Clinical researches show that the morbidity of coronary artery disease (CAD) is gradually increasing in many countries every year, and it causes hundreds of thousands of people all over the world dying for each year. As the optical coherence tomography with high resolution and better contrast applied to the lesion tissue investigation of human vessel, many more micro-structures of the vessel could be easily and clearly visible to doctors, which help to improve the CAD treatment effect. Manual qualitative analysis and classification of vessel lesion tissue are time-consuming to doctors because a single-time intravascular optical coherence (IVOCT) data set of a patient usually contains hundreds of in-vivo vessel images. To overcome this problem, we focus on the investigation of the superficial layer of the lesion region and propose a model based on local multi-layer region for vessel lesion components (lipid, fibrous and calcified plaque) features characterization and extraction. At the pre-processing stage, we applied two novel automatic methods to remove the catheter and guide-wire respectively. Based on the detected lumen boundary, the multi-layer model in the proximity lumen boundary region (PLBR) was built. In the multi-layer model, features extracted from the A-line sub-region (ALSR) of each layer was employed to characterize the type of the tissue existing in the ALSR. We used 7 human datasets containing total 490 OCT images to assess our tissue classification method. Validation was obtained by comparing the manual assessment with the automatic results derived by our method. The proposed automatic tissue classification method achieved an average accuracy of 89.53%, 93.81% and 91.78% for fibrous, calcified and lipid plaque respectively.
Xinbo REN
Wakayama University,Shangluo University
Haiyuan WU
Wakayama University
Qian CHEN
SenseTime Japan Ltd.
Toshiyuki IMAI
Wakayama University
Takashi KUBO
Wakayama Medical University
Takashi AKASAKA
Wakayama Medical University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Xinbo REN, Haiyuan WU, Qian CHEN, Toshiyuki IMAI, Takashi KUBO, Takashi AKASAKA, "A Local Multi-Layer Model for Tissue Classification of in-vivo Atherosclerotic Plaques in Intravascular Optical Coherence Tomography" in IEICE TRANSACTIONS on Information,
vol. E102-D, no. 11, pp. 2238-2248, November 2019, doi: 10.1587/transinf.2018EDP7404.
Abstract: Clinical researches show that the morbidity of coronary artery disease (CAD) is gradually increasing in many countries every year, and it causes hundreds of thousands of people all over the world dying for each year. As the optical coherence tomography with high resolution and better contrast applied to the lesion tissue investigation of human vessel, many more micro-structures of the vessel could be easily and clearly visible to doctors, which help to improve the CAD treatment effect. Manual qualitative analysis and classification of vessel lesion tissue are time-consuming to doctors because a single-time intravascular optical coherence (IVOCT) data set of a patient usually contains hundreds of in-vivo vessel images. To overcome this problem, we focus on the investigation of the superficial layer of the lesion region and propose a model based on local multi-layer region for vessel lesion components (lipid, fibrous and calcified plaque) features characterization and extraction. At the pre-processing stage, we applied two novel automatic methods to remove the catheter and guide-wire respectively. Based on the detected lumen boundary, the multi-layer model in the proximity lumen boundary region (PLBR) was built. In the multi-layer model, features extracted from the A-line sub-region (ALSR) of each layer was employed to characterize the type of the tissue existing in the ALSR. We used 7 human datasets containing total 490 OCT images to assess our tissue classification method. Validation was obtained by comparing the manual assessment with the automatic results derived by our method. The proposed automatic tissue classification method achieved an average accuracy of 89.53%, 93.81% and 91.78% for fibrous, calcified and lipid plaque respectively.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.2018EDP7404/_p
Copy
@ARTICLE{e102-d_11_2238,
author={Xinbo REN, Haiyuan WU, Qian CHEN, Toshiyuki IMAI, Takashi KUBO, Takashi AKASAKA, },
journal={IEICE TRANSACTIONS on Information},
title={A Local Multi-Layer Model for Tissue Classification of in-vivo Atherosclerotic Plaques in Intravascular Optical Coherence Tomography},
year={2019},
volume={E102-D},
number={11},
pages={2238-2248},
abstract={Clinical researches show that the morbidity of coronary artery disease (CAD) is gradually increasing in many countries every year, and it causes hundreds of thousands of people all over the world dying for each year. As the optical coherence tomography with high resolution and better contrast applied to the lesion tissue investigation of human vessel, many more micro-structures of the vessel could be easily and clearly visible to doctors, which help to improve the CAD treatment effect. Manual qualitative analysis and classification of vessel lesion tissue are time-consuming to doctors because a single-time intravascular optical coherence (IVOCT) data set of a patient usually contains hundreds of in-vivo vessel images. To overcome this problem, we focus on the investigation of the superficial layer of the lesion region and propose a model based on local multi-layer region for vessel lesion components (lipid, fibrous and calcified plaque) features characterization and extraction. At the pre-processing stage, we applied two novel automatic methods to remove the catheter and guide-wire respectively. Based on the detected lumen boundary, the multi-layer model in the proximity lumen boundary region (PLBR) was built. In the multi-layer model, features extracted from the A-line sub-region (ALSR) of each layer was employed to characterize the type of the tissue existing in the ALSR. We used 7 human datasets containing total 490 OCT images to assess our tissue classification method. Validation was obtained by comparing the manual assessment with the automatic results derived by our method. The proposed automatic tissue classification method achieved an average accuracy of 89.53%, 93.81% and 91.78% for fibrous, calcified and lipid plaque respectively.},
keywords={},
doi={10.1587/transinf.2018EDP7404},
ISSN={1745-1361},
month={November},}
Copy
TY - JOUR
TI - A Local Multi-Layer Model for Tissue Classification of in-vivo Atherosclerotic Plaques in Intravascular Optical Coherence Tomography
T2 - IEICE TRANSACTIONS on Information
SP - 2238
EP - 2248
AU - Xinbo REN
AU - Haiyuan WU
AU - Qian CHEN
AU - Toshiyuki IMAI
AU - Takashi KUBO
AU - Takashi AKASAKA
PY - 2019
DO - 10.1587/transinf.2018EDP7404
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E102-D
IS - 11
JA - IEICE TRANSACTIONS on Information
Y1 - November 2019
AB - Clinical researches show that the morbidity of coronary artery disease (CAD) is gradually increasing in many countries every year, and it causes hundreds of thousands of people all over the world dying for each year. As the optical coherence tomography with high resolution and better contrast applied to the lesion tissue investigation of human vessel, many more micro-structures of the vessel could be easily and clearly visible to doctors, which help to improve the CAD treatment effect. Manual qualitative analysis and classification of vessel lesion tissue are time-consuming to doctors because a single-time intravascular optical coherence (IVOCT) data set of a patient usually contains hundreds of in-vivo vessel images. To overcome this problem, we focus on the investigation of the superficial layer of the lesion region and propose a model based on local multi-layer region for vessel lesion components (lipid, fibrous and calcified plaque) features characterization and extraction. At the pre-processing stage, we applied two novel automatic methods to remove the catheter and guide-wire respectively. Based on the detected lumen boundary, the multi-layer model in the proximity lumen boundary region (PLBR) was built. In the multi-layer model, features extracted from the A-line sub-region (ALSR) of each layer was employed to characterize the type of the tissue existing in the ALSR. We used 7 human datasets containing total 490 OCT images to assess our tissue classification method. Validation was obtained by comparing the manual assessment with the automatic results derived by our method. The proposed automatic tissue classification method achieved an average accuracy of 89.53%, 93.81% and 91.78% for fibrous, calcified and lipid plaque respectively.
ER -