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BiometricJammer: Method to Prevent Acquisition of Biometric
Information by Surreptitious Photography on Fingerprints

SUMMARY  Advances in fingerprint authentication technology have
led to it being used in a growing range of personal devices such as PCs and
smartphones. However, they have also made it possible to capture finger-
prints remotely with a digital camera, putting the target person at risk of il-
legal log-ins and identity theft. This article shows how fingerprint captured
in this manner can be authenticated and how people can protect their finger-
prints against surreptitious photography. First we show that photographed
fingerprints have enough information to spoof fingerprint authentication
systems by demonstrating with “fake fingers” made from such photographs.
Then we present a method that defeats the use of surreptitious photography
without preventing the use of legitimate fingerprint authentication devices.
Finally, we demonstrate that an implementation of the proposed method
called “BiometricJammer,” a wearable device put on a fingertip, can effec-
tively prevent the illegal acquisition of fingerprints by surreptitious pho-
tography while still enabling contact-based fingerprint sensors to respond
normally.

key words: biometrics, fingerprint authentication, anti-spoofing, fake fin-
gers, surreptitious photography

1. Introduction

Biometric authentication is becoming increasingly common
and is now installed as a standard feature on many personal
devices such as PCs and smartphones. The spread of fin-
gerprint authentication has been particularly remarkable—
the proportion of smartphones that feature fingerprint sen-
sors is expected to reach 67% during 2018[1]. In addi-
tion, the resolution of image sensors has increased to the
point where they can capture biometric information. It is
now feared that fingerprint information which is convention-
ally obtained by contact-based fingerprint sensors could be
obtained remotely by taking a surreptitious photograph. In
2014, a German hacker showed that he had successfully ob-
tained a politician’s fingerprint by taking photographs from
a distance with an off-the-shelf digital camera [2]. The same
hacker also demonstrated that a “fake finger” created using
such a photograph can be used to unlock a smartphone [3].
In short, we now face another threat: the use of a photograph
of someone’s fingerprints for illegal logins and identity theft.

Although wearing gloves is an effective way to prevent
fingerprints from being photographed, doing so is inconve-
nient for users who need to operate legitimate fingerprint
authentication devices. We have thus developed a method
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for preventing surreptitious photography of fingerprints that
prevents the improper acquisition of fingerprint informa-
tion without seriously inconveniencing the user. We imple-
mented this method in a prototype device called “Biomet-
ricJammer” and used it to demonstrate that our proposed
method performs effectively.

Section 2 describes related work, Sect. 3 describes how
the fingerprint authentication systems can be spoofed using
fingerprints replicated from photographs, and Sect. 4 discuss
methods for preventing fingerprint information from being
obtained from photographs. Finally, in Sect. 5, we describe
the implementation of our prototype and evaluation.

2. Related Works

An open issue in the field of automated biometric is “live-
ness security”’—that is, is the biometric property being used
to access the system from a real living person? In the case
of fingerprints, although attacks using dead or altered fin-
gers has been reported [4], [5], most vulnerability studies
have focused on spoofing using fake fingers, i.e., two- or
three-dimensional replicas of residual fingerprints. In the
early 2000s, Putte and Keuning [6] and Matsumoto et al. [7]
reported that a number of commercial fingerprint sensors
could be spoofed with a three-dimensional mold made of
cheap materials such as silicone rubber or gelatin. More
recently Cao and Jain [8] succeeded in unlocking mod-
ern smartphones by using printed fingerprints created using
an off-the-shelf inkjet printer and special conductive ink.
Nowadays there are many tutorials on the web on how to
make such replicas using common materials.

Traditional countermeasures against fingerprint spoof-
ing use “liveness detection,” which detects specific biologi-
cal properties in addition to fingerprint images. These meth-
ods are either hardware- or software-based.

