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Fast Hyperspectral Unmixing via Reweighted Sparse Regression

Hongwei HAN†,††a), Ke GUO†b), Maozhi WANG†c), Tingbin ZHANG†††d), Nonmembers,
and Shuang ZHANG††††e), Member

SUMMARY The sparse unmixing of hyperspectral data has attracted
much attention in recent years because it does not need to estimate the
number of endmembers nor consider the lack of pure pixels in a given
hyperspectral scene. However, the high mutual coherence of spectral li-
braries strongly affects the practicality of sparse unmixing. The collab-
orative sparse unmixing via variable splitting and augmented Lagrangian
(CLSUnSAL) algorithm is a classic sparse unmixing algorithm that per-
forms better than other sparse unmixing methods. In this paper, we pro-
pose a CLSUnSAL-based hyperspectral unmixing method based on dictio-
nary pruning and reweighted sparse regression. First, the algorithm iden-
tifies a subset of the original library elements using a dictionary pruning
strategy. Second, we present a weighted sparse regression algorithm based
on CLSUnSAL to further enhance the sparsity of endmember spectra in a
given library. Third, we apply the weighted sparse regression algorithm on
the pruned spectral library. The effectiveness of the proposed algorithm is
demonstrated on both simulated and real hyperspectral datasets. For simu-
lated data cubes (DC1, DC2 and DC3), the number of the pruned spectral
library elements is reduced by at least 94% and the runtime of the pro-
posed algorithm is less than 10% of that of CLSUnSAL. For simulated
DC4 and DC5, the runtime of the proposed algorithm is less than 15% of
that of CLSUnSAL. For the real hyperspectral datasets, the pruned spec-
tral library successfully reduces the original dictionary size by 76% and the
runtime of the proposed algorithm is 11.21% of that of CLSUnSAL. These
experimental results show that our proposed algorithm not only substan-
tially improves the accuracy of unmixing solutions but is also much faster
than some other state-of-the-art sparse unmixing algorithms.
key words: sparse unmixing, dictionary pruning, hyperspectral imaging,
iterative reweighting

1. Introduction

With the development of imaging spectroscopy, hyperspec-
tral remote sensors have evolved to collect multiple im-
ages of a scene using a range of spectra from ultravio-
let and visible to infrared [1]–[4]. Hyperspectral imaging
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has increased significantly over the past decade, mainly be-
cause of a large amount of reference information, including
the complete spectra of ground objects, which enables pre-
cise material identification using spectroscopic analysis [5]–
[7]. There is a wide range of hyperspectral imaging ap-
plications such as terrain classification [8], remote surveil-
lance [2], mineral detection and exploration, environmen-
tal monitoring, and military surveillance [9], and pharma-
ceutical process monitoring and quality control [10]. The
main advantage of using hyperspectral imagery is that the
spectral signature of each pixel can help identify the ma-
terials in the scene [11]. However, mixed pixels often oc-
cur in real hyperspectral data because of the relatively low
spatial resolution of the sensor and the varying ground sur-
face [12], [13]. Thus, to make full use of these data, the
spectral unmixing technique, which decomposes a mixed
pixel into a collection of constituent spectra (called end-
members) and their corresponding fractional abundances,
has become an essential procedure [12], [14]–[16]. Two ba-
sic models are used to analyze the mixed-pixel problem:
the linear mixture model (LMM) [17]–[19] and the nonlin-
ear mixture model [20]–[22]. Compared with the nonlinear
mixture model, LMM has been widely employed for many
different applications because of its computational tractabil-
ity and flexibility [23]. Despite the fact that the LMM is
not always accurate, especially under certain scenarios that
exhibit strong nonlinearity, it is generally recognized as an
acceptable model for many real-world scenarios [24]. In the
past few decades, a large number of algorithms have been
proposed for hyperspectral unmixing, most of which are
based on the LMM [12], [25].

In a linear spectral unmixing scenario, a mixed pixel
is modeled by a linear combination of endmember signa-
tures weighted by the corresponding abundances [5], [26].
In general, conventional algorithms for spectral unmixing
with LMM involves two steps: endmember extraction and
abundance estimation [12], [22]. A variety of endmem-
ber identification and abundance algorithms have been pro-
posed [10]. However, these methods assume that pure pixels
can be found in the original hyperspectral image, which is
a very difficult task [13]. The sparse unmixing approach,
which aims to find the optimal subset of endmembers from
a given spectral library to model each pixel in the hyperspec-
tral scene, has recently been introduced [4], [27]–[30]. This
sparse unmixing formulation sidesteps two common limita-
tions of classic spectral unmixing approaches, namely, the
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lack of pure pixels in hyperspectral scenes and the need to
estimate the number of endmembers in a given scene; there-
fore, sparse unmixing has attracted much attention [13].

Various sparse unmixing algorithms have been devel-
oped from different perspectives [31], [32]. Zare et al.
proposed a method of sparsity that promotes iterated
constrained endmember detection in hyperspectral im-
agery [33]. This algorithm attempts to autonomously deter-
mine the number of endmembers, which is found by adding
a sparsity-promoting term to the iterated constrained end-
member’s objective function. Sparse unmixing by variable
splitting and augmented Lagrangian (SUnSAL) was devel-
oped in [27]. The algorithms proposed in that study are
based on the alternating direction method of multipliers,
which decomposes a difficult problem into a sequence of
simpler ones. Hence, these algorithms achieve higher accu-
racy and shorter time than earlier ones.

