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PAPER

Recovering Transitive Traceability Links among Various Software
Artifacts for Developers∗

Ryosuke TSUCHIYA†a), Kazuki NISHIKAWA††, Nonmembers, Hironori WASHIZAKI††,
Yoshiaki FUKAZAWA††, Members, Yuya SHINOHARA††, Keishi OSHIMA†, and Ryota MIBE†, Nonmembers

SUMMARY Traceability links between software artifacts can assist in
several software development tasks. There are some automatic traceability
recovery methods that help with managing the massive number of software
artifacts and their relationships, but they do not work well for software
artifacts whose descriptions are different in terms of language or abstrac-
tion level. To overcome these weakness, we propose the Connecting Links
Method (CLM), which recovers transitive traceability links between two ar-
tifacts by intermediating a third artifact. In order to apply CLM for general
use without limitation in terms of software artifact type, we have designed
a standardized method to calculate the relation score of transitive traceabil-
ity links using the scores of direct traceability links between three artifacts.
Furthermore, we propose an improvement of CLM by considering software
version. We evaluated CLM by applying it to three software products and
found that it is more effective for software artifacts whose language type or
vocabulary are different compared to previous methods using textual simi-
larity.
key words: traceability link recovery, transitive, connecting link, version

1. Introduction

Traceability in software development is the ability to trace
relationships between software artifacts (e.g., requirements,
designs, source code, and test cases). We call these rela-
tionships “traceability links.” Grasping traceability links is
instrumental in several software development tasks, such as
impact analysis, program comprehension, and reuse of ex-
isting software [2]–[4].

However, most software development projects have
difficulty managing traceability links because of the mas-
sive number of possible combinations between software ar-
tifacts. Therefore, developers are often forced to expend
significant effort and cost to perform the aforementioned
tasks without traceability links. To solve this problem, vari-
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ous methods to automatically recover traceability links have
been developed [13]–[27].

These methods utilize textual similarity among soft-
ware artifacts to recover the traceability links between them,
and they work quite well in recovering links between soft-
ware artifacts whose language type and vocabulary are the
same. However, if there are differences, these methods do
not work well. Some assistive technologies have been pro-
posed to improve the accuracy of link recovery in such situ-
ations, but they are often limited to certain types of software
artifacts or require specific preconditions. Therefore, devel-
opers cannot easily apply them for general use.

To overcome these problems, we propose the Connect-
ing Links Method (CLM), which recovers transitive trace-
ability links between two artifacts by intermediating a third
artifact. This method is based on the idea that traceabil-
ity links can be recovered transitively by tracking links
among multiple software artifacts. For example, if there
is a requirement “Reserve tickets” and a source code file
“RSVTCT.java” for implementing the requirement, it is dif-
ficult to recover links between the two using only their tex-
tual information because the name of the source code file is
an abbreviation of the requirement. However, if there is a
third artifact, such as a design document that includes infor-
mation about both the requirement and the source code file,
a traceability link can be recovered transitively after pass-
ing from the requirement to the design document and then
from the design document to the source code file. In this
work, we have designed a standardized method to recover
links transitively among three sets of software artifacts.

This paper addresses the following research questions.
RQ1 What kind of software artifacts can CLM be applied

for effectively?
RQ2 What benefits and drawbacks does the proposed scor-

ing design give for accuracy of transitive links?
RQ3 Can consideration of software version improve the ac-

curacy of CLM?
We conducted three experiments using three software prod-
ucts to investigate these questions and confirmed that CLM
is effective for use with software artifacts whose language
type or vocabulary are different. We also observed and clar-
ified the relationships between the score of links recovered
transitively and the reliability of these links. Finally, we
proposed and evaluated an improvement of CLM by consid-
ering software version.

The contributions of this study are:
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• We propose a transitive traceability recovery method,
CLM, without the limitation of software artifact types.
• We evaluate the kind of software artifacts to which

CLM can be effectively applied, the impact on accu-
racy by the scoring design of CLM, and the effective-
ness of considering software version for CLM.

Section 2 of this paper provides background infor-
mation. Section 3 describes our approach, and in Sect. 4
we evaluate it experimentally. Section 5 discusses related
works. We conclude in Sect. 6 with a brief summary and
mention of future work.

