-
tential race candidates. First, it determines if a given access
pair is actually reachable from the main method. Then, the
next stage prunes the reachable pairs by checking if the ac-
cesses in a pair are aliases such that they cause a conflict for
the same memory location. The third stage continues prun-
ing by checking if the data accessed by the pair is thread-
shared. Finally, the last step analyzes if a pair of accesses
are properly protected by a common lock. At the heart of
the Chord’s algorithm is a context sensitive points-to anal-
ysis [14] for computing precise aliases and locksets, which
directly affects the size of the search space in pruning.

The authors report that Chord discovered tens to hun-
dreds of previously unknown bugs when applied to a suite of
multithreaded Java programs as large as 646K LOC (lines of
code). However, it has been reported in other experiments
that Chord suffers from false positives [15], the notorious
shortcoming in static detection techniques.

3.3 Type-Based Race Detection

Abadi et al. [16] propose an annotation-based approach
based on a formal type system for capturing common syn-
chronization patterns. The primary design goal of the sys-
tem is provide a cost-effective way of static detection by
minimizing both the number of annotations required and the
number of false alarms produced. In this approach, the type
system is used to verify the lock-based synchronization dis-
cipline. It associates a protecting lock with each field dec-
laration, and tracks the set of locks held at each program
point. Each field declaration is annotated with guarded-by l,
to indicate that the field is protected by the lock expression l.
The type system then verifies that this lock is held whenever



KANG: SOFTWARE ANALYSIS TECHNIQUES FOR DETECTING DATA RACE
2677

the field is accessed or updated. In addition, each method
declaration is annotated with requires l1, . . . , ln, to indicate
that the locks l1, . . . , ln are held on method entry. And the
type system verifies that these locks are indeed held at each
call-site of the method, and checks that the method body is
race-free given this assumption.

Since this approach requires annotations, it heavily re-
lies on user-supplied input. In addition, it relies on the pro-
grammer to aid the verification process by providing addi-
tional type annotations. The type system was implemented
for the full Java language and the implemented race condi-
tion checker, rccjava, supports inferring default annotations
for unannotated classes and fields, thereby saving a signif-
icant amount of time for annotating large programs. The
checker was applied and found races in standard Java li-
braries and other applications. But the annotation overhead
is still considerable: about one per 50 lines of code.

3.4 IteRace

IteRace [11] focuses on the use of parallel language fea-
tures in Java 8 [17] in application code, aiming at produc-
ing less false positives with improved performance. Like
most static approaches, IteRace performs pointer analysis
to produce a call graph for program execution and a con-
trol flow graph for each method, which are then used to
compute locksets and potential races for each statement in
the program. In contrast to other approaches that use only
one abstract thread in modeling the forked threads of a par-
allel loop, IteRace uses two distinct threads to distinguish
between thread-specific objects. This 2-Threads model ef-
fectively reduces the number of memory locations to track
because thread-specific objects are modeled separately.

The authors report that IteRace found 6 bugs in 7 open
source projects with orders of magnitude less false warnings
compared to Chord. However, IteRace is specialized for
only the lambda-style parallel loops in Java and cannot han-
dle other concurrency cases like explicitly spawned threads,
which limits its applicability.

4. Representative Cases: Dynamic Techniques

Dynamic detectors instrument the program to extract rele-
vant information at runtime. The detection results are usu-
ally valid for the run in question, but make no guarantees for
other runs. Also, dynamic monitoring requires quite heavy
computations, in that it consumes significant time to run test
cases. Furthermore, their dependence on invasive instru-
mentation typically rule out their use on low-level code such
as OS kernels and device drivers, although these are the very
programs where concurrency errors are most dangerous.

However, dynamic techniques have the advantage be-
cause detailed information about a single execution is usu-
ally much easier to obtain than comparably detailed infor-
mation that is valid over all executions. In addition, they
have more realistic and accurate views of program behavior
by considering actual execution paths. In this section, we

present major dynamic techniques and tools for detecting
data race.