Although sparsity-based unmixing methods are sim-
ple and fast, it is not always true that they can obtain bet-
ter spectral unmixing results than traditional unmixing tech-
niques [22], [34]. There are two main reasons for this. On
one hand, in real applications, the high mutual coherence
of the hyperspectral libraries imposes limits on the perfor-
mance of sparse unmixing techniques. In other words, sig-
natures that are similar to each other are more difficult to un-
mix [22], [28], [35]. On the other hand, many sparse unmix-
ing techniques only consider the spectral information while
ignoring the possible spatial correlations between pixels.
Intuitively, the utilization of spatial correlation integrated
with spectral information should improve the performance
of spectral unmixing algorithms [36], so this is an important
factor to consider.

To mitigate these drawbacks, many improved unmix-
ing algorithms based on sparsity have been proposed re-
cently. For instance, enhancing spectral unmixing using lo-
cal neighborhood weights [36] was developed to utilize both
spectral information and spatial information. Iordache et al.
proposed the sparse unmixing via variable splitting aug-
mented Lagrangian and total variation (SUnSAL-TV) [37]
by exploiting the spatial contextual information present in
the hyperspectral images. In [14], Qian et al. extended the
nonnegative matrix factorization (NMF) method by incorpo-
rating the L1/2 sparsity constraint (the L1/2-NMF method).
Lu et al. proposed a method for sparse unmixing by incor-
porating manifold regularization into sparsity-constrained
NMF in [12]. Because this additional term can maintain a
close link between the original image and the material abun-
dance maps, Lu et al.’s approach leads to a more desired
unmixing performance. Further, Iordache et al. proposed
the collaborative sparse unmixing via variable splitting and
augmented Lagrangian (CLSUnSAL) algorithm [28]. This
method improves the unmixing results by solving a joint
sparse regression problem because the sparsity is simultane-
ously imposed on all pixels in a given hyperspectral dataset.
Zhong et al. proposed a sparse unmixing algorithm based
on non-local means by exploiting similar patterns and struc-
tures in the abundance image [23]. Sparse unmixing using

spectral a priori information (SUnSPI), which incorporates
the spectral a priori information into sparse unmixing model
was proposed in [4]. These algorithms are able to improve
the spectral unmixing accuracy because they consider both
spectral information and spatial information.

However, the high mutual coherence of spectral li-
braries, jointly with their ever-growing dimensionality,
strongly limits the practical applicability of sparse unmix-
ing [13], [44]. This limitation has been partially mitigated
by the dictionary pruning strategy. For example, there is a
sparse unmixing methodology for obtaining such a dictio-
nary pruning [38], the multiple signal classification and col-
laborative sparse regression method (MUSIC-CSR) [13], a
robust subspace solution for dictionary pruning [32], sparse
unmixing with dictionary pruning for hyperspectral change
detection [39], and an unmixing algorithm via low-rank rep-
resentation based on space consistency constraint and spec-
tral library pruning [22]. These algorithms improve unmix-
ing performance and considerably decrease the runtime of
sparse unmixing algorithms.

As mentioned above, a large number of sparse unmix-
ing algorithms have been developed in the last ten years.
However, sparse unmixing still faces huge challenges. For
example, how to reduce the running time and further im-
prove the performance of the spare unmixing. To mitigate
the above drawbacks, in this paper, we propose a hyper-
spectral unmixing method based on dictionary pruning and
reweighted sparse regression.

In this paper, we assume that the hyperspectral dataset
to be unmixed is well approximated by the LMM. We ex-
ploit the fact that most hyperspectral datasets exist in a
lower dimensional subspace and the number of endmembers
present in a given scene is often much less than the num-
ber of library signatures [13], [22], [32], [38]. Based on this
fact, we propose a model aimed at mitigating the abovemen-
tioned limitations of hyperspectral sparse unmixing. First,
we identify the signal subspace, which is estimated using the
hyperspectral subspace identification by the minimum error
(HySime) algorithm [40]. Second, we prune the spectral li-
brary by computing the projection error from each library
member to the estimated signal subspace. Only the mem-
bers from the original spectral library that have a projection
error below a preset threshold T are retained. Thus, we ob-
tain a pruned spectral library, the dimensionality of which is
usually much smaller than that of the original library. Then,
we propose a methodology based on weighted sparse regres-
sion to further improve the unmixing performance of the
CLSUnSAL algorithm [28]. Finally, the proposed modified
CLSUnSAL algorithm operates on a pruned spectral library.
Because of the lower spectral library dimensionality and en-
hancement of the proposed algorithm, the performance of
the sparse unmixing is naturally improved. The obtained
unmixing results are demonstrated for both simulated data
and real hyperspectral data.