2. Background

2.1 Traceability Link Recovery

To improve the efficiency of software development tasks,
traceability links between various kinds of software artifacts
need to be recovered. Software artifacts consist mainly of
two elements: one, a word in natural language, and two, a
symbolic token that is part of a programing language. The
composition ratio is different depending on the type of ar-
tifact. For example, most of the requirement specification
documents are written in natural language, while source
code files typically consist of symbolic tokens (except for
comments). There are some artifacts in which words and to-
kens coexist: API documents, bug reports, commit logs, and
so on. The difference of the composition ratio makes it diffi-
cult to recover traceability links between different software
artifacts.

Traceability links between software artifacts are di-
vided broadly into two categories: probabilistic links and
deterministic links.

Probabilistic links are constructed by scoring the de-
gree of some kind of relationship between software arti-
facts. The most common degree of relationship is textual
similarity, which has been adopted by most of the previ-
ous traceability recovery methods [13], [15], [16], [18], [19],
[21]–[27]. These methods calculate textual similarity be-
tween software artifacts by using Natural Language Pro-
cessing (NLP) techniques such as the Vector Space Model
(VSM) [9], [10], Latent Semantic Indexing (LSI) [11], and
word embedding [12]. Therefore, when recovering links be-
tween software artifacts that contain a lot of natural lan-
guage words, the probabilistic links are reliable with high
accuracy. However, if language type and vocabulary are dif-
ferent between artifacts, these methods can barely construct
the probabilistic links.

Deterministic links are constructed by tracking the ref-
erences to identifiers. Source code files written in a pro-
gramming language refer to each other and the reference is
clearly described (e.g., call relationships). Other examples
contain a reference to source code files or various internal
elements (e.g., class, method, and field): commit logs, API
documents, bug reports, application execution logs, and so
on. Compared to probabilistic links, these reference rela-
tionships are clear and deterministic. Therefore, most of the

previous studies utilize deterministic links to improve the
reliability of probabilistic links [14]–[19], [21]–[24].

2.2 Problems

As mentioned above, the accuracy of recovering prob-
abilistic links depends on the commonality of language
type and vocabulary between artifacts. If developers
need to grasp traceability links between artifacts that do
not share common words, assistive technologies are re-
quired. Previous studies (discussed in more detail in Sect. 5)
have proposed several assistive technologies, including
structural [15]–[19], [23], repository-based [14], [21]–[24],
feedback-based [19], [23], [25], and version-based [18],
[20]–[22] approaches. However, developers can apply these
technologies only to projects that fulfill their prerequisites
for target software artifacts or the way to manage artifacts.
Furthermore, even in similar approaches, there are some key
differences in the way to utilize the assistive technologies
among the previous studies; in other words, the usage is
not standardized. This makes it a bit difficult for developers
to decide which usage should be adopted for their projects.
Therefore, we have aimed to develop a technology that has
few limitations and is standardized to minimize the influ-
ence from diversity of target software artifacts.

2.3 Motivating Example

As shown in Fig. 1, there are three types of software artifacts
in the EasyClinic software product: descriptions of source
code classes, descriptions of the interaction diagram, and
test cases. CC 1 located on the left is a description of the
class “GUIPrenotaVisita,” and TC 1 located on the right is
a test case for “reservation a visit Date.” According to docu-
ments that record the traceability links of EasyClinic, CC 1
links to TC 1. However, if developers want to recover the
link by using textual similarity, it becomes difficult because
they do not share characteristic words (e.g., “GUIPreno-
taVisita” emphasized in CC 1 and “Outpatient” emphasized
in TC 1). The word “reservation,” which is shared between
CC 1 and TC 1, is not effective for calculating textual simi-
larity because it is used in EasyClinic universally.

On the other hand, ID 1 (located at the center of Fig. 1)
is a description of the interaction diagram of applications
including the class “GUIPrenotaVisita.” As the emphasized
words in Fig. 1 show, ID 1 contains both the characteristic
words of CC 1 and TC 1. Therefore, there is a possibility
of recovering the links between CC 1 and ID 1, TC 1 and
ID 1 by using textual similarity. Developers can guess that
there are relations between CC 1 and TC 1 by applying the
transitive rule to these two links. This example forms our
motivation to study the approach to recover traceability links
using the transitive rule.
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Fig. 1 Motivating example.

