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PAPER

Multi-Tree-Based Peer-to-Peer Video Streaming with a
Guaranteed Latency∗

Satoshi FUJITA†a), Member

SUMMARY This paper considers Peer-to-Peer (P2P) video streaming
systems, in which a given video stream is divided into b stripes and those
stripes are delivered to n peers through b spanning trees under the constraint
such that each peer including the source can forward at most b stripes. The
delivery of a stripe to n peers is said to be a k-hop delivery if all peers
receive the stripe through a path of length at most k. Let Bk =

∑k−1
i=0 bi.

It is known that under the above constraint, k-hop delivery of b stripes
to n peers is possible only if n ≤ Bk . This paper proves that (k + 1)-
hop delivery of b stripes to n peers is possible for any n ≤ Bk; namely,
we can realize the delivery of stripes with a guaranteed latency while it is
slightly larger than the minimum latency. In addition, we derive a necessary
and sufficient condition on n to enable a k-hop delivery of b stripes for
Bk − b + 2 ≤ n ≤ Bk − 1; namely for n’s close to Bk .
key words: P2P video streaming system, guaranteed latency, tree-
structured overlay

1. Introduction

Video streaming over Peer-to-Peer (P2P) networks has at-
tracted considerable attention in the past two decades [4]–
[6], [13], [17], [19]–[21], [23], [24], [26], [27]. In P2P
video streaming, peers participating in the network con-
tribute their upload capacity to help a stable dissemina-
tion of the streaming data. For example, in tree-based
systems [5], [6], [20], [28], peers are organized in a tree-
structured overlay and the streaming data which is “pushed”
by the media server located at the root of the tree, is deliv-
ered to the downstream peers by repeating store-and-relay
operation. It is known that the efficiency of a tree-structured
streaming could be effectively improved by adopting multi-
ple trees instead of a single tree [4], [19]; namely by dividing
the given stream into b stripes s1, s2, . . . , sb and by deliver-
ing those stripes through different spanning trees. Such a di-
vision of a video stream is generally realized in such a way
that the jth stripe, for 1 ≤ j ≤ b, consists of the (bi + j)th
chunks in the given stream for i ≥ 0 [1].

Let us consider a P2P system consisting of n+ 1 peers.
We assume that any two peers in the system are connected
by bi-directional communication links (e.g., through UDP
or TCP connections) so that they can directly communicate
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with each other. A video stream is issued by a designated
peer called source, and is subscribed by the other n peers.
Each peer including the source has an upload capacity of
amount b so that it can simultaneously upload at most b
stripes to other peers, while the capacity of each link and
the download capacity of each peer are assumed to be suf-
ficiently large [1]. In other words, each peer can forward
received stripes to other peers as long as the amount of si-
multaneous uploads does not exceed b.

Delivery of a stripe to n peers is said to be a k-hop de-
livery if all peers receive the stripe through a path of length
at most k [1]. In P2P video streaming systems, it is natu-
rally requested to realize a k-hop delivery of all stripes for
small k’s such as two or three [4], [25]. When the capacity
of each peer is b, the number of peers which enable a k-
hop delivery of a stripe is at most Bk =

∑k−1
i=0 bi (see Sect. 3

for the details), but as will be described later, 2-hop deliv-
ery to n ≤ b + 1 peers is not always possible as long as the
capacity of peers is bounded by b. To overcome such a situ-
ation [1], we examined cases in which the capacity of every
peer increases to b̃ (≥ b), and derived a necessary and suf-
ficient condition on b̃ to enable 2-hop delivery of b stripes
to n peers. In addition, we clarified that 2-hop delivery of
b stripes to n peers is possible if the capacity of the source
is augmented by n/b by an external server [10]. In the cur-
rent paper, we slightly relax the requirement on the number
of hops and prove that (k + 1)-hop delivery of b stripes to
n peers is possible for any n ≤ Bk; namely, we can always
realize the delivery of b stripes with a guaranteed latency
while it is slightly greater than the minimum latency. In ad-
dition, concerned with the possibility of k-hop delivery of b
stripes to Bk − δk peers, we derive a necessary and sufficient
condition for 1 ≤ δk ≤ b and several sufficient conditions
for δk ≥ b + 1. Such a performance guarantee is crucial for
delay-sensitive applications such as patient monitoring and
real-time manufacturing.