The remainder of this paper is organized as follows.
Section 2 reviews the LMM and some related work. Sec-
tion 3 describes the proposed method. Section 4 analyses
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the performance of the proposed approach with simulated
data and real hyperspectral data. Section 5 is discussion of
the Parameters Setting. Section 6 concludes the paper with
some remarks.

2. Related Work

In this section, we first outline the LMM. Then, two ba-
sic methods for our algorithm, the CLSUnSAL algorithm
and dictionary pruning using the subspace approach, are
introduced.

2.1 Sparse Unmixing under the LMM

Because of its simplicity, the LMM is widely used in hyper-
spectral images [41], [42]. Let y denote a given hyperspec-
tral observed column vector with L spectral bands. Under
the LMM, assuming the availability of a library A contain-
ing m spectral signatures, a pixel y can be expressed as a
linear combination of spectral signatures in an L × m spec-
tral library A, as follows [18], [28]:

y = Ax + n (1)

where the elements of vector x ∈ Rm are the fractional abun-
dances of each material in the pixel and vector n ∈ RL holds
the errors affecting the measurements at each spectral band.

As mentioned in [17], the abundance fractions must be
nonnegative and sum to one. The constraints x ≥ 0 and
1T

mx = 1 are called, in the hyperspectral community, the
abundance non-negativity constraint and abundance sum-to-
one constraint, respectively, and are often imposed on model
(1) [13].

Assuming that the dataset contains p pixels organized
in matrix Y = [y1, y2, · · · , yp] and X = [x1, x2, · · · , xp] is the
abundance fraction matrix. Then, (1) can be rewritten as
follows:

Y = AX + N (2)

where N = [n1, n2, · · · , np] is the noise and error matrix.

2.2 CLSUnSAL

The CLSUnSAL algorithm [28] adopts a collaborative
sparse regression framework that improves the unmixing re-
sults by solving a joint sparse regression problem. Refer-
ence [28] solved the following optimization problem:

min
X

‖AX − Y‖2F + λ
m∑

k=1

∥∥∥xk
∥∥∥

2
subject to: X ≥ 0 (3)

where Y is an L × p matrix that denotes a hyperspectral
image with L spectral bands and p pixels. Matrix A is
an L × m spectral library that has m spectral signatures,
‖X‖F =

√
trace{XXT } denotes the Frobenius norm, and

λ > 0 is a regularization parameter. Matrix X is an m × p
abundance fraction matrix and X ≥ 0, the convex term∑m

k=1 ‖xk‖2 (where xk denotes the k-th line of X) is the �2,1

mixed norm, which promotes sparsity among the lines of
X. Using the notation ‖X‖2,1 = ∑m

k=1 ‖xk‖2 to denote the �2,1
norm, optimization problem (3) can be written in the follow-
ing equivalent form:

min
X

‖AX − Y‖2F + λ‖X‖2,1 subject to: X ≥ 0 (4)

The optimization problem in (4) was solved via the
variable splitting and alternating direction method of mul-
tipliers (ADMM) method [27], [28]. The great advantage
of CLSUnSAL, which has an objective function composed
of only two terms, is that it needs only one regularization
parameter, which strongly alleviates the computational load
and simplifies the parameter setting process [28].

2.3 Dictionary Pruning Using the Subspace Approach

As discussed in Sect. 1, sparse unmixing aims to find the
optimal subset of endmembers from a given spectral library.
However, the large dictionary size and high mutual coher-
ence of the library limits the operational applicability of
sparse unmixing [13], [32], [38]. These two difficulties may
be circumvented by applying dictionary pruning. In [13],
the authors proposed a dictionary pruning strategy based on
the subspace approach. Let us assume that the noise ma-
trix N is equal to zero. Given the hyperspectral dataset
Y = AX ∈ RL×P, with X ∈ Rm×p, this subspace method
may be best described as follows.

When rank(Y) = ‖X‖0 = k < L, in this case, we write
Y = ASXS, where AS ∈ RL×k and XS are the matrices hold-
ing, respectively, the columns of A and rows of X, whose in-
dices are in S. Assuming that spark(A) > k+1 and X has full
row rank, we have range(Y) = range(AS). Let US ∈ RL×k de-
note a matrix that contains the first k left singular vectors of
Y . We have

P⊥AS
a j = 0 if a j = a jS for some S ∈ {1, · · · , k} (5)

where P⊥AS
a j = I−USUT

S is the projector on range(AS)⊥. The
physical meaning of (5) is that if a spectral sample aj in the
dictionary is also one of the spectral signatures in the scene,
then it must be perpendicular to the orthogonal complement
signal subspace. From an algorithm viewpoint, we can cor-
rectly identify the index set { j1, · · · , jk} using the equations
on the left-hand side of (5), at least, in the noiseless case.

