1106

IEICE TRANS. INF. & SYST., VOL.E102-D, NO.5 MAY 2019

[LETTER

Memory Saving Feature Descriptor Using Scale and Rotation
Invariant Patches around the Feature Ppoints

Masamichi KITAGAWA ', Nonmember and Tkuko SHIMIZU ™, Member

SUMMARY To expand the use of systems using a camera on portable
devices such as tablets and smartphones, we have developed and propose a
memory saving feature descriptor, the use of which is one of the essential
techniques in computer vision. The proposed descriptor compares pixel
values of pre-fixed positions in the small patch around the feature point and
stores binary values. Like the conventional descriptors, it extracts the patch
on the basis of the scale and orientation of the feature point. For memories
of the same size, it achieves higher accuracy than ORB and BRISK in all
cases and AKAZE for the images with textured regions.

key words: image matching, feature descriptor, keypoints

1. Introduction

Portable devices have been equipped with high performance
multi-core processors and cameras which can capture very
high quality images in recent years. Therefore, many device
applications that use cameras have been developed.

Even though the devices show very high performance,
they have much smaller main memory size and storage size
than PCs. Consequently, memory-saving methods are useful
for many portable device applications.

Using feature descriptors is one of the most important
techniques in image matching. However, many descriptors
that have been proposed in the literature require large mem-
ory size. The most famous feature descriptors are Scale In-
variant Feature Transform (SIFT)[1] and Speeded-Up Ro-
bust Feature (SURF) [2], which describe the gradient vector
of pixels and have been used in many applications. These
descriptors achieve robust image matching and have rela-
tively high ability to describe the feature point because they
are rotation and scale invariant. However, they require large
memory size.

Randomized tree [3] and Ferns [4] descriptors use pos-
sible transformations to transform the patch around the fea-
ture point and store binary values by comparing pixel values
in the patch to describe possible patch appearances. They re-
quire smaller memory size than feature descriptors like SIFT
and SURF. However, to enhance robustness for scale and
rotational changes, they have to store the compared values
by using all possible transformations.

Manuscript received August 18, 2018.

Manuscript revised November 30, 2018.

Manuscript publicized February 5, 2019.

"The authors are with the Graduate School of Engineering,
Tokyo University of Agriculture and Technology, Koganei-shi,
184-8588 Japan.

a) E-mail: kitagawa@m?2.tuat.ac.jp
b) E-mail: ikuko@cc.tuat.ac.jp (Corresponding author)
DOI: 10.1587/transinf.2018EDL8176

On the other hand, some feature descriptors based on
the binary values [5]-[9] compares pixel values in the patch
around the feature point which is normalized the direc-
tion and direction. Binary Robust Independent Elemen-
tary Features (BRIEF) [5], Binary Robust Invariant Scalable
Keypoints (BRISK) [6], Features from Accelerated Seg-
ment Test (FAST)[7] binary descriptor based on BRIEF
(ORB) [8], Fast Explicit Diffusion for Accelerated Features
in Nonlinear Scale Spaces (AKAZE) [9] are widely used in
recent years. In these methods, the extracted normalized
patch contains rather simple pixel value patterns, for exam-
ple, pixel values changes monotonically and the description
ability of the patch is not enough in these method.

This paper describes a memory saving feature descrip-
tor we have developed and propose. It compares pixel val-
ues of the points randomly selected in the scale and rota-
tion invariant patch around the feature point by utilizing the
scale calculation and feature point orientation in SIFT [1].
In our method, to enhance the ability of the description of
the patch, pixel values of all combinations of the selected
points in this patch are compared as shown in Fig. 1 because
all compared values are related each other. On the other
hand, in the conventional methods, the pixel values of the
selected points in the patch are compared independently as
shown in Fig. 2. In addition, the size of our invariant patch is
larger than those of the conventional methods and the pixel

Feature vector

1.0

\/\

Fig.1 Comparison of the pixel values in our method.

\,\

Fig.2 Comparison of the pixel values in the conventional methods.

avEwN

1
.2
0
0
1

Feature vector
1.0

| ol ol ol ol
-]

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers

LETTER

values are aggregated by downsizing the size of the normal-
ized patch to the fixed size to increase the ability of the de-
scription.

In the same way as other feature descriptors, ours
matches the feature point by using three processes: fea-
ture point extraction, feature point description, and simi-
larity evaluation. Its feature point extraction process is the
same as SIFT’s but its feature point description and similar-
ity evaluation processes are different.

In the following sections, we will explain the feature
point extraction algorithm in Sect. 2, our feature point de-
scriptor in Sect. 3, and the similarity evaluation process in
Sect. 4. In Sect. 5 we will show experimental results we ob-
tained by comparing our descriptor with conventional meth-
ods for different memory sizes.