The remainder of this paper is organized as follows.
Section 2 overviews related work. Section 3 gives prelim-
inaries. Section 4 proves a theorem concerned with the
(k + 1)-hop delivery of b stripes to n ≤ Bk peers. Sections 5
and 6 are concerned with the k-hop delivery of b stripes to
n = Bk−δk peers for 1 ≤ δk ≤ b and δk ≥ b+1, respectively.
Finally, Sect. 7 concludes the paper with future work.

2. Related Work

Video streaming systems based on the P2P technology have
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been widely used in recent years. Those systems can be clas-
sified into several types by the way of delivering video con-
tents to the subscribers, e.g., mesh type such as Bullet [12],
PRIME [16], CoolStreaming/DONet [24] and a hybrid of
mesh and tree such as mTreebone [22]. In particular, the
demonstration experiments conducted by NHK science &
technology research laboratories during London Olympics
in 2012 [18] shows that mesh-based P2P realizes the deliv-
ery of live contents (e.g., the final of the men’s singles of ten-
nis tournament) to more than 1600 subscribers in 1.5 Mbps
in a stable manner. Among those systems, in this paper, we
focus on multiple trees as the underlying topology of the
overlay network.

The idea of using multiple trees for the delivery
of video streams was firstly adopted in SplitStream [4].
SplitStream divides a given video stream into several sub-
streams (i.e., stripes) and delivers those sub-streams through
different spanning trees to have disjoint sets of internal
nodes. In other words, in SplitStream, each peer joins at
most one spanning tree as an internal node and joins all of
the other spanning trees as a leaf node. Such a construction
of the set of spanning trees enables peers to contribute their
upload capacity with low cost, which balances the load of
all peers participating in the streaming system [2], [4], [7].

Theoretical aspects concerned with multiple-tree-based
P2P video streaming have also been studied in recent years.
Liu [14] considered the problem of minimizing the broad-
cast time of each chunk contained in the given stream under
the constraint such that each peer can upload at most one
chunk at a time, and proposed an algorithm which broad-
casts every chunk to n subscribers in �log2 n� hops. In
this algorithm, any two consecutive chunks are delivered
through different binomial trees since in order to enable the
delivery of chunks in �log2 n� hops, every peer receiving a
chunk at time t must continuously upload the chunk until the
chunk is received by all subscribers (i.e., note that to com-
plete the broadcast of a chunk to n subscribers in �log2 n�
steps, the number of subscribers receiving the chunk must
double in each step). A generalization of the Liu’s result to
the cases in which each peer can upload at most k chunks at a
time, was done in [3] and an extension to the cases in which
each peer has constant number of neighbors in the overlay
and the upload capacity of peers is not uniform was given in
[8] and [9], respectively. In addition to the above results, the
upper bound on the network capacity of multiple-tree-based
P2P was discussed in different contexts; e.g., [15] discussed
the network capacity of peer-assisted live streaming systems
and [11] considered the problem of constructing multiple
trees which maximize the network capacity by considering
the topology of the underlying physical network.

Zhao et al. analyzed the network capacity of multiple-
tree-structured P2Ps in the context of one-view multiparty
video conferencing (MPVC, for short) [25]. In one-view
MPVC, each user participating in the video conference can
watch the stream published by a specific peer selected be-
forehand. The delivery of each stream is conducted with
the support of helper peers in addition to the publisher and

subscribers, and to provide theoretical bounds on the net-
work capacity, they assume that each stream can be divided
into sub-streams with arbitrary fractions; e.g., a stream with
bit-rate r can be divided into two sub-streams of bit-rate εr
and (1 − ε)r for arbitrary ε > 0, while the length of each
delivery path is bounded by two.