3. Approach

3.1 Key Ideas

Our basic idea is that traceability links can be recovered
transitively by tracking links among multiple software ar-
tifacts. We call a link recovered transitively a “transitive
link” and a link recovered directly between two artifacts a
“direct link.” An example of the transitive link is given in
Fig. 2. There are three sets of software artifacts. First Target
Artifact (FTA) and Second Target Artifact (STA) are sets of
artifacts that are targets of transitive link recovery, and In-
termediate Artifact (IA) is a set of artifacts that are used as
intermediates when recovering transitive links between FTA
and STA. FTA, STA, and IA are defined as FTA = {fta 1,
fta 2, . . . , fta l}, STA = {sta 1, sta 2, . . . , sta m}, and IA =
{ia 1, ia 2, . . . , ia n}. The suffixes l, m, and n are the number
of artifacts in each set. There are direct links between fta 3
and ia 3, sta 3 and ia 3, so a transitive link between fta 3
and sta 3 can be identified by tracking the direct links.

If we limit the types to FTA, STA, IA, and the direct
links between them, developers cannot utilize this approach
to recover transitive links in general use scenarios. There-
fore, we only specify that direct links are deterministic links
or probabilistic links with a relation score; we do not place
any restrictions on how to prepare or recover the direct links.
Thus, our approach can be applied for several targets.

When considering transitive traceability recovery, it is
necessary to discuss the reliability of transitive links. In par-
ticular, when the category of direct links is probabilistic, for
both of the direct links between FTA and IA, STA and IA,
high reliability (i.e., high relation score) is required.

There is another factor that can affect the reliability of
transitive links: the number of transitive paths between FTA
and STA. For example, if there are some artifacts of IA that
are directly linked with fta 3 and sta 3 the same as ia 3—in
other words, if there are multiple transitive paths between
fta 3 and sta 3—we can assume that the reliability of the

Fig. 2 Transitive link.

transitive link is higher than that of the single transitive path.

3.2 Connecting Links Method (CLM)

In light of the above considerations, we have designed the
Connecting Links Method (CLM) to recover transitive links
among various software artifacts. An overview of CLM is
provided in Fig. 3. CLM consists of four steps, described in
the following.

3.2.1 Step (1): Select FTA and STA

As shown in Fig. 3, this step is performed manually with
software artifacts of the development project as input and it
outputs FTA and STA as a result. When developers want to
recover transitive links, first, they select two sets of software
artifacts that are targets of transitive link recovery: FTA and
STA.

CLM does not limit which types of FTA and STA can
be used, but if the difference of language type and vocabu-
lary between FTA and STA is small, we recommend recov-
ering direct links between them using textual similarity, like
the previous methods. If not, CLM can be used to recover
links more accurately.
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Fig. 3 Overview of CLM.

3.2.2 Step (2): Select IA

As shown in Fig. 3, this step is performed manually with
software artifacts of the development project as input and
it outputs IA. After execution of Step (1), the developers
select a set of software artifacts that is used as intermediates
of transitive recovery: IA.

We recommend choosing IA that has deterministic
links with FTA or STA. For example, if FTA or STA are
source code files, artifacts that have references to the source
code files are suitable for IA (commit logs, API documents,
and so on). We also recommend choosing IA that contains
characteristic words of FTA and STA.

3.2.3 Step (3): Prepare or Recover Direct Links

As shown in Fig. 3, this step is performed manually or auto-
matically with FTA, STA, and IA as inputs. Then, this step
outputs direct links between FTA and IA, STA and IA. Af-
ter execution of Steps (1) and (2), the developers prepare or
recover the direct links.

CLM allows any method of recovering direct links only
if the recovered links are deterministic or probabilistic links
with a relation score. Examples of methods that can be used
include manual recovery, tool-assisted recovery (e.g., Trace-
Lab [5]–[8]), and applying a conventional traceability recov-
ery method.

3.2.4 Step (4): Connect Direct Links

As shown in Fig. 3, this step is performed automatically with
two sets of direct links as input and it outputs transitive links
between FTA and STA. After execution of Step (3), the tran-
sitive links are automatically recovered with a relation score
by connecting the direct links as in the following process.

