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Fast Visual Odometry Based Sparse Geometric Constraint for
RGB-D Camera

Ruibin GUO†a), Student Member, Dongxiang ZHOU†, Keju PENG†, and Yunhui LIU††, Nonmembers

SUMMARY Pose estimation is a basic requirement for the autonomous
behavior of robots. In this article we present a robust and fast visual odom-
etry method to obtain camera poses by using RGB-D images. We first
propose a motion estimation method based on sparse geometric constraint
and derive the analytic Jacobian of the geometric cost function to improve
the convergence performance, then we use our motion estimation method
to replace the tracking thread in ORB-SLAM for improving its runtime per-
formance. Experimental results show that our method is twice faster than
ORB-SLAM while keeping the similar accuracy.
key words: pose estimation, fast visual odometry, geometric cost function,
iterative optimization, 3D reconstruction

1. Introduction

Pose estimation is crucial for robotics mapping and con-
trol tasks. The visual odometry can estimate the robot’s
pose with onboard cameras which provides sufficient pose
information. Methods employing monocular cameras have
been proposed in [1], [2]. However, the trajectory com-
puted by these methods are not the true scale of the real
world. To estimate the absolute true scale factor, more in-
formation should be incorporated. This is achieved either
by intergrating the monocular camera with Inertial Measure-
ment Units [3] or by using the stereo cameras [4]. Equiped
with color and depth information, the RGB-D cameras pro-
vide a more convenient way for Simultaneous Localization
and Mapping (SLAM) problem. The methods that simul-
taneously recover camera poses and reconstruct 3D scene
mapping by using RGB-D sensor can be divided into two
classes: feature-based methods and dense methods. Each
class of methods has its own advantages and disadvantages
in practical application.

The feature-based methods use feature points to con-
struct constraint and then solve the camera poses. RGB-
D SLAM [5] was the first popular open-source system in
which the motion estimation was computed by feature
matching and ICP. Endrs et al. [6] presented a mapping
system based on visual keypoints and provided an open-
source implementation to stimulate scientific comparison
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and progress. Latter, the ORB-SLAM [7] that uses the same
ORB features for tracking, mapping and place recognition
tasks represents the state-of-the-art feature-based SLAM
system. Since the feature-based methods require feature ex-
traction and matching at each frame, it takes up most of the
time for computing relative pose. In addition, the feature
descriptors that used to matching keypoints are not robust to
illumination change.

For dense methods, the pose is estimated with a dense
front-end. KinectFusion [8] maintained the single scene
model with a global volumetric, this system is limited
to small workspaces due to its volumetric representation.
Kinectinuous [9] was able to operate in large environments
by using a rolling cyclical buffer and using place recogni-
tion for loop closing. ElasticFusion [10] is capable of cap-
turing comprehensive dense globally consistent surfel-based
maps of room scale environments. Kerl et al. [11] proposed
a dense visual SLAM method for RGB-D cameras that min-
imized both the photometric and the depth error over all
pixels. Nevertheless, the number of points processed at
each frame is large (typically hundreds of thousands), which
make the local optimization computationally infeasible in
real-time.

In our work, a geometric cost function and its analytic
Jacobian are derived for pose estimation and we combine
our motion estimation method with ORB-SLAM for im-
proving its performance. The contributions of this work in-
clude:

• We propose a motion estimation method based on
sparse geometric constraint, which is robust to illu-
mination changes and eliminates the feature-matching
process to reduce the runtime of motion estimation.
• We derive the analytic Jacobian of the geometric cost

function to improve the convergence performance.
• We improve the performance of ORB-SLAM by ex-

cluding the keypoints near the objects’ edges and using
our fast motion estimation method to estimate poses.

2. Proposed Method

In this section, we first derive a warping function and con-
struct the geometric error function by using probabilistic
theory; then the analytic Jacobian of the geometric cost
function is derived for faster convergence; at last, we com-
bine our motion estimation method with ORB-SLAM to im-
prove its runtime performance and excluding the keypoints
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near the objects’ edges for more accurate pose estimation.