In [1], Ando and Fujita introduced the notion of k-hop
delivery for multiple-tree-structured P2P video streaming.
They considered P2P systems consisting of homogeneous
peers and focused on the upload capacity of peers which en-
ables the 2-hop delivery of b stripes to n subscribing peers.
They derived tight lower bounds on the upload capacity
for any combination of b and n [1]. Although tight lower
bounds equals to b or slightly greater than b for n ≤ b+1, it
linearly increases as n increases for n > b + 1, and requests
each peer to have an ability of forwarding c video streams
when the number of peers becomes c × b.

3. Preliminaries

3.1 Model of P2P Video Streaming

This paper considers the problem of delivering b stripes
from the source to n subscribers with as short latency as
possible. Each peer including the source has upload capac-
ity b so that it can forward b stripes to other peers at the
same time, where b stripes and their receivers might be dif-
ferent. Since the capacity of each peer is b and there are b
stripes to be delivered to n subscribers, when n > 1, at least
one peer must receive a stripe through intermediate peers;
namely it needs two or more hops. We say that the delivery
of a stripe is k-hop delivery [1] if all of n peers receive the
stripe within k hops from the source. By definition, there are
at most

Bk = 1 + b + b2 + · · · + bk−1

peers which can receive a stripe within k hops from the
source (recall that the upload capacity of the source is
bounded by b). In fact, one-hop delivery of a stripe is pos-
sible if and only if n = 1. On the other hand, 2-hop delivery
of a stripe is possible only if n ≤ 1 + b.

3.2 Elementary Bound for k = 2

At first, let us consider the case of k = 2. When n = 1 + b
(= B2), 2-hop delivery of b stripes to n peers can be done in
the following manner: 1) in the first hop, the source sends
b stripes to b (≤ n) peers so that each peer receives exactly
one stripe; and 2) in the second hop, each peer receiving a
stripe forwards it to the other n − 1 (≤ b) peers. Although
such a simple scheme correctly works even for n = b, it
collapses for smaller n’s, since it forces at least one peer to
forward b′ ≥ �b/n� ≥ 2 stripes to the other peers in the
second hop. Such a forwarding of b′ stripes to n − 1 peers
is possible only if b′ × (n − 1) ≤ b. Conversely, if b′ ×
(n − 1) ≤ b, 2-hop delivery of b stripes to n peers can be
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Fig. 1 3-hop delivery of five stripes to four peers, where (a) represents
the delivery of stripes s1 and s4, and (b) represents the delivery of stripe s5.

realized in the following manner: 1) in the first hop, the
source sends b strips to n peers so that each peer receives
at most �b/n� stripes; and 2) in the second hop, each peer
forwards received stripes to the other n− 1 peers. Hence the
following elementary claim follows.

Theorem 1: 2-hop delivery of b stripes to n peers is possi-
ble iff⌈

b
n

⌉
× (n − 1) ≤ b.

This theorem indicates that 2-hop delivery of 5 stripes to 4
peers is impossible, while it is possible for n = 3 or 5 (i.e., it
is not monotonic). However, it is also true that the delivery
of 5 stripes is possible for any n ≤ 6 (= B2) if we allow one
more hop for the delivery of stripes; e.g., 3-hop delivery of
5 (= b) stripes to 4 (= n) peers can be realized as follows
(see Fig. 1 for illustration):

1. in the first hop, the source sends stripe si to peer pi for
each 1 ≤ i ≤ 4, and stripe s5 to peer p4;

2. in the second hop, pi forwards si to the other three peers
for each 1 ≤ i ≤ 4, and simultaneously, p4 forwards
stripe s5 to peers p1 and p2 (note that p4 uses its capac-
ity of amount 3 for stripe s4 and capacity of amount 2
for stripe s5); and

3. in the third hop, p1 forwards stripe s5 to p3.

The reader should note that in this extended scheme, several
stripes share the capacity of peers p1 and p4 in realizing
their 3-hop delivery, while such a sharing is not possible if
we need to deliver all stripes within 2 hops.

3.3 Equivalent Decision Problem for k ≥ 3

In this paper, we will extend the above argument to the case
of k ≥ 3. At first, assuming n = Bk, we introduce two values
Xi and Yi defined as follows:

Xi
def
= bi−1 and

Yi
def
= 1 + b + · · · + bi−2 =

bi−1 − 1
b − 1

.