First, the relation score of the direct link be-
tween artifacts a1 and a2 is normalized and defined as
{DScore(a1, a2) ∈ R | 0 ≤ DScore ≤ 1}. If the category of
the direct links is deterministic, the DScore is specified as
1. If the category is probabilistic, the original relation score
OScore(a1, a2) between artifacts a1 and a2 is normalized to
DScore, as

DScore(a1, a2) =
OScore(a1, a2) − OScoremin

OScoremax − OScoremin
, (1)

where OScoremax and OScoremin are the maximum and min-
imum values of OScore, respectively. The original rela-
tion score OScore is respectively defined and calculated
by each traceability recovery method adopted in Step (3).
For example, if developers recover direct links using VSM,
OScore(a1, a2) between artifacts a1 and a2 is calculated us-
ing the cosine similarity. The similarity is obtained as
the cosine of the angle between the two document vectors.
Therefore, OScore(a1, a2) is calculated as

OScore(a1, a2) =
−→v1
−→v2∣∣∣−→v1

∣∣∣
∣∣∣−→v2

∣∣∣ , (2)

where −→v1 is the document vector of a1 and −→v2 is the document
vector of a2. Although the document vector can be derived
in various ways, we explain the most basic way, called Bag-
of-Words (BoW), as follows. Here, D represents a set of
documents and T presents a set of terms. For a document
dx(∈ D) containing S valid terms [i.e., t1, t2, · · · , tS (∈ T )],
w(tp, dx) (0 ≤ p ≤ S) is the number of appearances of tp in
dx. Consequently, dx can be represented by S -dimensional
vector −→vx as

−→vx = (w(t1, dx),w(t2, dx), · · · ,w(tS , dx)) . (3)

Then, the relation score of the transitive link between
artifacts a1 and a2 is defined as {TScore(a1, a2) ∈ R | 0 ≤
TScore ≤ 1}. When recovering transitive links between f tai

and sta j ( f tai ∈ FTA, sta j ∈ STA), TScore( f tai, sta j) is
calculated as

TScore( f tai, sta j)

=

n∑

k=1

(
DScore( f tai, iak) ∗ DScore(sta j, iak)

)
(4)

where iak is an intermediate artifact (iak ∈ IA) and n is the
number of intermediate artifacts. As mentioned in Sect. 3.1,
the reliability of transitive links depends on the reliability
of both direct links. Therefore, our design stipulates that
TScore be calculated by multiplying each DScore. Further-
more, the multiplied score is summed to reflect the number
of transitive paths.

This simple scoring design makes it possible for devel-
opers to calculate the relation score of the transitive link in
a universal way for any software artifacts. In other words,
the usage of CLM is standardized except for free choice of
IA and calculation methods of OScore. For example, if there
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are three sets of software artifacts for which published trace-
ability recovery tools using VSM (e.g., TraceLab) are appli-
cable, developers can recover transitive links between them
easily by executing the tools and tracing the above formulas
with OScore output by the tools.

3.3 Improvement by Considering Software Version

CLM has the potential to be improved by cooperating with
various assistive technologies (described further in Sect. 5).
The version-based approach is particularly effective in com-
pensating for the main weakness of CLM, which is the ex-
plosive increase in the number of combinations of software
artifacts. When recovering direct links between FTA and
STA, the number of combinations that are evaluated is l*m,
while when recovering transitive links, the number is l*n*m.
Too many combinations causes noise that interferes with the
score evaluation and link recovery.

Therefore, if FTA, STA, and IA are separately managed
for each software version, transitive links should be recov-
ered between the artifacts that belong to the same software
version. This reduces the number of combinations and im-
proves the accuracy of CLM. The CLM improved by con-
sidering software version is named “verCLM.”

4. Evaluation

4.1 Evaluation Purposes

In Sect. 3.2.1, we suggested considering the difference
of language type and vocabulary when developers decide
whether to adopt CLM. Therefore, we have to evaluate and
clarify whether these characteristics of software artifacts af-
fect the applicability of CLM and the previous methods us-
ing text similarity.

In Sect. 3.2.4, we described how to calculate the rela-
tion score of transitive links considering the reliability of
both direct links and the number of transitive paths. There-
fore, we have to evaluate what benefits and drawbacks the
scoring design gives for the accuracy of transitive links.