2.1 Warping Function for Depth Map

For two consecutive depth images dk−1 and dk shown in
Fig. 1, an image point u1 = (u1, v1)T at depth dk−1 is trans-
formed to the current depth plane dk by the warping function
W(·) and its pixel coordinate u

′
1 is predicted.

Firstly, we reconstruct the 3D point p1 = (x, y, z)T cor-
responding to the pixel u1 = (u1, v1)T by using the inverse
projection function:

p1 = πππ
−1(u1, dk−1(u1)) = dk−1(u1)

(
u1−cx

fx
,
v1−cy

fy
, 1

)T

(1)

where fx, fy are the focal lengths on x axis and y axis, and
(cx, cy)T is the camera centra coordinate.

Then, p1 is transformed to p
′
1 = Rk,k−1 · p1 + tk,k−1

in dk coordinate by using rigid-body transformation matrix

Tk,k−1 =

[
Rk,k−1 tk,k−1

01×3 1

]
, where Rk,k−1 is a 3 × 3 rotation

matrix and tk,k−1 = (tx, ty, tz)T is a 3 × 1 vector represents a
translation from frame dk−1 to frame dk.

Lastly, p
′
1 is projected to depth map dk by the projec-

tion function πππ(·) : R3 �→ R2, and the warping function is:

u
′
1 = W(Tk,k−1,u1, dk−1(u1))

= πππ(Rk,k−1 · πππ−1(u1, dk−1(u1)) + tk,k−1) (2)

where πππ(p) = ( fx
x
z + cx, fy

y
z + cy)T and p = (x, y, z)T .

2.2 Constructing Geometric Cost Function

For a pixel ui at depth image dk−1, the residual error as the
geometric difference between dk−1 and dk is:

r(ui) = dk(W(Tk,k−1,ui, dk−1(ui)))

− �Rk,k−1 · πππ−1(ui, dk−1(ui)) + tk,k−1�3 (3)

where �·� represents the Z-component of a 3D point.
The distribution of the residual error can be described

by a conditional probabilistic p(ri|ξ), where ξ = (ω, t)T is the
corresponding twist coordinates of Tk,k−1, ω is the angular
velocity and t is the linear velocity. The twist coordinate ξ

Fig. 1 Estimation for the relative pose through minimizing the geometric
difference between image pixels corresponding to the same 3D points.

is mapped to SE(3) by exponential map [12]:

Tk,k−1(ξ) = exp(ξ̂) (4)

where ξ̂ =

(
[ω]× tT

0 0

)
, and [ω]× is the skew symmetric

matrix of ωT .
For n pixels ui with i = 1, 2, . . . , n, the likelihood of the

whole residual becomes p(r|ξ) = ∏
i

p(ri|ξ). Using Bayes’

rules, the posterior likelihood of a camera motion ξ is:

p(ξ|r) =
p(r|ξ)p(ξ)

p(r)
(5)

The prior p(ξ) models the potential knowledge of the
states before we do the measurements. If we know noth-
ing, p(ξ) is a uniform distribution with constant value. By
maximizing the posterior probability, ξ can be estimated:

ξMAP = arg max
ξ

p(ξ|r) = arg max
ξ

∏
i

p(ri|ξ)p(ξ)

= arg min
ξ
−

∑
i

log p(ri|ξ) − log p(ξ)

= arg min
ξ
−

∑
i

log p(ri|ξ) (6)

The minimum is obtained by setting the derivative of
the logarithmic likelihood function to zero:

−
∑

i

∂ log p(ri|ξ)
∂ξ

= −
∑

i

∂ log p(ri|ξ)
∂ri

∂ri

∂ξ
= 0 (7)

By defining w(ri) = ∂ log p(ri|ξ)/∂ri · 1/ri, we obtain∑
i
∂ri/∂ξ · w(ri) · ri = 0, and the optimization problem in

(6) is equivalent to the weighted least squares problem:

ξMAP = arg min
ξ
−1

2

∑
i

w(ri) · r2
i (8)