Hardware-based methods detect biomedical properties
that are difficult to reproduce using materials commonly
used for creating fake fingerprints. For example, Reddy et
al. [9] proposed a method based on pulse oximetry which
detects peripheral oxygen saturation (SpO,) using probes of
different wavelength. Baldisserra et al. [10] uses a chemical
sensor that detects a skin odor different from those of fake
finger materials. The method of Martinsen et al. [11] mea-
sures bioelectrical impedance using an array of electrodes,
that of Rowe et al.[12] uses multispectral imaging under
different illuminations, orientations and polarization condi-
tions, and that of Cheng and Larin [13] uses optical coher-
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ence tomography which can obtain in-depth imaging of hu-
man tissue including epidermis and dermis. One drawback
of these methods is that an extra device is required, and such
a device is difficult to attach to existing systems.

Software-based methods detect evidence of liveness
using captured fingerprint images themselves. These meth-
ods require more than one image or an image of higher res-
olution to verify a fingerprint. For example, Derakhshani et
al. [14] proposed a method that used the difference between
perspiration patterns obtained from a pair of fingerprint im-
ages captured at an interval. The method of Chen et al. [15]
measures skin elasticity when a finger is pressed on a sen-
sor surface, that of Marcialis et al. [16] analyzes distribution
of pores, and that of Moon et al. [17] distinguishes textures
between a live finger and a fake fingerprints using wavelet
analysis.

Multi-modal biometric systems had been considered
more secure than systems using a single biometric prop-
erty. However, Rodrigues et al. [18] showed that such sys-
tems are even less secure if one of the biometric traits can
be spoofed. Subsequently, Johnson et al.[19], Akhtar et
al. [20], Marasco et al. [21] proposed fusion methods more
robust against spoofing attempts.

Outside the fingerprint community, several recent study
have focused on privacy protection. Harvey [22] created
fashion camouflage art that prevents detection by computer
vision, Feng and Prabhakaran [23] created an automated
application program that facilitates the camouflage design,
and Yamada et al. [24] suggested simple eyewear that pre-
vents automatic face detection without inhibiting face-to-
face communication. We aim to apply similar ideas to fin-
gerprint security and privacy by developing a method that
prevents fingerprints from being stolen without harming the
effectiveness of relevant security systems.

3. Principles of Fingerprint Authentication
3.1 Obtaining Fingerprint Data

In this section we explain the principles of fingerprint sen-
sors that are currently in widespread use.

Figure 1 illustrates the principle of capacitive finger-
print sensor [25]-[27]. It has a two-dimensional array of
electrodes embedded in a chip. When a finger is placed on
the chip, a small electrical charge is created between the sur-
face of the finger and each electrode. Since the amount of
the charge vary according to the distance between the skin
and the corresponding electrode, ridges and valleys in the
fingerprint result in different capacitances. The sensor maps
each voltage applied to a micro-capacitor to the intensity of
a pixel.

The sensor is coated with dielectric material such as
passivation oxide or polymer compound to protect the sili-
con chip against physical impacts and chemical substances.
Since sensing accuracy decreases with an increase in the
coating thickness, the coating is typically less than 20 um
thick [28], [29].
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Fig.1 Principle of capacitive fingerprint sensor.
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Fig.2  Principle of optical fingerprint sensor.

Figure 2 illustrates the principle of optical fingerprint
sensor [30], [31]. A prism is used to measure the differences
in reflection conditions. The light entering the prism is re-
flected at the valleys of the fingerprint due to making use
of frustrated total internal reflection (FTIR). In contrast, the
light is randomly scattered at the ridges since the refraction
index changes due to the contact of the finger skin. The sen-
sor maps the reflected light to the pixel intensities.

An FTIR-based sensor introduces trapezoidal distor-
tion in captured image since the optical path length varies
with the contact point [32]. The sensor is sensitive to the
presence of air bubbles, even only a few um of air bubbles
can make the pixels brighter [33].

3.2 Extracting and Matching Feature Points

Minutiae matching is most commonly used to recognize
fingerprints from obtained fingerprint images [34]. This
method involves detecting and matching of feature points
(minutiae) instead of focusing ridges and valleys directly.
Ridge endings and bifurcations are used in particular among
a number of feature types.

Figure 3 shows a fingerprint image for each step of
minutiae detection. A captured image consists of two-
dimensional array of intensities while a minutiae detector
considers a fingerprint to be a bunch of connected lines in
which ridge endings and bifurcations are to be detected.
Several technologies have made fingerprint detection more
effective, including image binarization [35], [36], image en-
hancement [37], [38], crease removal [39], [40].