4.1 Eraser

Eraser [18] is widely known as the first dynamic detection
tool that applied the lockset discipline, which imposes that
every shared variable must be protected by some lock at pro-
gram execution. Any access to a shared variable unprotected
by some lock is considered an error. Specifically, Eraser
keeps track of a set of all locks, locks held(t), held by a
thread t during each shared variable access. In the mean-
time, it initializes a candidate set of locks, C(x), for each
variable x to hold all possible locks and updates C(x) on
each access by intersecting C(x) and locks held(t). If the
candidate set of locks becomes empty, this implies that the
variable is not shared by appropriate locks, and a warning
is issued. Eraser further refines this procedure to support
common programming practices that violate the discipline,
but are not real data races such as initialization, read-shared
data, and reader-writer locks.

Eraser was implemented at the binary level via bi-
nary rewriting into test applications by instrumenting each
load/store for maintaining C(x), lock acquire/release for
maintaining locks held(t), and calls to the storage alloca-
tor for initializing C(x), respectively. Eraser was reported
to have found many race conditions in the tested server
programs, although it produced false alarms too, for in-
stance, when the memory locations are privately recycled
without communicating with Eraser system. In terms of
performance, Eraser was reported to slow down the appli-
cations up to 30×, and half of the slowdown was attributed
to the procedure call overhead caused by instrumenting each
load/store for maintaining C(x).

4.2 Hybrid Dynamic Detection

The detection technique proposed by O’Callahan and
Choi [19] is the first hybrid form of the happens-before re-
lation and the locksets. It uses the locksets method for its
performance advantage, while trying to suppress false posi-
tives by using happens-before relation method. Since com-
bining these two different techniques would cause signifi-
cantly larger computational overhead than using only either
one of the two, optimizing the performance is critical. The
foremost optimization technique by the hybrid detection is
the use of the limited form of the happens-before detection,
rather than fully supporting it. Specifically targeting Java
programs, it keeps track of only the start(), join(), wait(),
and notify() methods, and the happens-before relations are
constructed on the events generated by instrumented codes
whenever any one of these methods is called. It excludes
shared memory accesses and locking/unlocking pairs. This
limited form of the happens-before relation is reported to be
very useful for suppressing false positives, while greatly re-
ducing the number of thread messages and the overhead of
maintaining vector clocks [20]. And the check they perform



2678
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.11 NOVEMBER 2017

at runtime is just the conjunction of the locksets detection
check and the limited happens-before detection check.

The system is implemented in two-phase mode to re-
duce the number of memory locations for possible races.
First, the detector runs in simple mode, where only lock-
sets detection is used to efficiently identify all Java fields
for possible races. Then, the user runs the detector in de-
tailed mode, which instruments accesses to only these “race-
prone” fields and performs the hybrid check. Experimental
results with a variety of Java programs report bugs in many
of the programs as well as false and benign races. The de-
tection overhead results were acceptable in most cases, but
were intolerable in a few cases. For instance, the simple
mode detection for raytracer ran about 27 times slower.

4.3 ThreadSanitizer

ThreadSanitizer (TSan) [21] is a hybrid race detector that
employs both the happens-before relation and the locksets.
It observes the memory access events and synchronization
events of a running program and based on this history, it con-
structs and updates the state information about global lock
states and happens-before orders for each memory location.
By checking the state information of a running program,
TSan detects races when the accesses to the same mem-
ory location are concurrent by the definition of the happens-
before relation. TSan offers an annotations API for the user
to specify different forms of synchronization in the program,
so that false positives are effectively suppressed through the
support from the user.

The original version of TSan was implemented as a
Valgrind [22] tool for binary instrumentation, resulting in
very slow performance with almost 20× to 300× slow-
down. In later versions, the implementation changed as
a compiler instrumentation with a redesigned runtime li-
brary, which improved the performance significantly. For
instance, TSan included in the Go language [23] reports 2×
to 20× slowdown for typical programs. TSan has become
very popular to be bundled with major compilers includ-
ing Clang [24] and the GCC (GNU Compiler Collection)
C/C++ front ends.