2. Feature Point Extraction

In this section, we will briefly explain our descriptor’s fea-
ture point extraction process, which as has been noted is the
same as SIFT’s [1].

In the first step, we select keypoints as feature point
candidates. A Gaussian pyramid is computed by the convo-
lution of Gaussian filters with different standard deviations
o. Then, the Difference of Gaussian (DoG) is obtained by
differentiating the outputs of Gaussian filtering with adja-
cent scales whose size is normalized by down sampling. Fi-
nally, DoG outputs are searched for local extrema over scale
and space. The local extrema whose values are larger than
the threshold are selected as keypoints with their scales.

In the second step, the feature point is localized to ob-
tain more accurate position of the extrema and determine
their orientation. First, in the same way as with the Harris
corner detector, the corners are selected on the basis of
Hessian matrix eigenvalues. Keypoints whose eigenvalue
ratio is larger than a threshold are eliminated because they
would be on the edge. Keypoints are also eliminated when
the contrast around the feature point is low. Then, the sub-
pixel position of the feature point is estimated by fitting the
quadratic function around the approximate keypoint. Fi-
nally, the orientation of the feature point is determined by
creating a histogram of the gradient directions with 36 bins
covering 360 degrees in the selected scale. The highest peak
in the histogram is chosen as its orientation. Any peak above
80% of the highest one is also recorded as its orientation.

3. Feature Point Description

In this section, we will explain our description of the feature
point with its intrinsic scale o~ and orientation 6.

The size S of the squared patch extracted around the
feature point is equal to s X o and the direction of its side is
parallel to the orientation 6 (Fig.3). Note that this patch is
scale and rotation invariant. The extracted patch is scaled to
a fixed size (N X N) for size normalization. To reduce the
noise, a k X k Gaussian filter is applied to the patch.

The feature vector of the normalized patch is calculated

1107

resize based on
the scale

rotation based on
the orientation,

Fig.3 The normalized patch around the feature point is extracted on the
basis of the scale and orientation of the feature point.

prefixed position
of the point for
comparing pixel values

Fig.4 The prefixed positions of the points are distributed uniformly in
the normalized patch (red, blue and green circles) and all combinations of
the points are evaluated. Selected points for evaluating pixel values are
marked as red and blue circles.

by comparing the pixel values of two points whose positions
are selected in advance randomly. We compare all possible
combinations of two points. In Fig. 4, the pixel value of the
red point and that of the blue point are evaluated. If the
pixel value of the red point is larger than that of the blue
point, feature value 1 is stored; otherwise, feature value 0
is stored. The positions of the pixels for comparing pixel
values in the normalized patch are generated according to
the uniform distribution to represent the various patterns of
pixel values of the normalized patch.

The memory size of our feature descriptor is controlled
by the number of points in the normalized patch gener-
ated in advance. Even when the number of points is small,
our feature descriptor may cover uniformly in the normal-
ized patch because the positions of the points for comparing
pixel values are distributed uniformly over the normalized
patch. The number of combinations is M(M — 1)/2, where
the number of points in the normalized path is equal to M.
Therefore, the memory size for our feature descriptor is only
M(M — 1)/2 bits when the number of points in the normal-
ized path is equal to M.

4. Feature Point Matching

In this section, we will show how our descriptor matches
two feature points by evaluating the similarity between fea-
ture vectors.

The descriptor evaluates the similarity between two
feature vectors by Hamming distance. For the point in inter-
est, we first calculate the Hamming distance from the point
in interest to all the target points and then select the point
that has the smallest Hamming distance for its correspond-
ing point.

Because our feature descriptor is a binary sequence of
length M(M — 1)/2, where the number of points in the nor-
malized patch is equal to M, similarity between two fea-
ture vectors is calculated by logical AND of the binary se-
quences.

1108

5. Experiments

In this section, we will show the experimental results ob-
tained by changing the parameters in our method and com-
pared with the conventional methods.

5.1 Experimental Environment

In the experiments, we used a PC with an Intel Core i3 CPU,
a 12 GB memory and a Windows 10 OS. The language used
in the experiments was MATLAB and C++. Our method
was implemented using MATLAB. The SIFT source code
provided by Lowe [10] was used for the feature point ex-
traction in our descriptor. The source codes for BRISK [6],
ORB [8], and AKAZE [9] were used in the experiments pro-
vided in OpenCV in comparison with our method.