The extracted feature points are represented as a set of
triplets p = {x, vy, t}, where x and y represent the feature
coordinates, and t represents the feature orientation. These
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Fig.3  Minutiae detection.

(a) Whole fingerprint (b) Close-up

Fig.4  Example of fingerprint photographs.

feature points are saved in a list which is called a finger-
print template. A fingerprint matcher compares the feature
point list obtained from the input image with the one ob-
tained from an image registered in advance to identify a fin-
gerprint. Fingerprint matching can thus be regarded as a
pattern matching problem between sets of points.

3.3 Obtaining Fingerprints from Fingerprint Photographs

Figure 4 (a) shows an example of a fingerprint image taken
with a digital camera, and Fig. 4 (b) shows a close-up of the
same image. Digital cameras differ from contact-based fin-
gerprint sensors in that they sample the shades produced by
the ridges and valleys of the fingerprint instead of the physi-
cal structure of the fingerprint. As a result, these images tend
to be noisy and lacking in contrast. However, this problem
can be overcome by using noise removal techniques such as
spatial filtering.

One type of spatial filtering is called adaptive binariza-
tion [41], [42]. For a pixel at (%, y), the threshold value
d(x,y) is expressed as the average intensity over a local re-
gion D of pixel intensities 1(x, y):

1
dixy) =5 D 1) (1)

x,ycD

In the context of digital image processing, D is as-
sumed to be a square region of convolution kernel. Let k
the kernel size that is the length of one side of D. Figure 5
shows the results of performing adaptive binarization on an
image shown in Fig.4 (b) in various kernel sizes. The ac-
tual spacing between ridges is ~10 pixels in this example,
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(a) k=3 (b) k=11 (c) k=99

Fig.5  Results of adaptive binarization.

(a) Photograph

(b) Binarized image (c) Fake finger

Fig.6  Fingerprint replication.

thus the results show that the fingerprint can be effectively
restored when k is close to the spacing.

3.4 Replicating Fingerprints from Fingerprint Photographs

We demonstrated how attackers can replicate fingerprints
from photographs taken from a distance by actually making
fake fingers using off-the-shelf stamp-making machine. Fig-
ure 6 shows images at each step of fingerprint replication.
We took several images using two digital single-lens reflex
(DSLR) cameras and a smartphone at various distances and
cut out fingertip areas of the images. Next we scaled the im-
ages to the resolution of fingerprint sensors (~500 pixels per
inch) and adaptively binarized them with kernel size k = 11
pixels. Then we printed the scaled images on a transparent
plastic sheet and used the stamp-making machine as a stamp
template. The machine irradiated ultraviolet light through
the transparent regions of the template, solidifying the pho-
tosensitive emulsion coated on a rubber sheet of stamp ma-
terial. Finally, we washed out the emulsion that had not been
irradiated. The resulting sheet had ridges and valleys similar
to the binarized image.

We verified that the fake fingers described above can
spoof fingerprint authentication system. We acquired im-
ages of real fingerprints and the fake fingers using a finger-
print sensor. Then we matched both images using commer-
cial fingerprint matching program Neurotechnology Ver-
iFinger [43]. It calculates matched scores based on the
similarity between feature points extracted from both im-
ages. The score is close to zero for different fingerprints and
reaches hundreds for the same fingerprints (upper limit is
not regulated). The minimum score at which a matching is
considered as a true match is called matching threshold. It
is linked to the false acceptance rate (FAR) as shown in the
following formula:

Threshold = —121og,, FAR 2)
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Table 1  Matching scores of replicated fingerprints.
Camera Binarized Fake ﬁnger Fake f'mger
. . . captured with a captured with an
(distance in m) image i .
capacitive sensor optical sensor
DSLR camera
(5.4) 97 96 51
DSLR camera
(1.6) 179 163 109
Smartphone
0.3) 94 116 78

For example, a matched score of 48 or more is regarded
as true match for the FAR of 0.01%, 96 or more is as well
for the FAR of 0.000001%.