However, noise does exist in real applications. Thus,
the left-hand side of (5) cannot always be true. Under such
circumstances, for each spectral signature aj, j = 1, · · · ,m,
we compute the norm of the projection onto range(AS)⊥,
normalized by the norm of aj as follows:

ε( j) =

∥∥∥P⊥AS
a j

∥∥∥
2

‖a j‖2 (6)

We determine Λ̂ = { j1, · · · , jk} such that for S = 1, · · · , k
when ε( ĵS) < ε( j) for all j � Λ̂. This dictionary pruning
procedure has been found to be able to improve the perfor-
mance for sparse unmixing and decrease the runtime of the
process [13].
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3. Proposed Algorithm

3.1 Reweighted Sparse Regression

CLSUnSAL has performed better than traditional sparse-
based unmixing methods. To further improve the unmixing
performance of CLSUnSAL, we propose a weighted sparse
regression algorithm in this paper.

3.1.1 Weighted �1 Minimization

Let y denote a column vector with L spectral bands and x
be an m × 1 vector. Sparse regression optimization can be
represented as follows:

min
x
‖x‖0 subject to Ax = y (7)

where A is an L × m matrix. Its relaxation problem is

min
x
‖x‖1 subject to Ax = y (8)

To enhance the sparsity of the �1 norm in (8), [43] pro-
posed a weighted formulation of the �1 minimization that
can be described as follows:

min
x
‖Wx‖1 subject to Ax = y (9)

where W is a diagonal matrix with ω1, · · · , ωm on the diag-
onal, whose entry is ωk+1

i = 1/
(∣∣∣xk

i

∣∣∣ + ε
)
, where ε is a small

positive value, which means the weights used for the next
iteration were computed from the value of the current so-
lution. This formulation can efficiently enhance the sparsity
of the solution and improve the estimation performance over
the �1 norm [25].

3.1.2 Weighted Sparse Regression Based on CLSUnSAL

Inspired by [43], we propose a weighted sparse regres-
sion formulation based on CLSUnSAL (W-CLSUnSAL) as
follows:

min
X

‖AX − Y‖2F + λ‖WX‖2,1 subject to: X ≥ 0 (10)

where W is also a diagonal matrix with m positive numbers
ω1, · · · , ωm on the diagonal. How to set the values of W is
an immediate question. Because of the unavailability of X,
we adopt an iterative reweighted approach to design W.

W (k+1) = diag

⎛⎜⎜⎜⎜⎜⎝
1∥∥∥X(k)(1, :)
∥∥∥

2
+ ε
, · · · , 1∥∥∥X(k)(m, :)

∥∥∥
2
+ ε

⎞⎟⎟⎟⎟⎟⎠

(11)

Where X(k)( j, :) denotes the jth row of X estimated at the
kth iteration and ε is a small positive value. The introduc-
tion of parameter ε in (11) is adopted to provide stability
and ensure that in the next step a nonzero estimate is not
strictly prohibited by a zero-valued component in X(k)( j, :).

As shown in [43], a cautious choice of ε provides the stabil-
ity necessary to correct for inaccurate coefficient estimates.
Matrix W enhances the sparsity of the endmember spectra in
library A and improves the unmixing performance, as shown
in Sect. 4.

To solve problem (10), we adopt variable splitting and
ADMM.

3.1.3 W-CLSUnSAL Algorithm

The optimization problem (10) can be rewritten as the fol-
lowing equivalent form:

min
X

1
2
‖AX − Y‖2F + λ‖WX‖2,1 + lR+(X) (12)

where lR+(X) is the indicator function and lR+(X) is zero if
X is nonnegative and +∞ otherwise.

Optimization problem (12) has the following equiva-
lent formulation:

min
X,V1,V2,V3

1
2
‖V1 − Y‖2F + λ‖V2‖2,1 + lR+(V3)

s.t. V1 = AX, V2 = WX, V3 = X (13)

By introducing scaled Lagrangian multipliers D =

(D1,D2,D3), the augmented Lagrangian function of (13)
can be defined as

L(X,V1,V2,V3,D1,D2,D3) =
1
2
‖V1 − Y‖2F + λ‖V2‖2,1 + lR+(V3)

+
μ

2
‖AX − V1 − D1‖2F

+
μ

2
‖WX − V2 − D2‖2F

+
μ

2
‖X − V3 − D3‖2F (14)



HAN et al.: FAST HYPERSPECTRAL UNMIXING VIA REWEIGHTED SPARSE REGRESSION
1823

The pseudocode of W-CLSUnSAL is shown in Algo-
rithm 1.

3.2 Dictionary Pruning and the W-CLSUnSAL Algorithm

To mitigate the high mutual coherence of spectral libraries,
we propose an algorithm that combines dictionary pruning
and the W-CLSUnSAL algorithm, which is called the DPW-
CLSUnSAL algorithm.

A pruned library AS is detected by dictionary pruning
using the subspace approach in Sect. 2.3. In real hyper-
spectral applications, however, the subspace identification
is affected by a few degradation mechanisms, which include
nonlinearities, calibration errors among the signatures avail-
able in the spectral library, and spectral variability. These
degradation mechanisms may lead to the incorrect detection
of support S, described in Sect. 2.3. To avoid missing an
active signature, we introduce a preset threshold T , which
is larger than the number of endmembers resulting from the
HySime estimations but nevertheless much smaller than m,
the number of signatures in library A. We denote the reduced
library as AQ. In addition, we have, with high probability,
S ⊂ Q, that is, we do not often miss active signatures.