4.4 DataCollider

DataCollider [5] is a dynamic technique for kernel data race
detection. It utilizes the hardware breakpoint mechanisms
in detecting races, which allows for neutrality over com-
plex architecture-specific synchronization protocols and dif-
ferent locking primitives that can co-exist in the kernel code.
Unlike the usual user-mode programs, directly applying ei-
ther the happens-before or the lockset model is difficult for
the kernel code because synchronization abstractions such
as threads are not clearly defined due to frequent handlings
of hardware events like interrupts and DMA (direct mem-
ory access). To overcome the runtime overhead issue in dy-
namic techniques, DataCollider randomly samples instruc-
tions that access memory, instead of monitoring all memory

accesses, from disassembled program binary. DataCollider
inserts code breakpoints at sampled instructions and checks
for conflicting accesses by other threads when the break-
points are fired. To detect conflicts, DataCollider checks
the change in value at the memory location by using a data
breakpoint (or hardware watchpoint), a debugging facility
provided by modern architectures.

DataCollider has been implemented for the Windows 7
kernel on the x86 architecture. The authors report that 25
race bugs were found from various drivers and the core ker-
nel while running kernel stress tests with 1000 code break-
point samples per second, which incurred only 5% runtime
overhead.

5. Issues in Data Race Detection

In this section, we present four important design issues in
developing and evaluating data race detectors: detection ac-
curacy, overhead, scalability, and usability.

5.1 Accuracy

Accuracy is one of the most fundamental aspects of data
race detection tools. Ideally, the tools must detect every real
race while not issuing a warning on valid codes. However
most of current tools, both static or dynamic, suffer from
false alarms of races (incomplete), or do not effectively de-
tect real races (unsound). Furthermore, even true data races
can be benign and would not do any harm to the system
operation. It has been reported that the amount of such
harmless data races can be so big as 76%–90% of the true
data races reported by the modern detectors [25], which calls
for a sophisticated detection mechanism for distinguishing
harmful races over harmless ones [26].

Tools based on the happens-before relation “theoreti-
cally” do not issue false alarms, but in practice, their de-
tection accuracy depends on the thread interleavings gener-
ated by schedulers. On the other hand, locksets-based tools
catch races irrespective of actual thread interleavings, but
these tools suffer from false alarms because perfectly valid
race-free code can violate the lockset requirement. Hence
effective suppression of false alarms is an important issue
for these tools. Note that there is an interesting relation be-
tween happens-before detection and locksets-based detec-
tion, which shows that the races reported by a full happens-
before detector are a subset of the races reported by lockset-
based detection [19].

False Positives

False positives can be broadly divided into two categories
by their nature. One type of false alarms is those generated
when it is not a true data race but warnings are issued be-
cause detectors failed to get enough information about this.
For instance, Eraser reports alarms for private implementa-
tion of multiple reader, single writer locks, since these are
not part of the POSIX thread (or pthread) [27] interface
that Eraser implements.



KANG: SOFTWARE ANALYSIS TECHNIQUES FOR DETECTING DATA RACE
2679

Fig. 4 Benign race in double-checked locking.

The other type is benign races, which are true data
races but do not affect the program correctness. These races
are usually intentional for performance reasons which try to
avoid synchronization overhead. Typical examples include
double-checked locking and lazy initialization. Figure 4 il-
lustrates an example of double-checked locking.

Since the null test of the shared variable x is executed
by every thread, it would be costly for every thread to get the
lock just to see that x is not null in most cases. Hence, the
null test is doubled such that the first check is done without
costly locking operations and just passes the whole if -block
when x is not null. Otherwise, if x is null, the check is done
again seriously with a proper lock. The locksets-based de-
tectors will issue a warning for the first null check since the
check is done without protecting the shared variable with
proper locks.