Table 1 shows the results. According to the definition
above, all samples in the table could deceive fingerprint au-
thentication system for the FAR of 0.01%. In addition, if the
binarized image could spoof a fingerprint recognition sys-
tem, the replicated fingerprint could also spoof the system
since the ridge endings and bifurcations were preserved al-
though the image quality may have been degraded through
the physical process of replication.

In our test, the scores for the capacitive sensor were
close to those for the source image and much better than
those for the optical sensor. However, it does not mean that
capacitive sensors are easier to deceive since the quality of
captured image depends on the material and the method of
replication.

4. Proposed Method
4.1 Research Policies and Approach

We decided the method to be devised for the problem of
surreptitious photography of fingerprints must meet three re-
quirements.

e The method must enable the user’s fingerprints to be
authenticated using contact-based fingerprint sensors.

o The method must make it impossible to authenticate a
fingerprint derived from a photograph.

e The method must be user-centric, i.e., no need for en-
forcement in sensors or by authentication systems

Our approach to achieving these requirements is to use a
“wearable jamming pattern” that users can put on and take
off in accordance with the situation.

4.2 Overview of Proposed Method

As shown in Fig. 7, the wearable jamming pattern consists of
a base layer that is transparent to visible light and a pattern
layer that scatters light in the visible region. The base layer
sticks securely to the user’s fingertip so that the pattern layer
is superimposed over the fingerprint and interferes with fin-
gerprint recognition. The material used for each layer must
be safe to the human body. Candidate materials are silicone
and medical wound dressings for the base layer and zinc ox-
ide and titanium dioxide for the pattern layer.
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Fig.7  Overview of proposed method.
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Fig.8  Effect of jamming pattern on capacitive fingerprint sensor.

Coverage rate and line density have a significant influ-
ence on the jamming effect. As we describe in Sect. 4.5,
patterns with a coverage rate of 40% or more and a line den-
sity of 10 LPT or less are suggested in case of uniform dot
patterns. Shape is less important and arbitrary shapes with
above conditions are expected to have similar effects.

4.3 Transparent to Fingerprint Sensors

A user wearing the proposed jamming pattern should still
achieve authentication using contact-based fingerprint sen-
sors. Figure 8 shows the effect of the jamming pattern on
capacitive fingerprint sensor. If the base layer and pattern
layer are both made of dielectric material, their effect can be
regarded as an increase in the thickness of the coating mate-
rial on the contact plane. The quality of the captured image
is affected by the distance between the finger and an elec-
trode. Compared with Fig. 1 (b), the contrast and sharpness
are lower in Fig. 8 (b). However, a minutiae detector can ex-
tract feature points from the image since ridges and valleys
can still be distinguished. We confirmed that both layers of
less than 50 um thick did not prevent minutiae detection.

Figure 9 shows the effect of the jamming pattern on
optical fingerprint sensor. As described above, ridges and
valleys are distinguished by the total internal reflection con-
dition on the prism surface. When a finger with the jamming
pattern contacts the prism, the sensor light reflects or scat-
ters at the boundary of the base material and the air since the
reflectance of the material is closer to that of the glass than
to that of the air.
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Fig.9  Effect of jamming pattern on optical fingerprint sensor.
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Fig.10  Example of jamming pattern.

Despite this light-scattering property of the pattern
layer, light is not blocked by the pattern shapes since the
layer is thin enough for the sensor light. There are broken
ridges, especially within the pattern shape, since air bubbles
were mixed when we painted the pattern material. We can
overcome this problem by using production methods that
suppress the formation of bubbles.

Minutiae detector is able to repair defects in obtained
images, e.g. broken ridges in Fig. 9 (b). In contrast, feature
points are still preserved despite of the repair. As described
in Sect. 5.4, we observed no decline in success rate for the
scanned images with jamming pattern.

4.4 Effects of Jamming Pattern

The proposed method causes fingerprint recognition from
photographs to fail by adding jamming pattern. As dis-
cussed above, for a fingerprint from a photograph to be rec-
ognized, the fingerprint has to be emphasized by perform-
ing spatial filtering with a suitable kernel size. When this is
done, the jamming pattern superimposed on the fingerprint
is also emphasized, and this disrupts the fingerprint recog-
nition process. Figure 10 shows an example of jamming
pattern with a uniform dot shape, and Figure 11 shows an
example of the jamming effects caused by this pattern. The
dots produce the smallest amount of the effects when there
are of the same level of brightness as the skin. The greater
the difference in brightness between the dots and the skin,
the greater the effects.