Let A be a given spectral library. Then, the steps of our
method are as follows: (1) We identify the signal subspace
using the HySime algorithm. (2) A pruned library AQ is de-
tected by dictionary pruning using the subspace approach in
Sect. 2.3 with a preset threshold T . (3) To estimate the corre-
sponding fractional abundances from AQ, we replace A with
AQ in (10). Thus, we solve a following weighted collabora-
tive sparse regression problem utilizing the W-CLSUnSAL
algorithm described in Sect. 3.1.3 as follows:

min
E

‖AQE − Y‖2F + λ‖WE‖2,1 subject to: E ≥ 0(15)

The pseudocode for the resulting DPW-CLSUnSAL al-
gorithm is shown in Algorithm 2.

In step 5, we sort the normalized projection errors in

increasing order. In step 6, we retain the indices of the
first q in set π when a preset threshold T is satisfied. Step
8 solves the weighted collaborative sparse regression opti-
mization problem using the pruned library AQ.

It is worth noting that our improved algorithm is simi-
lar to MUSIC-CSR [13], but the difference is also obvious.
The main difference is that our improved algorithm calls W-
CLSUnSAL algorithm described in Sect. 2.3 in step 7, while
the MUSIC-CSR method calls the classical CLSUnSAL al-
gorithm. The numerical and visual comparisons between
them will be shown in Sect. 4.

4. Experiments with Simulated Data and Real Hyper-
spectral Data

In this section, we evaluate the effectiveness of the proposed
dictionary pruning and weighted sparse regression method
in various simulated and real scenarios. In Sect. 4.1, we
use five simulated datasets to analyze the performance of
the proposed approach, and the estimation accuracy and
computational performance of the results are discussed. In
Sect. 4.2, we qualitatively evaluate the proposed method
with respect to other traditional methods using a real hy-
perspectral dataset.

4.1 Experimental Results Using Simulated Datasets

In this section, we use synthetic hyperspectral images to
demonstrate the effectiveness of the proposed approach. We
have considered three spectral libraries that we use in our
experiments: A1, A2, and A3. A1 and A2 are two differ-
ent dictionaries of minerals which were randomly extracted
from the USGS library splib06 [28], which was released in
September 2007. It comprises spectral signatures with 224
spectral bands, which are distributed uniformly in the inter-
val of 0.4–2.5 μm. The mutual coherence of the library is
very close to one. A1 has 342 spectral signatures, and the
angle between any two different signatures is larger than 3◦.
A2 has 240 spectral signatures, and the angle between any
two elements of A2 is larger than 4.44◦. A3 was obtained
from a random selection of 120 materials from the NASA
JSC Spacecraft Materials Spectral Database [45]. It com-
prises 262 spectral library signatures with 100 bands.

Using library A1, we generate three data cubes of
5,000 pixels, each containing a different number of end-
members, namely, d = {2, 5, 8}. The three data cubes,
DC1, DC2, and DC3, were generated using endmembers
that were randomly chosen from library A1. In each sim-
ulated pixel, the abundances are generated following the
uniform Dirichlet distribution. The obtained data cubes
were contaminated with zero-mean independent and iden-
tically distributed Gaussian noise at three signal-to-noise ra-
tios (SNRs), namely, 30, 40, and 50 dB, which are common
levels in hyperspectral applications.

According to the methodology of [37], we generated
simulated data cube DC4 using library A2. DC4 has 75 ×
75 pixels, using 224 bands per pixel. Each simulated pixel
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Fig. 1 True fractional abundances of endmembers in the simulated DC4.

was generated with five randomly selected signatures from
A2 as the endmembers, using an LMM and imposing the
ASC in each pixel. Figure 1 (a) shows the simulated im-
age, in which there are pure regions, as well as mixed re-
gions constructed using mixtures of two to five endmem-
bers, distributed spatially in the form of distinct square re-
gions. The true fractional abundances of each of the five
endmembers are shown in Figs. 1 (b)–(f). The background
pixels consist of mixtures of the same five endmembers,
but their fractional abundance values were randomly fixed
to values 0.1149, 0.0741, 0.2003, 0.2055, and 0.4051. The
scene was again contaminated with white noise using the
same SNR value adopted for DC1, DC2, and DC3.

Using library A3, we generated simulated data cube
DC5 by using nine randomly selected signatures from A3.
DC5 contains 100 × 100 pixels, and the fractional abun-
dances satisfy the ANC and the ASC. Figure 2 shows the
true abundances of the nine endmembers. The scene was
again contaminated with white noise, using the same SNR
values adopted for DC4.

We measured the unmixing performance using the
signal-to-reconstruction error (SRE) [38]:

SRE = E
[
‖x‖22
]/

E
[
‖x − x̂‖22

]

expressed in dB: SRE(dB) = 10 log10(SRE). The higher the
SRE, the better the quality of the unmixing.