Xi is the maximum number of peers which can receive a
stripe in exactly i hops from the source, and Yi denotes the
number of peers which must exclusively use its upload ca-
pacity for the delivery of a stripe provided that bi−1 (= Xi)

peers receive the stripe in the ith hop. Here, word “exclu-
sive” means that the peer fully uses its upload capacity of
amount b for the delivery of the stripe (if the capacity of
amount b′ < b is used for the stripe, it is not considered
to be an exclusively used peer even if the remaining capac-
ity is not used for the other stripe). For example, Y2 = 1
holds, since to deliver a stripe to b (= X2) peers in the sec-
ond hop, exactly one peer must exclusively use its upload
capacity of amount b for the stripe. The reader should note
that those Yi peers cannot be shared with other stripes, as
long as n = Bk. With the above notions, value Bk can be
represented as Bk = Yk+1 = bYk + 1 = Xk + Yk.

A k-hop delivery of b stripes to n peers is possible if
Bk − 1 ≤ n ≤ Bk, and it is trivially impossible if n ≥ Bk + 1.
Thus in the following, without loss of generality, we assume
n = Bk − δk for some δk ≥ 2. According to the reduction
of n by δk, the total capacity used for the delivery of a stripe
also reduces by δk, since n equals to the number of nodes in
the delivery tree, and the total capacity equals to the number
of edges in the delivery tree. In other words, according to
the reduction of n, at most δk peers become “sharable” with
other stripes, and the total amount of capacity used for a
stripe reduces by exactly δk. Let

S (s) = {u1, u2, . . . , uδk }
be the set of such peers (the reader should note that we do
not need to mind the location of those peers in the delivery
tree, and should just mind that such a set S (s) exists for any
δk and s).

In this paper, we are interested in the assignment of re-
ductions of the upload capacity to peers in set S (s) so that:
1) the total amount of reductions for a stripe equals to δk,
and 2) it enables as much sharing of peers with other stripes
as possible. The reader should note that since Yk − δk peers
have already been exclusively used for each stripe, we can
exclude them from the candidate for sharing. Thus, the num-
ber of peers m which are not exclusively used for any stripe,
i.e., peers which can be shared with other stripe under an
appropriate assignment of reductions, is given as

m = (Bk − δk) − b(Yk − δk)

= Bk − bYk + (b − 1)δk
= (b − 1)δk + 1

= bδk − δk + 1,

where the third equality uses equality Bk = bYk + 1. To sim-
plify the exposition, in the following, we merely consider
those m peers and will neglect the other peers. For exam-
ple, we often use an argument such that: If no peer in S (s)
is shared with other stripe for any s, then at least bδk peers
must be used for the k-hop delivery of b stripes, but it is
impossible since it exceeds the number of available peers
m = bδk − δk + 1 ≤ bδk − 1, where the last inequality is due
to δk ≥ 2.

For the same reason, k-hop delivery of b stripes to
Bk − δk peers is possible only if the capacity of peers can
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Fig. 2 Set S (si) for four (= b) stripes. (a) it first reduces the upload
capacity of peers in S (si) by δk = 2 and then conducts the sharing of peers
by several stripes. (b) shows a part of resulting overlay according to the
sharing of upload capacity.

be shared so that the total number of peers used for the de-
livery of b stripes does not exceed m. Conversely, if such a
sharing of capacity is possible and if δk ≤ bk−2, k-hop deliv-
ery of b stripes to Bk−δk peers is also possible. In fact, given
such a sharing of capacity, k-hop delivery of b stripes can be
realized by simply reducing the number of peers receiving
the stripe in the kth hop by δk. More concretely, we may con-
struct an overlay so that: 1) S (s) consists of δk peers which
receive stripe s in the (k−1)st hop and 2) the upload capacity
of peers in S (s) is shared with other stripe according to the
given sharing of capacity. See Fig. 2 for illustration.