The jamming pattern causes the following types of in-
terference.

o Generation of spurious feature points: the minutiae de-
tector detects ridges in an input image comprising a set
of pixels and uses them to reconstruct a set of lines.
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(a) Dot is darker
than skin

(b) Roughly equal
brightness

(c) Dot is brighter
than skin

Fig.11  Example effect of jamming pattern.
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Fig.12  Generation of spurious feature points.
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Fig.13  Loss of original feature points.

During this process, partial defects and extra branches
not present in the original ridges are removed, but the
superimposed dots result in the jamming factors being
incorrectly recognized as ridges, which results in the
creation of false endings and bifurcations (Fig. 12).

e Loss of original feature points: the superimposition of
dots close to a feature points leads to ambiguity in the
judgment of endings and bifurcations although judge-
ment was previously performed correctly, so these fea-
ture points are excluded from the detection results.
Moreover, when the connection relationships between
ridges become overly complicated, the resulting struc-
ture may be regarded as unreliable, and the detected
set of feature points may be discarded in its entirety
(Fig. 13).

Misclassification of feature points: due to the high sen-
sitivity noise in the input image, the classification of
feature points into endings and bifurcations tends to
vary somewhat. When dots are superimposed on the
input image, the threshold value for this classification
varies and can result in the feature points being classi-
fied into different types (Fig. 14).

4.5 Investigation of Pattern Types

As mentioned above, effects of the jamming pattern are
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(a) Without jamming pattern (b) With jamming pattern

Fig.14  Misclassification of feature points.
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Fig.16  Fill methods.

weakest when the pattern has roughly the same brightness as
the skin. Attackers might attempt to exploit this character-
istic by filling in the pattern regions with skin color to can-
cel out the effects. To examine the extent to which patterns
can withstand this type of attack, we performed a finger-
print recognition simulation using sample patterns of vary-
ing size. We prepared samples with coverage rates of 20%),
40%, and 60% and with line densities of 10 LPI, 20 LPI, and
40 LPI for each coverage rate (Fig. 15). Using each of the
nine sample patterns produced in this way, we processed the
same fingerprint image by applying three different fill meth-
ods in which the dot pattern was filled in with (a) light gray,
(b) the average skin color, and (c) the skin color around the
periphery of each dot, and we used these as input images for
fingerprint recognition (Fig. 16).

Figure 17 shows the matching results. We used Ver-
iFinger to match images and regarded score of 48 or above

7
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(c) Skin color around the periphery of each dot

Fig.17  Sample pattern matching results.

as a successful match for FAR of 0.01%. Cases in which
a feature point could not be detected were given a match-
ing score of zero. With a light gray fill color, none of the
patterns were matched (i.e., the interference was success-
ful). However, with the other two fill methods, the matching
scores were much higher. For the same line density, the
matching score decreased as the coverage rate increased,
and for the same coverage rate, the matching scores de-
creased with the line density. These results show that a pat-
tern with a coverage rate of 40% or more and a line density
of 10 LPI or less is resilient against pattern canceling attacks
based on color filling.

5. Evaluation
5.1 Evaluation Prototype

Taking into account the results of our investigation de-
scribed above, we implemented the proposed method in a
product called “BiometricJammer” that can be applied to
the user’s fingertips. We painted acrylic resin for the base
layer using a paintbrush and transcribed acrylic paint for the
pattern layer using a nail art template which has geometric
pattern instead of uniform dot pattern described so far. Re-
sulting pattern had 40% coverage rate and 13 LPI line den-
sity. The appearance and structure of this device are shown
in Fig. 18.
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Table 2  Evaluation environment.