In Sect. 3.3, we proposed verCLM, which improves
CLM by considering software version. Therefore, we have
to evaluate whether verCLM actually improves CLM.

On the basis of the above, we set the following research
questions.

RQ1 What kind of software artifacts can CLM be ap-
plied for effectively?

RQ2 What benefits and drawbacks does the proposed
scoring design give for accuracy of transitive links?

RQ3 Can consideration of software version improve the
accuracy of CLM?

4.2 Experimental Setup

We carried out three experiments using three software ap-
plications to answer the research questions. In these exper-
iments, precision, recall, and F-measure, which take values
from 0 to 1, are used as the metrics to determine the accu-
racy of recovering links. They are defined as

precision =
extracted corret links

all extracted links
, (5)

recall =
extracted corret links

all correct links
, (6)

F −measure = 2 ∗ precision ∗ recall
precision + recall

. (7)

4.2.1 Experiment (1): PAT

The first target software is PAT, which is a program analy-
sis tool developed by a Japanese company. It contains two
requirements written in Japanese, 251 source code files writ-
ten in Java R©†, and 97 test cases written in Japanese. There
are direct links prepared between the requirements and the
test cases and between the source code files and the test
cases. The direct links between the requirements and the
test cases were recovered by developers manually. The di-
rect links between the source code files and the test cases
were recovered by referring to execution logs that record
source code modules executed in test cases. Therefore, both
of the direct links are deterministic.

Developers want to recover links between requirements
and source code files. Therefore, we recovered direct links
by applying a traceability recovery approach using textual
similarity and recovered transitive links by CLM.

We adopted VSM as the NLP technique to calculate
textual similarity because it is the most common approach
adopted as basic technology in many previous methods.
Moreover, there is a traceability recovery tool called Trace-
Lab using VSM, which is published and available to anyone.
In CLM, we selected the requirements as FTA, the source
code files as STA, and the test cases as IA. Then, we use
direct links between FTA and IA, STA and IA, which are
mentioned above.

In this experiment, we compared the accuracy of two
approaches to determine whether the difference of language
type between software artifacts affects applicability of the
approaches. The total number of correct links, prepared in
advance by developers, is 65.

4.2.2 Experiment (2): EasyClinic

The second target software is EasyClinic, which is an open
source software designed to manage a medical practitioner’s
office. It contains 30 use cases, 20 descriptions of interac-
tion diagrams, 47 descriptions of source code classes, and

†Java R© is a registered trademark of Oracle and/or its affiliates.
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63 test cases. The Center of Excellence for Software & Sys-
tems Traceability (CoEST) [29], which is a “community of
researchers and practitioners working together since 2002 to
achieve scalable, effective software and systems traceability
solutions”, provided correct links between the four artifacts.

In this experiment, we investigated whether CLM can
recover links more accurately for software artifacts for
which the direct traceability recovery approaches using tex-
tual similarity do not work well. Therefore, we recovered di-
rect links between the four artifacts using VSM (TraceLab)
and then recovered transitive links for all combinations of
the artifacts using the direct links. Then, we compared the
accuracy of the direct and transitive links.

4.2.3 Experiment (3): Andlytics

The third target software is Andlytics, which is an
AndroidTM† application to collect statistics from the Google
PlayTM†† developer console. We utilized five versions
(ver2.1, ver2.2, ver2.3, ver2.4, and ver2.5). All told, ver2.1
includes four requirements, 74 pull requests, and 169 source
code files; ver2.2 includes eight requirements, 130 pull re-
quests, and 176 source code files; ver2.3 includes ten re-
quirements, 115 pull requests, and 185 source code files;
ver2.4 includes three requirements, 76 pull requests, and
189 source code files; and ver2.5 includes five requirements,
107 pull requests, and 200 source code files.

Direct links were prepared between the requirements
and the pull requests and between the source code files and
the pull requests. The direct links between the requirements
and the pull requests were recovered by TraceLab, so they
are probabilistic links with a relation score. The direct links
between the source code files and the pull requests were re-
covered by referring to information of the modified source
code files that is recorded in pull requests. Thus, these links
are also probabilistic links with a relation score calculated
by weighting according to the number of modified lines of
code.