As the depth noise nd of all pixels is independent and follows
Gaussian distribution [13], i.e. nd ∈ N(0, σ2

d), and p(ri) ∝
exp(−r2

i /σ
2
d), then w(ri) is a constant value, and we get the

geometric cost function:

ξMAP = arg min
ξ

∑
ui

‖r(ξ,ui)‖2 (9)

2.3 Analytic Jacobian Solution for Iterative Optimization

To minimize the geometric cost function (9), the Gauss-
Newton algorithm can be used, whose main idea is to ap-
proximate the error function by its first order Taylor expan-
sion that determined by Jacobian matrix around the initial
guess of variable Tk,k−1(ξ). However, the Jacobian matrix in
g2o library [14] is computed numerically by a stable small
constant, the convergence of iterative optimization is slow.
Therefore, it is important to derive the analytic Jacobian ma-
trix for faster convergence:

∂r(ξ,ui)
∂ξ

=
(
gy −gx 0 0 0 1

)
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+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∂dk(u

′
i )

∂u
′
i

· fx

∂dk(u
′
i )

∂v
′
i

· fy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
T ⎛⎜⎜⎜⎜⎜⎜⎜⎝
− gxgy
g2

z
1 + g

2
x

g2
z
− gy
gz

1
gz

0 − gx

g2
z

−1 − g2
y

g2
z

gxgy
g2

z

gx

gz
0 1

gz
− gy
g2

z

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where g = (gx, gy, gz)T = Rk,k−1 ·πππ−1(ui, dk−1(ui))+tk,k−1 and
u
′
i = (u

′
i , v

′
i)

T = πππ(g).

2.4 Improvement for ORB-SLAM

ORB-SLAM system uses ORB features for tracking, map-
ping and place recognition. We use our motion estimation
method to replace the tracking thread in ORB-SLAM for
improving its performance. The flow chart of our tracking
method for consecutive frames is shown in Fig. 2.

Runtime Performance: Feature extraction and match-
ing are the necessary steps before solving the camera poses
in ORB-SLAM. However, the point correspondences and
the relative camera motion can be obtained simultaneously
by minimizing the geometry cost function in our method, we
need not to extract the ORB features for each frame, unless
it is determined to be a keyframe.

Accuracy Performance: Since the gradients near
edges are larger than those in smooth regions, which result
in larger geometric error near the objects’ edges affected by
depth noise. We exclude the feature points near the geo-
metric boundary and use the optimized point set to estimate
camera poses:

ξMAP = arg min
ξ

∑
i∈R̃k

‖r(ξ,ui)‖2 (10)

where R̃k = {u|u ∈ Rk−1 ∧ u � Bk−1 ∧ πππ(Rk,k−1 ·
πππ−1(u, dk−1(u)) + tk,k−1) ∈ Ωk}, Rk−1 is the set of feature
points in frame Fk−1, Ωk is the image domain of depth dk,
and Bk−1 is the set of keypoints near objects’ boundary.

Robustness to Illumination Changes: The matching
points and estimated poses in our method are computed di-
rectly by using geometric values in the depth images rather
than color images, so it is robust to illumination changes.
Figure 3 shows the comparison of matching point pairs ob-
tained by feature matching method and our method on il-
lumination change images, there are 48 and 788 point cor-
respondences, respectively. The absolute translational er-
ror (ATE) of relative pose for these two images obtained

Fig. 2 Overview of our tracking method.

by feature-based method and our method is 0.0333(m) and
0.0201(m), respectively. The lower the ATE value is, the
higher the accuracy of the method is. Therefore, our method
is more robust and with higher accuracy than the feature-
based method on illumination change images.

3. Experiments and Evaluation

The TUM RGB-D dataset [15], which contains indoor se-
quences from RGB-D sensors grouping with several cate-
gories, is applied to evaluate SLAM/odometry methods and
the ORB-SLAM system is taken as comparision. We have
run both our approach and ORB-SLAM in an Intel Core i7
desktop computer with 16GB RAM, ubuntu 16.04 platform.
For each dataset, we run 5 times and the average results of
the accuracy and runtime are computed.