BiometricJammer (acrylic resin for base and
acrylic paint for patterns, coverage rate 40%)
(a) DigitalPersona EikonTouch 710 (capacitive
sensing, scan size 13x18 mm, resolution 508
ppi)

(b) DigitalPersona U.are.U 4500 (optical
sensing, scan size 15x18 mm, resolution 512
ppi)

Canon EOS 70D (20.2 megapixel, automatic
ISO speed, automatic exposure, 1-point
autofocus)

Canon EF-S 18-135 mm F3.5-5.6 IS STM
(focal length fixed at 135 mm)

1-5 m (in 0.5-m increments)

Outdoors, cloudy/sunny (subject illumination:
7,800-31,600 lux)

Implementation

Fingerprint sensors

Digital camera

Lens

Shooting distance

Lighting conditions

(a) Without (b) With (c) With
BiometricJammer BiometricJammer BiometricJammer,
after color fill
operation

Fig.19  Input images.

5.2 Matching from Photographs

We used our BiometricJammer prototype device and four
subjects to evaluate the effectiveness of our proposed
method. The evaluation environment is summarized in Ta-
ble 2. The evaluation procedure was as follows.

e Step 1: use a fingerprint sensor to scan and record the
test subject’s fingerprint (thumb on right hand) before
attaching the prototype.

e Step 2: take a picture of the same finger with a dig-
ital camera; match this photograph against the image
recorded in step 1 (Fig. 19 (a)).

e Step 3: attach the prototype to the same finger and take
a photograph of it; match this photograph against the
image recorded in step 1 (Fig. 19 (b)).

o Step 4: fill in the pattern parts of the photographic im-
age obtained in step 3 using the average color of the
surrounding pixels; match the resulting image against
the image recorded in step 2 (Fig. 19 (c)).
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Fig.20  Matched subjects using VeriFinger.

The photographs used in steps 2, 3, and 4 were scaled
to the same size as the recorded image in step 1 (~500
ppi) by using image processing software. They were then
adaptively binarized with a kernel size k = 11 pixels. We
used two fingerprint matching software packages to perform
matching: Neurotechnology VeriFinger and NIST Biomet-
ric Image Software (NBIS) [44].

5.3 Matching Results from Photographs

Figures 20 and 21 show the matching results from pho-
tographs using VeriFinger. The former shows how the num-
ber of matches varied with the shooting distance and the lat-
ter shows the average match scores of the subjects. Fig-
ures 20 (a) and 21 (a) are results using a capacitive sensor
and Figs. 20 (b) and 21 (b) are results using an optical sen-
sor. We again regarded the score of 48 or above as a suc-
cessful match for the FAR of 0.01%. We also regarded the
score to zero if no feature point was detected due to the low
image quality.

In case of “without BiometricJammer”, all the test sub-
jects were matched when the shooting was from a distance
of 2m or less, and some of them could be matched at a dis-
tance of up to 3 m. This indicates that attackers can take fin-
gerprint images with sufficient quality to spoof fingerprint
authentication without being noticed by the target. How-
ever, fingerprint cannot be obtained from all photographs in
which fingers appear since most photographs does not focus
on the fingertips, and the fingerprints may even be blurred
due movement by the target.

In contrast, in cases of “with BiometricJammer” and
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lower scores for the registered fingerprints, the matching Shooting distance (m)
results were comparable to those for the capacitive sensor. (a) Capacitive sensing
We think that is because feature points were well extracted
at registration though image quality may have differed be- o 300 === Without
tween the methods. 3 BiometricJammer
Figures 22 and 23 show the matching results from pho- § 200 With
. . . < 4 4
tographs using NIST Biometric Image Software (NBIS). g BiometricJammer
The former shows how the number of matches varied with % 100 With
the shooting distance and the latter shows the average % \ ?fltzrrn:(t)ﬁ)cr]gﬂlmer’
matching scores of the subjects. Figures 22 (a) and 23 (a) are 0 —me S _ operation
results using a capacitive sensor and Figs. 22 (b) and 23 (b) 1 152253354455
are results using an optical sensor. We used the MINDTCT Shooting distance (m)

feature detector to detect minutiae from image, and the BO-
ZORTH3 fingerprint matcher to match the minutiae between
the registered and input images. Both are included in the
NBIS toolkit. Though the false acceptance rate was not
clear, we followed the general guideline; i.e., a match score
more than 40 was regarded as a successful match [45]. We
also regarded the score to zero if no feature point was de-
tected due to the low image quality.