False Negatives

False negatives are undetected races and a sound detector is
one that guarantees to find all races. Certainly, there is no
perfect detector and it is also usually hard to tell how many
real data races the detector failed to discover unless you have
much information about the test program. False negatives
are more serious for static detectors because any analysis
errors that cause false negatives just go silent. Therefore,
significant emphasis should be made on detecting such silent
failures [12]. Some tools based on either of the happens-
before relation or the lockset refinement are known to be
vulnerable to the false negatives caused by interleavings of
the scheduler [18], [28]. In addition, there can be a trade-off
of what to effectively suppress between false positives and
false negatives [18].

5.2 Analysis Overhead

Dynamic tools often suffer from time and space overhead
at runtime. In fact, it is known that the problem of precise
race detection is NP-hard in general [29]. Therefore, how
and where to focus detection efforts on the given programs
is the key to realizing an efficient detector. Dynamic tools
typically instrument existing binary programs and this in-
curs runtime overhead. They usually instrument each load
and store of shared memory locations, each call to locking
and unlocking calls, and each initialization and allocation
of memory. And this causes significant overhead for dy-
namic tools, where 10× or 100× performance slowdown is
not unusual [21], [30], [31]. Hence, there has been a great

amount of work to improve the runtime overhead in dy-
namic techniques. Some approaches sample and examine
a very small portion of the entire memory accesses, sacrific-
ing accuracy with increased false negatives [5], [32], [33].
Other approaches exploit the support from custom hard-
ware [34], [35] or commodity hardware [36], [37] like trans-
actional memory [38]. Another approaches include paral-
lelizing detection efforts [39], removing unnecessary infor-
mation about access orderings [40], and combining the lock-
set algorithm with happens-before reasoning [41].

Space Overhead

Space overhead is one of the hard challenges for detec-
tors based on the happens-before relation, since it requires
maintaining a large amount of per-thread information in-
cluding memory location, access time, and locks. For in-
stance, a data structure for read access used by Dinning and
Schonberg [8] needs to store N ∗ 2K entries, where N is the
number of threads and K is the number of locks. In con-
trast, the lockset-based detectors allow for simpler imple-
mentation, in that they need only information about the set
of locks for threads and shared memory. So O’Callahan and
Choid [19] proposes a hybrid race detector which combines
lockset-based detection with a limited form of happens-
before detection. Moreover, another locksets-based detec-
tor reports significant improvement in memory overhead, as
well as runtime overhead, by shifting the granularity level
of race detection to objects [28].

5.3 Analysis Scalability

Scalability is emerging as a new important issue in data race
detectors, due to the sheer size and complexity of modern
software programs that race detectors have to deal with. In
addition, today’s highly concurrent programs like Internet-
scale server applications are programmed with lots of multi-
ple threads and locks. The good detectors need to maintain
high detection accuracy, and also their performance should
slow down gradually rather than abruptly as the number of
threads and locks increases.

Static techniques tend to be more advantageous as the
size of the code base grows than dynamic techniques that
suffer from performance overhead. One major approach of
dynamic techniques for dealing with the scalability issue
is to sample only a small percentage of memory accesses
instead of analyzing the entire behavior, as described in
Sect. 5.2. In a similar manner, static techniques often make
trade-offs between accuracy and efficiency in order to scale,
such as using less program information [10], focusing on po-
tentially dangerous program points only [12], or not tracking
function pointer aliasing across files [9]. Lockset-based de-
tection is reported to be insensitive to the number of threads
in terms of accuracy [18]. And the happens-before approach
will suffer from performance degradation as the number of
threads and locks increases, since it requires more and more
space for storing information as described above.



2680
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.11 NOVEMBER 2017

5.4 Detector Usability

After all, race detectors are a tool. Most users want easy-to-
use and fast, while effective, detectors. Since most detectors
need user input to capture program information and need
to constantly communicate with users for analysis, effective
detectors try to extract as much as information with as little
user input as possible.

Some detection tools are specialized for applications
written in a certain concurrent programming model or lan-
guages. This kind of tools can be very effective in finding
races in terms of accuracy and performance because they
can utilize innate characteristics of the used programming
model or language. For instance, for OpenMP [42] appli-
cations, on-the-fly detection mechanisms have been devel-
oped [43]. However, these techniques cannot be directly ap-
plied for other parallel programming models like pthreads.