We also computed the spectral angle distance (SAD),
which is used to compare the similarity of the j th true end-
member signature x j and its estimate x̂ j. The SAD is for-
mally defined as follows [14]:

SADj = arccos
[(

xT
j x̂ j

)/(∥∥∥x j

∥∥∥
∥∥∥x̂ j

∥∥∥
)]

Parameter ε plays an important role in the proposed
DPW-CLSUnSAL algorithm and we empirically set it to
0.0001 in our simulated experiment. In addition, regulariza-
tion parameter λ affects the performance of unmixing meth-
ods. To obtain the best settings for this parameter, we tested
the values in

C = [10−5, 5 × 10−5, 10−4, 5 × 10−4, 10−3, 5 ×
10−3, 10−2, 5 × 10−2, 0.1, 0.2, 0.5, 1, 2] to determine the best

Fig. 2 True fractional abundances of endmembers in the simulated DC5:
(a) abundances of endmember 1; (b) abundances of endmember 2; (c) abun-
dances of endmember 3; (d) abundances of endmember 4; (e) abundances
of endmember 5; (f) abundances of endmember 6; (g) abundances of end-
member 7; (h) abundances of endmember 8; (i) abundances of endmem-
ber 9.

Table 1 Relation between SRE and λ in simulated DC1 with SNR = 30
dB by the proposed method.

Fig. 3 Projection errors of the library members in DC2 (SNR = 30 dB).

value of λ for SUnSAL, CLSUnSAL, MUSIC-CSR, and the
proposed algorithm. Table 1 shows the relationship between
SRE and λ in DC1 at SNR = 30dB for the proposed algo-
rithm. Table 1 shows that the obtained performance does
not vary substantially, which indicates the robustness of the
algorithm to this parameter. For all the algorithms in this
paper, the parameters were carefully tuned for optimal per-
formance. For the sake of comparison, the MUSIC-CSR
algorithm uses the same numbers of the pruned library as
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Fig. 4 Fractional abundances estimated by different unmixing methods in DC2 (SNR = 30 dB):
(a) true fractional abundances in DC2. Fractional abundances estimated by (b) SUnSAL,
(c) CLSUnSAL, (d) MUSIC-CSR, and (e) the proposed algorithm.

the proposed algorithm.
In the following, we illustrate the DPW-CLSUnSAL

algorithm using DC2, which is contaminated with noise at
SNR = 30dB. The performance of the proposed method is
compared with SUnSAL, CLSUnSAL and MUSIC-CSR.

In Algorithm 2, we first estimate the data subspace us-
ing the HySime algorithm, and library A1 members are pro-
jected onto the estimated subspace. Second, we compute
the Euclidean distance to the subspace for each member in
library A1. Figure 3 shows the obtained projection errors
for all members. The errors corresponding to the true end-
members are highlighted indicated by red circles.

From Fig. 3, we can see that the errors corresponding to
true endmembers have the lowest projection errors of all the
library members. To avoid missing an active signature, we
set parameter T to 10, and then the reduced library AQ was
built by retaining the members corresponding to the low-
est q = 10 projection errors, which correspond to a max-
imum allowed error of 0.0365. Finally, the unmixing was
performed using the W-CLSUnSAL algorithm with reduced
library AQ.

Figure 4 shows the unmixing results obtained by dif-
ferent unmixing algorithms for DC2. Figure 4 (a) shows the
true fractional abundances of the five endmembers in DC2,
and Fig. 4 (b), 4 (c), 4 (d), and 4 (e) show the fractional abun-
dances estimated by the SUnSAL algorithm, CLSUnSAL
algorithm, the MUSIC-CSR algorithm and the proposed al-
gorithm, respectively.

Figure 4 shows that the SUnSAL algorithm can only
correctly identify one of the five true endmembers, whereas
the CLSUnSAL algorithm can identify four of them. The
CLSUnSAL algorithm performs substantially better than
the SUnSAL algorithm because it enforces joint sparsity
among all the pixels. Due to the high mutual coherence of
the library signatures, this unmixing problem is quite dif-
ficult. However, as shown in Fig. 4 (e), the method pro-
posed in this paper is able to identify all the true endmem-
bers because we consider the pruning strategy and spar-
sity enhancement strategy simultaneously. We can also see
that the MUSIC-CSR algorithm is more accurate than the
CLSUnSAL algorithm, and less accurate than the proposed
algorithm. The reason is that the MUSIC-CSR is focused on
the pruning strategy. Hence, we conclude that the fractional
abundances inferred by the proposed are indeed closer to the
true ones than those inferred by the SUnSAL, CLSUnSAL,

Table 2 SRE and SAD using the considered unmixing algorithms for
simulated DC1, DC2 and DC3.

and MUSIC-CSR algorithms.
Table 2 shows the SRE and SAD (per endmember) ob-

tained by applying SUnSAL, CLSUnSAL, MUSIC-CSR,
and the proposed algorithm to simulated DC1, DC2 and
DC3 with noise. The parameter T was set as follows: 5
for DC1, 10 for DC2, and 20 for DC3 in our proposed
algorithm.

Table 2 shows that the proposed algorithm outperforms
the other three methods. The proposed method attains the
highest SRE and the lowest SAD values in all cases. The
accuracy of all algorithms decreases when the observations
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are affected by high levels of noise. Another important ob-
servation from Table 2 is that the accuracy of the considered
unmixing algorithms decreases as the number of endmem-
bers in the data cube increases. This is because the spar-
sity of the solution mitigates the difficulty of the unmixing
caused by the high mutual coherence of the libraries.