In this experiment, we compared the accuracy of four
approaches: VSM (an approach that calculates textual sim-
ilarity by VSM), verVSM (VSM improved by considering
software version), CLM, and verCLM by recovering links
between requirements and source code files. In CLM, we
specified the requirements as FTA, the source code files as
STA, and the pull requests as IA. Then, we used direct links
between FTA and IA, STA and IA, which are mentioned
above. VSM and CLM were applied to artifacts of all soft-
ware versions in bulk, while verVSM and verCLM were ap-
plied to artifacts of each software version separately. The
total number of correct links for evaluation is 22. These
correct links were prepared between the requirements and
the source code files of all software versions manually. All
of the links were constructed between the requirements and
the source code files, which were contained in same version,

†AndroidTM is a trademark of Google Inc.
††Google PlayTM is a trademark of Google Inc.

Table 1 Accuracy of traceability recovery in PAT.

Table 2 Accuracy of traceability recovery in EasyClinic.

because the software artifacts related to each other were up-
dated synchronously in Andlytics.

4.3 Results

4.3.1 Experiment (1): PAT

Table 1 lists the accuracy of traceability recovery between
requirements and source code files in PAT. VSM in the “Ap-
proach” column indicates the traceability recovery approach
that calculates textual similarity by VSM. VSM and CLM
respectively extracted 38 and 148 links with scores, where a
sentence “with scores” means having relation scores greater
than 0. Table 1 also shows the values of extracted correct
links, precision, recall, and F-measure when extracting all
links with scores. CLM could extract about twice as many
correct links as VSM.

4.3.2 Experiment (2): EasyClinic

Table 2 lists the accuracy of traceability recovery in Easy-
Clinic, where UC refers to Use Cases, ID to descriptions
of Interaction Diagrams, CC to descriptions of source Code
Classes, and TC to Test Cases. The column “Target Arti-
facts” indicates artifacts that are targets of traceability re-
covery. The column “Link Type” indicates the type of trace-
ability link: direct or transitive. The column “IA” indicates
the IA that is used as an intermediary of transitive links. For
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Fig. 4 F-measure of traceability recovery in EasyClinic.

example, line No. 1 indicates the accuracy of direct links
between UC and ID, and line No. 2 indicates the accuracy
of transitive links between UC and ID recovered by inter-
mediating CC. We show accuracy with highest F-measure
in Table 2 to compare the maximum performance among
links in terms of the balance between precision and recall.
As shown in the table, all direct links exceeded the corre-
sponding transitive links in the terms.

Figure 4 shows six graphs detailing the transition of F-
measure according to the number of extracted links in Easy-
Clinic, where vertical axis indicates the value of F-measure
and horizontal axis indicates the number of extracted links.
Each legend corresponds to the link of each row in Table 2.
For example, the top-left graph shows the transition of Nos.
1, 2, and 3 in Table 2. To make the comparison of the early
stages easier to see, each graph shows the transition until
the F-measure of direct links peaks. After the peak, each

F-measure gradually decreased and superiority or inferior-
ity between the direct link and the transitive links did not
change. While most direct links exceeded the corresponding
transitive links, some transitive links (Nos. 3, 9, 15, and 18)
continuously exceeded the corresponding direct links when
the number of extracted links was small.

4.3.3 Experiment (3): Andlytics

Figures 5 and 6 show the precision and recall of recovering
links between requirements and source code files in Andlyt-
ics. Vertical axis indicates the value of precision or recall,
and horizontal axis indicates the number of links retrieved
by each approach. The links were retrieved in descending
order of relation score. The results of applying four ap-
proaches are shown: VSM, verVSM, CLM, and verCLM.

CLM and verVSM had higher recall and precision than



TSUCHIYA et al.: RECOVERING TRANSITIVE TRACEABILITY LINKS AMONG VARIOUS SOFTWARE ARTIFACTS FOR DEVELOPERS
1757

Fig. 5 Precision of traceability recovery in Andlytics.

Fig. 6 Recall of traceability recovery in Andlytics.

VSM, especially when the number of retrieved links was
small. However, the larger the number of retrieved links, the
smaller the difference of accuracy of the three approaches.
verCLM had the highest recall and precision of the four ap-
proaches regardless of the number of retrieved links.