Program Annotations

Program annotations are a way of communication between
detectors and test programs. Dynamic race detectors usually
use program annotations to effectively suppress false posi-
tives [18], [19]. Annotations are frequently used in static
techniques too. Warlock [44] implements annotations as
compiler directives and use them in tracing execution paths
for lock-based concurrent programs. IteRace [11] relies on
the programmer to specify which part of the code is thread
safe or not in order to filter true races.

Annotation is more than crucial for annotation-based
tools. A type-based race detector by Abadi et al. [16] is
based on programmer annotations to specify which lock
should be held to access a variable. Hence, effective use
of annotations while maintaining accuracy is a major chal-
lenge for them. In order to avoid the burden of manual an-
notations, the annotation process can be automated to some
extent [45].

User Input about Program Information

Some tools need the user to supply program information or
relevant hints in order to narrow the scope of the analysis,
thus accelerating the detection performance. For instance,
in RacerX [12], the user is supposed to supply a table speci-
fying the functions used to acquire and release locks as well
as those that disable and enable interrupts (i.e., synchroniza-
tion styles). In this way, the user can get faster, more rele-
vant, and more precise results for his or her program. Simi-
larly, a fast dynamic detector with less than 5× overhead has
been reported with the support from the user specifying the
parts of the program for analysis [46].

User-Friendly Race Detection

RacerX has the ability of sorting out potentially significant
races from trivial violations by using heuristics to identify
and rank likely races [12]. This allows the user to quickly
focus on dangerous points in large programs. The hybrid

method [19] improved usability by reporting more informa-
tion about detected races, which eases the debugging pro-
cess.

6. Summary and Conclusions

This paper discussed static and dynamic techniques for de-
tecting data races. We described the happens-before relation
and locksets method as the most common approaches for
data race detection. The happens-before relation exploits
causality among the events generated by multiple threads,
whereas the locksets principle imposes that a thread trying
to access a shared variable must hold some locks which are
supposed to protect the variable. We presented four aspects
in evaluating data race detectors: accuracy, overhead, scal-
ability, and usability. Accuracy is the most important goal
in designing race detectors. Tools based on the happens-
before relation are theoretically sound and do not generate
false alarms but their accuracy depends on thread interleav-
ing. On the other hand, locksets-based tools do not depend
on thread interleaving, but they suffer from false alarms. On-
the-fly dynamic tools that instrument existing binary pro-
gram typically suffer from runtime overhead, hence some
dynamic tools perform static analysis in advance to focus
their detection efforts. Space overhead is a major challenge
for detectors based on the happens-before relation, because
they have to maintain a large amount of per-thread informa-
tion.

Scalability is getting more critical as software becomes
more complex on modern computing systems with parallel
applications getting increasingly widespread. We foresee
that software-only solutions are not sufficient for tackling
the hard performance and scalability requirements of the
modern data race detectors. In this respect, recent hardware-
assisted and hardware-software co-design [47] approaches
are promising to accomplish more perfection.

Last but not least, usability is an important aspect of
the race detector. Most users want to find a small num-
ber of serious errors quickly for their large programs, rather
than having a large number of trivial errors with slow tools.
Therefore, making effective use of the user input as in the
annotation-based tools for quickly capturing the synchro-
nization styles and essential program information will be a
key to realizing successful race detection tools on modern
computing environments.

Acknowledgements

This work was supported by a 2017 research grant from
Youngsan University, Republic of Korea. This work was
supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIP; Min-
istry of Science) (No. 2017R1C1B2009361).