The image pairs “Adirondack”, “Vintage”, “Pipes”,
“Teddy”, and “Piano” from the Middlebury stereo data-
sets[11] are used in the experiments. For the image pairs
“Adirondack” and “Vintage”, we used four types of image
pairs: the original pairs with occlusion, the pairs in which
one of the images was rotated by 5° from the original im-
age, the pairs in which one of the images was scaled by 0.8
from the original image, and the pairs in which both of the
images were added 1% salt and pepper noise. For the image
pairs “Pipes”, “Teddy” and “Piano, we used the original im-
age pairs. Example of the image pairs “Adirondack” used in
the experiments are shown in Fig. 5.

5.2 Evaluating of the Results

The matching results between the pairs of images were eval-
uated on the basis of the distance between the ground truth
positions calculated by the transformed position and the po-
sitions of the matched points. We assumed that the result

was true matching when the Euclidean distance was less
than 2.5 pixels. We evaluated the accuracy, which is the

(1) Original pair with occlusion

(2) The pair with occlusion and rotation

(3) The pairs with occlusion and scale

(4) The pairs with occlusion and noise

Fig.5 Examples of the image pairs used in the experiments.

IEICE TRANS. INF. & SYST., VOL.E102-D, NO.5 MAY 2019

proportion of the true matching results obtained.
5.3 Experiment 1: Parameters in Our Method

In this section, the results are shown by changing the scale
S of the extracted patch was equal to S = 1, 10, and 15. The
size of the normalized patch was changed from NxN = 5x5
to 35 x 35. The Gaussian filter for noise reduction in the
normalized patch was k X k =0x0to5 X 5.

The results are shown in Fig. 6. In each graph in this
table, the vertical axis is N and the horizontal axis is £ and
the accuracy are shown by the heat map, i.e., yellow corre-
sponds to the accuracy is equal to 0.5 and blue corresponds
to the accuracy equal to 0.

As shown in Fig. 6, the better results were obtained
when the scale S was 10. This parameter S corresponds to
the size of the extracted patch around the feature point. To
obtain the enough rich description around the feature point,
the larger size is better. However, when the size becomes too
big, the appearance is changed depending on the viewpoint
of each image.

For the fixed scale S, the size of the Gaussian filter k
and the size of the normalized patch N are related. When
the k was too large or the size of normalized patch N was
too small, the enough rich description cannot be obtained
because the pixel values were aggregated too much. How-
ever, when the k& was too small or the size of normalized
patch N was too large, the description is influenced by the
noise because the aggregation is not enough.

Adirondack occlusion
odbit

Adirondack occlusion
256bin

Adirondack

Noise+ occlusion
64bit

Adirondack

Rotation + occlusion
odbit

Adirondack

Scale+ occlusion
64bit

.[-l"id\

occlusion

odbit

Fig.6 Experimental results by changing the parameters in our method.

LETTER

Table1 Experimental results by our method and the conventional meth-
ods. “A.” is “Adirondack”, “V.” is “Vintage”, “Pp.” is “Pipes”, “T.” is
“Teddy” and “Pa.” is “Piano”. “Rot.” is the image pair with rotation,
“Scale” is image pair with different scales, and “Noise” is image pair with
salt and pepper noise.

image Our method Our method | AKAZE ORB BRISK
64bit 256bit 64bit 256bit 512 bit
A. 0.493 0.576 0.421 0.468 0.502
A. Rot. 0.416 0.479 0.405 0416 0.476
A. Scale 0.307 0.407 0302 0368 0.385
A. Noise 0.289 0.357 0.375 0.242 0.342
V. 0.438 0.578 0429 0390 0.421
V. Rot. 0.312 0.426 0354 0340 0.376
V. Scale 0.335 0.481 0324 0284 0.293
V. Noise 0.240 0.400 0356 0.188 0.235
Pp. 0.238 0.308 0.182 0.166 0.223
T. 0.441 0.507 0.505 0312 0.463
Pa. 0.410 0.483 0490 0306 0.402

5.4 Experiment 2: Comparison with the Conventional
Methods

In this section, the results by our method compared
by the conventional methods, BRISK[6], ORB [8], and
AKAZE [9]. Note that BRISK requires 512 bit, ORB re-
quires 256 bit, and AKAZE requires 64bit, for the memory
to store each descriptor for each feature point. The size of
the memory of our methods changes depending on the num-
ber of points for pixel value comparison. In the experiments,
results by our method using 64 bit and 256 bit are shown.

The results are shown in Table 1. The results by our
method with 64 bit was better than those by ORB with 256
bit for almost all of the image pairs except for “Adirondack”
with scale and “Vintage” with rotation in spite of memory
size of BRISK is 4 times larger than our method with 64
bit. For the “Adirondack” with scale and “Vintage” with
rotation, the results by our method with 64 bit and ORB 256
bit were comparable.