3.1 Accuracy

Table 1 shows the accuracy of our visual odometry method
with/without excluding points near objects’ boarder and
ORB-SLAM, the root mean square error (RMSE) of the
absolute translational error for keyframes’ poses is used as
the performance metrics. The result shows that proposed
method with excluding boarder’s points performs better than
no boarder suppression, and it works with almost the same
precision compared with ORB-SLAM. Figure 4 shows the
point clouds obtained by back-projecting the sensor depth
maps from the computed keyframe poses (represented as
blue box) in three sequences: fr3/office, fr3/st and fr2/xyz.
These pointcloud reconstructions show the accuracy of esti-
mation poses that obtained by our method intuitively.

Fig. 3 Point pairs’ matching result on illumination change images.

Table 1 Comparison of translation RMSE (m) on TUM RGB-D dataset.

Dataset Our method No boarder suppression ORB-SLAM
fr2/xyz 0.00452 0.006814 0.00384
fr2/rpz 0.00324 0.010492 0.00528

fr3/office 0.0128 0.034242 0.0132
fr3/st 0.0115 0.027164 0.0148
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Fig. 4 Dense pointcloud reconstructions from estimated keyframe poses and RGB-D information.

Table 2 Comparison of convergence performance.

Evaluation Analytic method Numerical Method
ATE (m) 0.0043 0.0047

runtime (ms) 11.70 45.08

Table 3 Runtime evaluation for pose evalution time (ms).

Dataset Our method Numerical method ORB-SLAM
fr2/xyz 20.7 69.5 31.2
fr2/rpz 19.3 64.2 27.5

fr3/office 25.8 74.2 40.4
fr3/st 18.3 67.9 29.3

3.2 Runtime Evaluation

To depict the effectiveness of our proposed analytic
Jacobian, experiments have been performed on two consec-
utive frames with 1008 point correspondences to estimate
relative pose. We have computed the runtime of iterative
process and the ATE of relative pose, as shown in Table 2.
It demonstrates that proposed analytic jacobian is 4 times
faster than the numerical jacobian used in g2o.

Table 3 shows the average runtime required for
frames by using our visual odometry method with analytic/
numerical jacobian and ORB-SLAM, this runtime consists
of 2 processes: (1) extracts feature points and pose esti-
mation for consecutive frames in front-end, (2) local map
optimization and loop detection in back-end. The process-
ing speed of the proposed method is more than 50 frames
per second. While the corresponding processing speed for
ORB-SLAM is 25 frames per second. The main reason for
the significant speed-up is that we use our proposed analytic
jacobian to estimate motion and our method does not need
feature matching procedure. In addition, our method min-
imizes the geometric cost function by using sparse reliable
ORB keypoints, which are extracted when a new keyframe
inserted instead of being extracted in each new frame.

4. Conclusion

In this paper, we proposed a sparse geometric-based motion
estimation method without feature-matching procedure, and
we derived the analytic jacobian to minimize our geometric

cost function. Our method could estimate motion directly
from geometric values without intensity-consistent assump-
tion, so it is robust to illumination changes. The computa-
tional efficiency of ORB-SLAM is significantly improved
by using our method to track sparse points in front-end,
and our method keeps the similar accuracy by using opti-
mized point set that excludes the boarders’ points to esti-
mate poses.
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[14] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W.
Burgard, “g2o: A general framework for graph optimization,”
IEEE International Conference on Robotics and Automation, vol.7,
pp.3607–3613, 2011.

[15] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of RGB-D SLAM systems,” Intelligent
Robots and Systems, pp.573–580, 2012.

http://dx.doi.org/10.1109/iros.2013.6696650
http://dx.doi.org/10.1111/j.0031-868x.2004.295_2.x
http://dx.doi.org/10.1109/3dimpvt.2012.84
http://dx.doi.org/10.1109/icra.2011.5979949
http://dx.doi.org/10.1109/iros.2012.6385773