Table 3 Computation times (s) for simulated DC1, DC2 and DC3.

Fig. 5 Fractional abundances maps estimated by different unmixing algorithms for endmember 5
in DC4 and, from top to bottom, SNR is 30dB, 40dB, and 50dB: (a) abundances map for SUnSAL;
(b) abundances map for CLSUnSAL; (c) abundances map for the MUSIC-CSR algorithm; (d) abun-
dances map for the proposed algorithm.

Table 3 reports the computation times for simulated
DC1, DC2 and DC3. We set the regularization parameter
λ = 10−2 for all algorithms. The maximum number of itera-
tions was set to 1,000 in all cases. In the proposed algorithm,
we set T to 20 and then the pruned dictionary AQ retained
20 members of original library A1 for all simulated data
cubes. The methods were performed on a PC with an AMD
AthlonTM II X4 645 Processor @3.10 GHz and 4.00 GB of
RAM memory.

Table 3 shows that the runtime of the proposed al-
gorithm is significantly shorter than that of SUnSAL, and
CLSUnSAL methods. The reason is that our algorithm
converges faster when the library is pruned. Using the
same pruning strategy, the proposed algorithm runs a lit-
tle longer than the MUSIC-CSR algorithm because our pro-
posed method considers the sparsity enhancement strategy.
However, the performance of the proposed algorithm is
much better than that of the MUSIC-CSR algorithm in Ta-
ble 2. We can also see that the computation times of all
algorithms were affected by high noise, namely, the higher
the value of SNR, the lower the runtime of the algorithm.

We set T to 10 in our proposed algorithm, and then
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Fig. 6 Fractional abundances maps estimated by different unmixing algorithms for endmember 9
in DC5 and, from top to bottom, SNR is 30dB, 40dB, and 50dB: (a) abundances map for SUnSAL;
(b) abundances map for CLSUnSAL; (c) abundances map for the MUSIC-CSR algorithm; (d) abun-
dances map for the proposed algorithm.

Fig. 5 shows the fractional abundance maps estimated by
different unmixing algorithms for endmember 5 in DC4.
From Fig. 5, we can find that the regions with high abun-
dance of the considered endmember are able to depict bet-
ter, while mixed regions with lower concentrations are sub-
stantially more uniform. In fact, DPW-CLSUnSAL ob-
tained better results than the other algorithms, especially the
abundance maps obtained by SUnSAL, CLSUnSAL, and
MUSIC-CSR are full of noise points with high decibel val-
ues (30dB). The reason is that the spectral angle distance in
A2 is quite small, which makes it difficult to separate the
endmember signatures from noise. Therefore, our improved
algorithm can restrain the noise.

We set T to 20 in our proposed algorithm, then, Fig. 6
shows the fractional abundance maps estimated by differ-
ent unmixing algorithms for endmember 9 in DC5. From
Fig. 6, we can see that there are many noise points in the
results of the SUnSAL, CLSUnSAL, and MUSIC-CSR al-
gorithms, especially endmembers at the boundary that are
not extracted completely, while our improved algorithm ob-
tain better results. The fact is that the fractional abundances
in DC5 are smooth, with sharp transitions. We also find that
the SNR affects the performance of the algorithm, and the

higher the noise value, the worse the result.
To further test the performance of the improved algo-

rithm, we have calculated SRE and SAD by using differ-
ent unmixing algorithms for simulated DC4 and DC5 with
noise, which are shown in Table 4. In the proposed algo-
rithm, we set the parameters T to 10 and 20 for DC4 and
DC5, respectively. In Table 4, we can observe that the
improved algorithm obtains more accurate results than the
SUnSAL, CLSUnSAL, and MUSIC-CSR algorithms. Espe-
cially when the simulated data set has a high level of SNR,
the improved algorithm can accurately select true endmem-
bers from the original spectral library.

Table 5 reports the computation times of different un-
mixing algorithms for simulated DC4 and DC5. For com-
parison, we set the parameter T to 20 in the proposed al-
gorithm for DC4 and DC5. It’s important to note that the
values reported correspond to the average times. The run-
ning environment, as well as the settings of parameters and
the maximum number of iterations, are identical to those in
Table 3 above.

From Table 5, we can find that our improved algo-
rithm has the shorter running time than the SUnSAL, and
CLSUnSAL methods, while a little longer than the
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Table 4 SRE(dB) and SAD using the considered unmixing algorithms
for simulated DC4 and DC5.

Table 5 Computation times(s) for simulated DC4 and DC5.

MUSIC-CSR algorithm. In all cases, the running time of
the improved algorithm is less than 13% of that of the
CLSUnSAL algorithm in DC4, and less than 15% for DC5.
This is because our dictionary pruning strategy significantly
improves the running speed of the algorithm.

In summary, by quantitatively and qualitatively com-
paring the results obtained by different unmixing algo-
rithms, we can conclude that our proposed algorithm sig-
nificantly improves the unmixing results in all cases, and
the running speed is faster than that of other most unmix-
ing methods. Although the results of our simulation exper-
iments are encouraging, further experiments should be con-
ducted with real hyperspectral data.