The results by our method with 256 bit is comparable
with the those by BRISK 512 bit was better for all image
pairs in spite of memory size of BRISK is double of our
method with 256 bit. From these results, our feature de-
scription method have richer information and smaller mem-
ory size than ORB and BRISK.

The result by our method with 64 bit and AKAZE
with 64 bit are comparable. For the “Adirondack” and
“Pipes”, accuracy of our methods is much higher than that of
AKAZE. The true matching pairs obtained by our method,
and AKAZE are shown in Fig.7. The true matching pairs
on the edges are obtained accurately by AKAZE, for exam-
ple, the feature points on the keyboard of “Piano” and the
book of “Adirondack”. On the other hand, the true match-
ing pairs in the textured region are obtained accurately by
our method, for example, the feature points on the map of
“Adirondack”, the floor of “Piano”, and the characters of
“Vintage”. From these results, our method is better for im-
ages with textured regions than AKAZE.

1109

Fig.7 The true matching pairs by AKAZE in blue lines, and by our
method in green lines. The top one is for “Adirondack”, the middle one
is for “Piano”, and the bottom one is for “Vintage”.

6. Conclusion

In this paper, we described a memory saving feature de-
scriptor we propose. Our feature descriptor is calculated by
comparing pixel values in the normalized patch around the
feature point. The normalized patch is made scale invariant
and rotation invariant by utilizing the calculation of the scale
and the orientation of the feature point in the Scale-Invariant
Feature Transform (SIFT) descriptor [1].

In experiments, we compared the results obtained with
our descriptor with those obtained with ORB, BRISK and
AKAZE. We found that when the feature vector size was
small, our descriptor’s accuracy was better than that of ORB
and BRISK and comparable with that of AKAZE for all
cases. For the images with small textures, our descrip-
tor’s accuracy was better than that of AKAZE. This means
that our descriptor may be useful for portable devices with
smaller memory size than PCs.

Subjects for future work will include examining ways
to estimate the scale and orientation of the feature point.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Num-
bers 15X00445 and SCAT foundation.

References

[1] D.G. Lowe, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, vol.60, no.2,
pp-91-110, 2004.

[2] H. Bay, A. Ess, T. Tuytelaars, and L.V. Gool, “SURF: Speeded-
up robust features,” Computer Vision and Image Understanding,
vol.110, no.3, pp.346-359, 2008.

[3] V. Lepetit, P. Lagger, and P. Fua, “Randomized trees for real-time
keypoint recognition,” Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR’05), vol.2, pp.775-781, 2005.

[4] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua, “Fast keypoint
recognition using random ferns,” IEEE Trans. Pattern Anal. Mach.
Intell., vol.32, no.3, pp.448-461, 2010.

[5] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary ro-
bust independent elementary features,” Proc. European Conference

http://dx.doi.org/10.1023/b:visi.0000029664.99615.94
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1109/cvpr.2005.288
http://dx.doi.org/10.1109/tpami.2009.23
http://dx.doi.org/10.1007/978-3-642-15561-1_56

1110

(6]

(71

(8]

on Computer Vision (ECCV *10), vol.IV, pp.778-792, 2010.

S. Leutenegger, M. Chli, and R. Siegwart, “BRISK: Binary robust
invariant scalable keypoints,” Proc. IEEE International Conference
on Computer Vision (ICCV ’11), pp.2548-2555, 2011

E. Rosten, R. Porter, and T. Drummond, “Faster and better: A ma-
chine learning approach to corner detection,” IEEE Trans. Pattern
Anal. Mach. Intell., vol.32, no.1, pp.105-119, 2010.

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An ef-
ficient alternative to SIFT or SURF,” Proc. IEEE Intetnational Con-
ference on Computer Vision (ICCV *11), pp.2564-2571, 2011.

IEICE TRANS. INF. & SYST., VOL.E102-D, NO.5 MAY 2019

[9] P. Alcantarilla, J. Nuevo, and A. Bartoli, “Fast explicit diffusion for
accelerated features in nonlinear scale spaces,” Proc. British Ma-
chine Vision Conference (BMVC *13), pp.13.1-13.11, 2013.

[10] http://www.cs.ubc.ca/"lowe/keypoints/
[11] http://vision.middlebury.edu/stereo/data/scenes2014/

http://dx.doi.org/10.1007/978-3-642-15561-1_56
http://dx.doi.org/10.1109/iccv.2011.6126542
http://dx.doi.org/10.1109/tpami.2008.275
http://dx.doi.org/10.1109/iccv.2011.6126544
http://dx.doi.org/10.5244/c.27.13
http://www.cs.ubc.ca/~lowe/keypoints/
http://vision.middlebury.edu/stereo/data/scenes2014/