4.4 Discussion

4.4.1 RQ1: What Kind of Software Artifacts Can CLM be
Applied for Effectively?

In experiment (1), VSM extracted only 38 links with scores.
In PAT, the requirements are written in Japanese and the
source code files are composed of symbolic tokens based
on English and a few Japanese comments, which enabled
VSM to extract 38 links. However, there are a lot of source
code files that contain no Japanese comments at all. In this
case, VSM could not extract links for the source code files
without Japanese comments. This is why VSM extracted a
small number of links compared with the number of target
artifacts. In contrast, CLM was not affected by the differ-
ences of language type because it utilized direct determinis-
tic links with test cases. Therefore, CLM could extract links
for the source code files without Japanese comments. As a
result, CLM extracted more correct links than VSM.

In experiment (2), all direct links exceeded correspond-
ing transitive links in accuracy with highest F-measure. We
assume this is because all artifacts contain natural language
words written in the same language (English), and CLM

adopted direct probabilistic links. However, some transitive
links (Nos. 3, 9, 15, and 18) exceeded the corresponding
direct links when the number of extracted links was small.
The common point between these transitive links is to me-
diate the direct links of which the highest F-measure is over
0.60 (i.e., Nos. 4, 10, and 13). These results show that the
accuracy of transitive links depends upon the accuracy of
the mediated direct links.

In conclusion, CLM can be effectively applied for re-
covering links between software artifacts whose language
type and vocabulary are different. Furthermore, the exis-
tence of IA with deterministic or highly reliable probabilis-
tic direct links is favorable for applying CLM.

4.4.2 RQ2: What Benefits and Drawbacks Does the Pro-
posed Scoring Design Give for Accuracy of Transi-
tive Links?

In multiple cases in experiments (2) and (3), the accuracy of
transitive links exceeded that of direct links when the num-
ber of retrieved links was small; in other words, when the
relation score of links was high. In contrast, transitive links
with a low relation score were outperformed by direct links.

We conclude that this is because CLM calculates a
score by summing the scores of all transitive paths. If the
direct links mediated are probabilistic links, low scores of
transitive paths, which are low reliability paths, are also
summed. This adversely affects the accuracy of transitive
links.

The scoring design that considers the number of transi-
tive paths may preferentially recover reliable transitive links
supported by multiple transitive paths with a high score.
However, it needs to be improved to reduce the impact of
summing low scores of transitive paths.

4.4.3 RQ3: Can Consideration of Software Version Im-
prove the Accuracy of CLM?

In experiment (3), we confirmed that verCLM can recover
transitive links more accurately than CLM. Furthermore,
verCLM exceeded VSM regardless of the number of re-
trieved links. As a result of reducing the combinations of ar-
tifacts by considering software version, transitive paths with
low score are also reduced. This contributes to the improve-
ment of accuracy. However, if the correct links contain links
between different versions, it may have affected the results
because verCLM and verVSM cannot recover links between
different versions. Such links may exist in a project where
the update status of each set of software artifacts is not syn-
chronized. Therefore, in practice, we should consider the
existence of links between different versions when applying
version-based approaches.

4.5 Threats to Validity

We have discussed and evaluated transitive traceability re-
covery between three sets of software artifacts. However,
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Table 3 Prerequisites and weak points of assistive or alternative approaches for textual traceability
recovery approaches.

we have not examined situations involving recovery across
more than four sets of artifacts. In other words, we have
not examined situations where multiple sets of artifacts are
used as IA serially or in parallel. This is a threat to external
validity because the number of software artifact types varies
from software to software and there is not always IA that has
direct links with both FTA and STA. Therefore, we need to
investigate how the number of serial or parallel transitions
affects the accuracy of transitive links in the future.

In PAT and Andlytics, we often manually prepared di-
rect links or correct links for evaluation. This is a threat
to internal validity because the accuracy of the manual re-
covery could affect the evaluation results. Furthermore, in
each experiment, we evaluated only one product. This is
also a threat to external validity. In the future, we should
provide additional evaluation, for example, using a product
that contains a combination of other different languages, or
a product that provides correct links for evaluation in mul-
tiple combinations of software artifacts, or a product that
has been developed in parallel by branching to multiple ver-
sions.