The above observation implies that if δk ≤ bk−2, the
k-hop delivery of b stripes to Bk − δk peers is possible if
and only if the answer to the following simplified decision
problem is “yes,” where d corresponds to δk in the original
problem.

Equivalent Decision Problem

Input: Prepare b boxes of width d and height b, and fill
each box with d items of width one and height b. See
Fig. 3 for illustration. Note that each box corresponds
to a stripe s, the height of items corresponds to the
upload capacity of peers, and the width of box corre-
sponds to the size of set S (s).

Fig. 3 Equivalent decision problem for b = 4 and d = 3. There are four
(= b) boxes with three (= d) columns, where each column is filled with an
item of height four (= b).

Fig. 4 Reduction of the size of items and the rearrangement of resulting
items, which increases the number of unused items to three (≥ d − 1).

Operation: For each box, reduce the length of items in the
box so that the total amount of reductions equals to d,
and rearrange all items so that the total size of items
packed into each column does not exceed b. After the
rearrangement, a column is said to be used if it contains
at least one item.

Question: Is it possible to realize reductions and rearrange-
ment so that the number of unused columns is at least
d − 1. Note that if the number of unused columns is
d−1, the number of used columns becomes b×d−d+
1 = m.

In Fig. 4, the size of items in a box reduces by three (= d),
and after conducting rearrangement of resulting items, the
number of unused columns becomes three (≥ d − 1). In the
following, to clarify the exposition, we often prove claims
by using this simplified decision problem. For example,
since several items can be packed into one column only if
d ≥ b/2, we have the following claim concerned with the
impossibility of k-hop delivery.

Lemma 1: k-hop delivery of b stripes to Bk − δk peers is
impossible if 2 ≤ δk < b/2.

4. Main Theorem on (k + 1)-Hop Delivery

This section proves the following theorem.

Theorem 2: (k + 1)-hop delivery of b stripes to n peers is
possible for any n ≤ Bk.

This theorem indicates that by allowing one more hop, we
can always complete the delivery of b stripes to at most Bk

peers with a guaranteed latency. Proof of the theorem relies
on the following lemma.

Lemma 2: k-hop delivery of b stripes to Bk − δk peers
is possible if δk = pb − q for some integers p ≥ 1 and
0 ≤ q ≤ p.
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Proof. Consider the corresponding simplified problem. If d
is a multiple of b with d ≥ b, we can reduce the size of d/b
(≥ 1) items in each box to zero, which generates b×d/b = d
unused columns. If d is a multiple of b−1 with d ≥ b−1, we
can reduce the size of d

b−1 (≥ 1) items in each box to one and
rearrange them so that each column contains exactly b such
items, which generates b × d

b−1 − d
b−1 = d unused columns.

If d = pb+ p′(b−1) for some p and p′ with p+ p′ ≥ 1,
by letting d1 = pb and d2 = p′(b − 1), we can apply the first
and the second reductions to d1 and d2, respectively, which
generates d = d1 + d2 unused columns. Finally, since the
above equality can be restated as

d = pb + p′(b − 1) = (p + p′)b − p′,

the claim follows. Q.E.D.

If δk ≥ (b − 1)2, we can be restate δk as δk = pb + p′(b − 1)
by using two integers p ≥ 0 and p′ ≥ 1. Thus by Lemma 2,
k-hop delivery of b stripes to Bk − δk peers is possible if
δk ≥ (b − 1)2. Since Bk+1 − Bk = bk ≥ (b − 1)2 for any b ≥ 2
and k ≥ 2, the theorem follows.

5. Bound on k-Hop Delivery for Small δk

Unlike (k + 1)-hop delivery, k-hop delivery is not always
possible for any n ≤ Bk. The following Lemma holds.

Lemma 3: k-hop delivery of b stripes to Bk − δk peers is
possible if δk = b − 	b/σ
 for some integer σ ≥ 2.