References

[1] N.G. Leveson and C.S. Turner, “An investigation of the Therac-25

http://dx.doi.org/10.1109/mc.1993.274940


KANG: SOFTWARE ANALYSIS TECHNIQUES FOR DETECTING DATA RACE
2681

accidents,” Computer, vol.26, no.7, pp.18–41, 1993.
[2] K. Poulsen, “Tracking the blackout bug,” 2004,

http://www.securityfocus.com/news/8412
[3] J. Jackson, “Nasdaq’s facebook glitch came from ‘Race Condi-

tions’,” 2012. http://www.computerworld.com/article/2504676/
financial-it/nasdaq-s-facebook-glitch-came-from--race-conditions-.
html

[4] L. Lamport, “Time, clocks, and the ordering of events in a dis-
tributed system,” Commun. ACM, vol.21, no.7, pp.558–565, 1978.

[5] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk, “Effective
data-race detection for the kernel,” Proc. 9th USENIX Conference
on Operating Systems Design and Implementation, Berkeley, CA,
USA, pp.151–162, 2010.

[6] K. Sen, G. Roşu, and G. Agha, “Detecting errors in multithreaded
programs by generalized predictive analysis of executions,” Proc.
7th IFIP WG 6.1 International Conference on FMOODS, Lecture
Notes in Computer Science, vol.3535, pp.211–226, Springer-Verlag,
Berlin, Heidelberg, 2005.

[7] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flanagan,
“Sound predictive race detection in polynomial time,” Proc. 39th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pp.387–400, 2012.

[8] A. Dinning and E. Schonberg, “Detecting access anomalies in pro-
grams with critical sections,” Proc. ACM/ONR Workshop on Paral-
lel and Distributed Debugging, pp.85–96, May 1991.

[9] J.W. Voung, R. Jhala, and S. Lerner, “RELAY: Static race detec-
tion on millions of lines of code,” Proc. 6th Joint Meeting of the
European Software Engineering Conference and the ACM SIG-
SOFT Symposium on the Foundations of Software Engineering,
ESEC-FSE ’07, pp.205–214, 2007.

[10] P. Pratikakis, J.S. Foster, and M. Hicks, “LOCKSMITH: Practi-
cal static race detection for C,” ACM Trans. Program. Lang. Syst.,
vol.33, no.1, pp.3:1–3:55, Jan. 2011.

[11] C. Radoi and D. Dig, “Practical static race detection for Java parallel
loops,” Proc. 2013 International Symposium on Software Testing
and Analysis, pp.178–190, 2013.

[12] D. Engler and K. Ashcraft, “RacerX: Effective, static detection of
race conditions and deadlocks,” Proc. Nineteenth ACM Symposium
on Operating Systems Principles, pp.237–252, Oct. 2003.

[13] M. Naik, A. Aiken, and J. Whaley, “Effective static race detec-
tion for Java,” Proc. 27th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’06, pp.308–319,
2006.

[14] A. Milanova, A. Rountev, and B.G. Ryder, “Parameterized object
sensitivity for points-to analysis for Java,” ACM Trans. Softw. Eng.
Methodol., vol.14, no.1, pp.1–41, Jan. 2005.

[15] M. Eslamimehr and J. Palsberg, “Race directed scheduling of
concurrent programs,” Proc. 19th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’14,
pp.301–314, 2014.

[16] M. Abadi, C. Flanagan, and S.N. Freund, “Types for safe locking:
Static race detection for Java,” ACM Trans. Program. Lang. Syst.,
vol.28, no.2, pp.207–255, March 2006.

[17] “State of the lambda: Library edition,” http://cr.openjdk.java.net/
˜briangoetz/lambda/lambda-state-final.html

[18] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A dynamic data race detector for multithreaded programs,”
ACM Trans. Computer Systems, vol.15, no.4, pp.391–411, Nov.
1997.

[19] R. O’Callahan and J.-D. Choi, “Hybrid dynamic data race detec-
tion,” Proc. 9th ACM Symposium on Principles and Practice of Par-
allel Programming, pp.167–178, June 2003.

[20] F. Mattern, “Virtual time and global states of distributed systems,”
Parallel and Distributed Algorithms, vol.1, no.23, pp.215–226,
1989.