The results are similar to those for VeriFinger. In
case of “without BiometricJammer”, subjects were matched

(b) Optical sensing
Fig.23  Average matching scores using NBIS.

at 2m or less. In cases of “with BiometricJammer” and
“with BiometricJammer, after color fill operation”, num-
ber of matched subjects was zero at any distance. In for-
mer case, matched subjects were less than for VeriFinger
since matching accuracy was more sensitive to image ro-
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Table 3  Matching results with fingerprint sensors for VeriFinger.
(a) Capacitive sensing
Test subject Successful Min. score Max. score
matches
A 9 262 441
B 8 44 211
C 9 163 276
D 9 59 158
(b) Optical sensing
Test subject Successful Min. score Max. score
matches
A 9 196 333
B 3 19 80
C 9 263 370
D 9 179 375
Table4  Matching results with fingerprint sensors for NBIS.
(a) Capacitive sensing
Test subject Successful Min. score Max. score
matches
A 9 52 111
B 2 14 42
C 7 38 80
D 0 0 30
(b) Optical sensing
Test subject Successful Min. score Max. score
matches
A 8 39 76
B 0 9 23
C 9 41 94
D 2 22 48

tation and scaling. Better matching could be obtained by
more precisely aligning the input images with the registered
ones. About the difference between the sensing methods
used for fingerprint registration, optical sensing resulted in
less matched subjects and lower match scores than capaci-
tive sensing, similar to the trend in the case of VeriFinger.

5.4 Matching with Fingerprint Sensor

Next, we investigated whether legitimate fingerprint authen-
tication with a fingerprint sensor could be achieved when
wearing the prototype BiometriclJammer. For each type of
fingerprint sensor, we obtained three registration images and
three authentication images, and performed matching a to-
tal of nine times, recording the total number of successes
and the maximum and minimum matching scores. We again
used VeriFinger and NBIS for the matching.

Table 3 shows the results for VeriFinger. Three of
the four test subjects achieved successful matching in ev-
ery trial. The large variation in matching scores was due
to the lack of consistency in the placement of the subjects’
fingers on the fingerprint sensor since each sensor had no
means to guide finger placement. The number of successes
was particularly low for subject B since the captured regions
of the registered images were biased to the left while those
of the input images were biased to the right. As a result,
there was little common area between the images. The re-
sults shows that there is no decline in success rate when the
jamming pattern is attached if the matching program is ac-
curate enough.
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Fig.24 Difference in detected minutiae for subject D (capacitive sens-
ing).

Table 4 shows the results for NBIS. Subjects A and C
again scored well while subjects B and D had worse scores
than for VeriFinger. As mentioned above, image rotation
affected the accuracy of the matching program. The most
remarkable finding was that none of the images matched for
subject D for capacitive sensing while all of them matched
under the same condition for VeriFinger.

Figure 24 shows the difference in detected minutiae
for subject D between programs. VeriFinger well re-
paired the ridge gaps caused by the printed pattern of
BiometricJammer, whereas NBIS detected many spurious
feature points. This is attributed to the paint being too thick
due to the lack of adjustment function for the pattern mate-
rial.

6. Conclusion

Advances in biometric technology have made our everyday
lives more secure and more convenient through the use of
biological information for personal identification and au-
thentication. However, the risks associated with the theft
and exploitation of this biological information are also in-
creasing. We focused on the problem of fingerprint theft by
means of surreptitious photography and developed a method
called BiometricJammer that prevents the illegal acquisition
of fingerprints without inconveniencing the user. Evaluation
testing using a prototype implementation demonstrated that
it is possible to extract fingerprints from photographs and
that the proposed technique provides an effective counter-
measure to this problem.

We think proposed method is not a goal. As we derived
an effective pattern experimentally, it remains a task for the
future work to explain theoretically how the jamming pat-
tern lowers match score effectively.

Other forms of biological information besides finger-
prints that could be used for personal identification and au-
thentication include the patterns of the iris and of the veins
in the fingers or palms. We plan to continue researching
methods aimed at preventing the illegal acquisition of each
type of information.
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