4.2 Experimental Results Using Real Datasets

In this section, we present the results of tests on the well-
known AVIRIS Cuprite dataset [37], which was captured
in Nevada in 1997. This scene has been widely used to

Fig. 7 Subimage and projection errors of real data: (a) band 30 (λ =
667.3 nm) of a subimage from the AVIRIS Cuprite Nevada dataset; (b) pro-
jection errors for all members onto this real dataset. The projection errors
corresponding to these four materials are indicated by red circles.

validate the performance of hyperspectral unmixing algo-
rithms. The scene comprises 224 spectral bands ranging
from 0.4 to 2.5 μm, with a nominal spectral resolution of
10 nm. After removing low SNR and water absorption
bands, 188 bands remain. The portion used in the experi-
ments consists of 250 × 191 pixels. Figure 7 (a) shows this
subimage at spectral band 30.

The spectral library used in this experiment is the
same library A1 used in the previous simulated experiments,
which contains 342 spectral signatures with 224 spectral
bands.

From previous studies [10], [37], we know that this
dataset contains four prominent materials, namely, alu-
nite, buddingtonite, chalcedony, and montmorillonite. Fig-
ure 7 (b) shows the projection errors obtained for all mem-
bers onto this real dataset. The errors corresponding to these
four materials are indicated by red circles. Here, the sub-
space projection method performs worse than in the simu-
lated datasets because of various types of modeling error.
However, the projection errors corresponding to the four
materials are still small. In experiments, the subspace di-
mension inferred by HySime was 18. We set parameter T to
be 82 to ensure all the endmember signatures are present in
the reduced dictionary.

Figure 8 qualitatively compares the fractional abun-
dances inferred by SUnSAL, CLSUnSAL, MUSIC-CSR,
and the proposed algorithm for the four different minerals.
The regularization parameter in this experiment was set as
follows: 0.001 for SUnSAL, 0.05 for CLSUnSAL, 0.01 for
MUSIC-CSR, and 0.5 for the proposed algorithm.

From Fig. 8, we can see that the fractional abundances
estimated by the proposed algorithm are generally higher in
the regions assigned to the respective materials in compari-
son to SUnSAL, CLSUnSAL and MUSIC-CSR. This is be-
cause the proposed algorithm considers the pruning strategy
and sparsity enhancement strategy simultaneously. As a re-
sult of the pruning strategy, our pruned dictionary only con-
tains 82 spectra signatures, successfully reducing the dictio-
nary size by 76%. Thus, our proposed algorithm improves
the accuracy of unmixing solutions.

Table 6 reports the average runtimes on the real hyper-
spectral dataset using the same computing environment as
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Fig. 8 Fractional abundance maps estimated by SUnSAL, CLSUnSAL, and the proposed algorithm.
(Top to bottom) abundance maps for alunite, buddingtonite, chalcedony, and montmorillonite for
(a) SUnSAL, (b) CLSUnSAL, (c) MUSIC-CSR, and (d) the proposed algorithm.

used for the simulated data. The runtime of the proposed al-
gorithm is 39.02% of that of SUnSAL and is 11.21% of that
of CLSUnSAL. Overall, our proposed algorithm is much

faster than the SUnSAL and CLSUnSAL algorithms, and is
a little longer than MUSIC-CSR.
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Table 6 Computation times for real data.

Fig. 9 Relationship between SRE and T in DC1 with SNR = 30 dB for
the proposed method.

5. Discussion

The greatest advantage of the proposed algorithm is the
adoption of a dictionary pruning strategy, which can identify
a subset of the library for unmixing. Threshold T controls
the size of the subset of the original spectral library. Fig-
ure 9 shows the relationship between SRE and T in DC1 at
SNR = 30dB. Higher values of T lead to lower SRE values.
However, when the dataset contains high levels of noise and
the number of true signatures is large, threshold T should be
set higher to avoid missing active signatures.

In the proposed algorithm, parameter λ must still be
determined manually, which is a disadvantage. Hence, our
future work will focus on how to automatically determine
this parameter.

Although the results obtained using the proposed algo-
rithm are very encouraging, the algorithm proposed in this
paper is based on the LMM. In real hyperspectral images,
nonlinearities do exist. Therefore, the nonlinear problem of
mixed pixels should also be considered appropriately in the
future design of the unmixing algorithm.

6. Conclusions

In this paper, we developed a hyperspectral unmixing
method based on dictionary pruning and reweighted sparse
regression. To mitigate the problems of high mutual coher-
ence in spectral libraries, the algorithm identifies a subset of
the original library elements using dictionary pruning strat-
egy. The size of this subset is much smaller than that of
the original library. To further improve the performance
of unmixing method, we propose a weighted sparse regres-
sion algorithm called the W-CLSUnSAL algorithm. Thus,
our proposed algorithm improves the accuracy of unmixing
solutions while substantially reducing the average runtime.

Simulated and real hyperspectral data experiments showed
that the proposed algorithm is more accurate and much
faster than the SUnSAL and CLSUnSAL algorithms.
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