[21] K. Serebryany and T. Iskhodzhanov, “ThreadSanitizer: Data race
detection in practice,” Proc. Workshop on Binary Instrumentation

and Applications, pp.62–71, 2009.
[22] N. Nethercote and J. Seward, “Valgrind: A framework for heavy-

weight dynamic binary instrumentation,” Proc. 28th ACM SIG-
PLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’07, pp.89–100, 2007.

[23] A.A. Donovan and B.W. Kernighan, The Go Programming Lan-
guage, 1st ed., Addison-Wesley Professional, 2015.

[24] “clang: A C language family frontend for LLVM,”
http://clang.llvm.org/

[25] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder,
“Automatically classifying benign and harmful data races using re-
play analysis,” Proc. 28th ACM Conference on Programming Lan-
guage Design and Implementation, pp.22–31, 2007.

[26] B. Kasikci, C. Zamfir, and G. Candea, “Data races vs. data race bugs:
Telling the difference with portend,” Proc. 17th Conference on Ar-
chitectural Support for Programming Languages and Operating Sys-
tems, pp.185–198, 2012.

[27] IEEE, POSIX.1c, Threads extensions, IEEE Std 1003.1c, 1995.
[28] C. von Praun and T.R. Gross, “Object race detection,” Proc. 16th

ACM Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pp.70–82, Oct. 2001.

[29] R.H.B. Netzer and B.P. Miller, “What are race conditions? Some is-
sues and formalizations,” ACM Letters on Programming Languages
and Systems, vol.1, no.1, pp.74–88, March 1992.

[30] P. Sack, B.E. Bliss, Z. Ma, P. Petersen, and J. Torrellas, “Accurate
and efficient filtering for the Intel thread checker race detector,” Proc.
1st Workshop on Architectural and System Support for Improving
Software Dependability, pp.34–41, 2006.

[31] L. Effinger-Dean, B. Lucia, L. Ceze, D. Grossman, and H.-J. Boehm,
“IFRit: Interference-free regions for dynamic data-race detection,”
Proc. International Conf. on Object Oriented Prog. Syst. Lang. and
Apps., pp.467–484, 2012.

[32] D. Marino, M. Musuvathi, and S. Narayanasamy, “LiteRace: Effec-
tive sampling for lightweight data-race detection,” Proc. 30th ACM
Conference on Programming Language Design and Implementation,
pp.134–143, 2009.

[33] M.D. Bond, K.E. Coons, and K.S. McKinley, “PACER: Proportional
detection of data races,” Proc. 31st ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’10,
pp.255–268, 2010.

[34] P. Zhou, R. Teodorescu, and Y. Zhou, “HARD: Hardware-assisted
lockset-based race detection,” Proc. IEEE 13th International Sym-
posium on High Performance Computer Architecture, pp.121–132,
2007.

[35] A. Muzahid, D. Suárez, S. Qi, and J. Torrellas, “SigRace:
Signature-based data race detection,” Proc. 36th Annual Interna-
tional Symposium on Computer Architecture, pp.337–348, 2009.

[36] T. Zhang, D. Lee, and C. Jung, “TxRace: Efficient data race detec-
tion using commodity hardware transactional memory,” Proc. 21st
International Conference on Archi. Support for Prog. Lang. and
Oper. Syst., pp.159–173, 2016.

[37] Y. Jiang, Y. Yang, T. Xiao, T. Sheng, and W. Chen, “DRDDR: A
lightweight method to detect data races in linux kernel,” Journal of
Supercomputing, vol.72, no.4, pp.1645–1659, 2016.

[38] M. Herlihy, J. Eliot, and B. Moss, “Transactional memory: Architec-
tural support for lock-free data structures,” Proc. 20th International
Symposium on Computer Architecture, pp.289–300, 1993.

[39] B. Wester, D. Devecsery, P.M. Chen, J. Flinn, and S. Narayanasamy,
“Parallelizing data race detection,” Proc. Eighteenth International
Conference on Architectural Support for Programming Languages
and Operating Systems, pp.27–38, 2013.

[40] C. Flanagan and S.N. Freund, “FastTrack: Efficient and precise dy-
namic race detection,” Proc. 30th Conference on Prog. Lang. Design
and Implementation, pp.121–133, 2009.