5. Related Work

Mäder et al. conducted a controlled experiment with 52 par-
ticipants performing real maintenance tasks on two third-
party development projects where half the tasks were with
traceability and the other half were without [4]. They found
that, on average, participants with traceability performed
21% faster and created 60% more correct solutions. Their
empirical study affirms the usefulness of traceability links.

Traceability recovery approaches using textual similar-
ity have been proposed in several previous methods [13],
[15], [26], [27]. Antoniol et al. proposed an approach us-
ing VSM [13] that formed the basis of later studies. Ap-
proaches to improve the accuracy of calculating textual sim-
ilarity have also been studied. These approaches utilize
more advanced NLP technologies considering semantics,
such as LSI [15] and word embedding [27]. However, if the
language type of software artifacts is different (e.g., natural
language vs. programming language, English vs. Japanese),

these approaches do not work well. CLM has been proposed
as an alternative in these situations.

Various structural approaches [15]–[19], [23] have
been proposed to improve the accuracy of the textual ap-
proaches mentioned above. They utilize structural informa-
tion such as call relationships of methods in source code files
to filter false positives or suggest additional links. There are
also several repository-based approaches [14], [21]–[24],
which utilize software repository information to recover
links between software artifacts. In our own previous stud-
ies [21]–[23], we proposed a method to recover links be-
tween requirements and source code files by referring to
modification logs in software repositories. Both structural
and repository-based approaches consider certain transitive
rules. However, they have been designed for specific types
of software artifacts. CLM can apply transitive rules to any
types of artifacts.

Information about the software version is also utilized
to improve accuracy in version-based approaches [18], [20]–
[22]. The idea used here is that traceability links between
software artifacts belonging to different software versions
tend to be false positives. CLM particularly benefits from
version-based approaches, as mentioned in Sect. 3.3 and
evaluated in Sect. 4.3.3.

Feedback-based approaches [19], [23], [25] have im-
proved traceability recovery by means of user feedback. In
our own previous study [23], we proposed a method to re-
cover links between requirements and source code files by
utilizing user feedback along with structural information of
source code files. Hayes et al. proposed a method to re-
cover links between high and low level requirements by ap-
plying relevance feedback analysis to improve the perfor-
mance of information retrieval algorithms [25]. In this pa-
per, while we have not evaluated the combined use of CLM
and feedback-based approaches, we do have some hypothe-
ses about the combination. For example, if a transitive link
is validated by the user, the reliability of the direct links in-
cluded in the transitive path increases. Then, if the score
of the direct links is weighted, the accuracy of the transitive
recovery may improve.

Finally, we have organized and listed the prerequisites
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and weak points of assistive or alternative approaches for
textual traceability recovery in Table 3, where “prerequi-
site” means an essential condition to apply the approach and
“weak point” indicates a factor that makes developers reluc-
tant to adopt the approach or a situation in which the ap-
proach cannot work effectively. Although we have no statis-
tical data to clarify which prerequisites are fulfilled by more
development projects, we assume that CLM can be used for
more versatile purposes than structural and repository-based
approaches because CLM does not limit the type of target or
the intermediate software artifacts. However, like the other
approaches, there are also situations in which CLM can-
not work well. Therefore, we suggest that developers select
or combine approaches by comparing the characteristics of
their projects with the information listed in Table 3. We have
mentioned combinations between CLM and the version-
based approach in this paper, between repository-based and
version-based approaches in previous studies [21], [22], and
between repository-based and feedback-based approaches
in a previous study [23].

6. Conclusion and Future Work

We have proposed the Connecting Links Method (CLM)
to recover transitive traceability links and evaluated it us-
ing three software applications: PAT, EasyClinic, and And-
lytics. Results demonstrate that CLM is more effective
for recovering traceability links between software artifacts
whose language type and vocabulary are different compared
to the traceability recovery approaches using textual simi-
larity. Furthermore, we have observed that the accuracy of
transitive links with a high score tends to exceed direct links,
whereas transitive links with a low score tend to be outper-
formed by direct links. This knowledge should be useful for
improving the scoring design of CLM and for combining
CLM with direct traceability recovery approaches in the fu-
ture. With regard to improving CLM, we have proposed ver-
CLM considering software version and evaluated the degree
of improvement. In the future, we will investigate combina-
tions of CLM and feedback-based approaches and evaluate
the impact of the number of transitions on recovery accu-
racy.
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