[41] Y. Yu, T. Rodeheffer, and W. Chen, “RaceTrack: Efficient detection
of data race conditions via adaptive tracking,” Proc. 12th Symp. on
Operating Systems Principles, pp.221–234, 2005.

http://dx.doi.org/10.1109/mc.1993.274940
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1007/11494881_14
http://dx.doi.org/10.1145/2103656.2103702
http://dx.doi.org/10.1145/122759.122767
http://dx.doi.org/10.1145/1287624.1287654
http://dx.doi.org/10.1145/1889997.1890000
http://dx.doi.org/10.1145/2483760.2483765
http://dx.doi.org/10.1145/945445.945468
http://dx.doi.org/10.1145/1133981.1134018
http://dx.doi.org/10.1145/1044834.1044835
http://dx.doi.org/10.1145/2555243.2555263
http://dx.doi.org/10.1145/1119479.1119480
http://dx.doi.org/10.1145/265924.265927
http://dx.doi.org/10.1145/781498.781528
http://dx.doi.org/10.1145/1791194.1791203
http://dx.doi.org/10.1145/1791194.1791203
http://dx.doi.org/10.1145/1250734.1250746
http://dx.doi.org/10.1145/1250734.1250738
http://dx.doi.org/10.1145/2150976.2150997
http://dx.doi.org/10.1145/504282.504288
http://dx.doi.org/10.1145/130616.130623
http://dx.doi.org/10.1145/1181309.1181315
http://dx.doi.org/10.1145/2384616.2384650
http://dx.doi.org/10.1145/1542476.1542491
http://dx.doi.org/10.1145/1806596.1806626
http://dx.doi.org/10.1109/hpca.2007.346191
http://dx.doi.org/10.1145/1555754.1555797
http://dx.doi.org/10.1145/2954680.2872384
http://dx.doi.org/10.1007/s11227-016-1691-1
http://dx.doi.org/10.1109/isca.1993.698569
http://dx.doi.org/10.1145/2451116.2451120
http://dx.doi.org/10.1145/1543135.1542490
http://dx.doi.org/10.1145/1095810.1095832


2682
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.11 NOVEMBER 2017

[42] L. Dagum and R. Menon, “OpenMP: An industry standard API for
shared-memory programming,” IEEE Computational Science and
Engineering, vol.5, no.1, pp.46–55, 1998.

[43] O.-K. Ha, I.-B. Kuh, G.M. Tchamgoue, and Y.-K. Jun, “On-the-fly
detection of data races in OpenMP programs,” Proc. 2012 Workshop
on Parallel and Distributed Systems: Testing, Analysis, and Debug-
ging, pp.1–10, 2012.

[44] N. Sterling, “Warlock: A static data race analysis tool,” Winter
USENIX, San Diego, California, pp.97–106, Jan. 1993.

[45] C. Flanagan, K.R.M. Leino, “Houdini, An annotation assistant for
ESC/Java,” Symposium of Formal Methods Europe, pp.500–517,
March 2001.

[46] M. Metzger, X. Tian, and W. Tedeschi, “User-guided dynamic
data race detection,” International Journal of Parallel Programming,
vol.43, no.2, pp.159–179, 2015.

[47] J. Devietti, B.P. Wood, K. Strauss, L. Ceze, D. Grossman, and S.
Qadeer, “RADISH: Always-on sound and complete race detection
in software and hardware,” 39th Annual International Symposium
on Computer Architecture (ISCA), pp.201–212, June 2012.

Pilsung Kang is an Assistant Professor
in the Department of Computer Engineering at
Youngsan University, South Korea. His research
interests include computational science, parallel
systems, and high-performance software. Kang
has a Ph.D. in computer science from Virginia
Tech.

http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1145/2338967.2336808
http://dx.doi.org/10.1007/3-540-45251-6_29
http://dx.doi.org/10.1007/s10766-013-0296-z
http://dx.doi.org/10.1109/isca.2012.6237018