Proof. We prove the claim on the simplified problem. If
d = b−	b/σ
 for some σ ≥ 2, then we can reduce the size of
an item in each box to 	b/σ
, and pack resultingσ items into
a column since 	b/σ
 × σ ≤ b holds, where equality holds
iff b is a multiple of σ. Since it generates �b/σ� columns
containing item of size 	b/σ
, such a rearrangement reduces
the number of used columns to

b(d − 1) + �b/σ� = bd − (b − �b/σ�) ≤ bd − d + 1,

where the last inequality is due to d = b − 	b/σ
. Hence the
lemma follows. Q.E.D.

The next theorem gives a necessary and sufficient condition
to enable k-hop delivery of b stripes to Bk − δk peers for
δk ≤ b.

Theorem 3: When δk < b−1, k-hop delivery of b stripes to
Bk − δk peers is possible iff δk = b − 	b/σ
 for some integer
σ ≥ 2 or δk = b − b/σ + 1 for some integer σ ≥ 1 dividing
b.

Proof. By Lemma 3, it is enough to prove that: If δk � b −
	b/σ
 for any integer σ ≥ 2, then k-hop delivery is possible
iff δk = b − b/σ + 1 for some integer σ ≥ 1 dividing b.
Assume that δk satisfies

b − 	b/σ
 < δk < b − 	b/(σ + 1)
 (1)

for some σ ≥ 1. Since δk < b−1, this condition is equivalent
to δk � b−	b/σ′
 for anyσ′ ≥ 2. Then, in the corresponding
simplified problem, since we can pack at most σ items into a
column, and the number of columns containing an item with
a reduced size is at least �b/σ�, the number of used columns
is at least

b(d − 1) + �b/σ� = bd − (b − �b/σ�)
≥ bd − (b − 	b/σ
) + f (b, σ)

> bd − d + f (b, σ),

where f (x, y) is a function which returns 0 if x ≡ 0 (mod y)
and returns 1 otherwise, and the last inequality is due to d >
b−	b/σ
. This implies that k-hop delivery is possible if and
only if σ divides b and d = b − b/σ + 1. Hence the theorem
follows. Q.E.D.

In the following, we explore the case of δk ≥ b, and derives
several sufficient conditions to enable k-hop delivery of b
stripes to Bk − δk peers. Recall that we have known that k-
hop delivery to Bk − δk peers is possible if δk ≥ (b − 1)2 for
any given b ≥ 2.

6. Sufficient Conditions for Larger δk

This subsection derives several sufficient conditions to en-
able k-hop delivery of b stripes to n = Bk − δk peers for
δk ≥ b. Let us consider the corresponding simplified prob-
lem. If n = Bk − b, i.e., if d = b, the size of an item in a
box can be reduced from b to zero which generates b (= d)
unused columns. Similarly, if d = b + 1, we can generate b
(= d − 1) unused columns. Hence we can conclude that k-
hop delivery of b stripes to Bk−δk peers is possible if δk = b
or b + 1. As for δk = b + 2, we have the following lemma.

Lemma 4: For any b ≥ 6, k-hop delivery of b stripes to
Bk − (b + 2) peers is possible.

Proof. If b � 11, we can solve the corresponding simplified
problem in the following manner. Let x = 	b/3
, y = b − 3x
and η = �(x + y)/4�. By definition, it holds x ≥ 2 and 0 ≤
y ≤ 2. Since b = 3x + y, we have

2η + x ≥ (3x + y)/2 = b/2;

namely we can pack two items of size b − (2η + x) into one
column. Similarly, since x ≤ b/3, we can pack three items
of size x into one column.

• The size of several items is reduced as follows. For
each i ∈ {1, 2, . . . , η}, 1) select six boxes; 2) select two
items from each box; and 3) reduce the size of selected
items to x+2(i−1) and b− (2i+ x), respectively. Since

b − {x + 2(i − 1)} + b − {b − (2i + x)}
= b + (2i + x) − {x + 2(i − 1)}
= b + 2,

we can certainly generate such a pair of items by using
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Fig. 5 Explanation of Lemma 4. At first, we select six boxes and select
two items from each of selected boxes. We then reduce the size of the
first item to x = 	b/3
 (painted green) and the size of the second item to
b − (2 + x) (painted light blue). If η = 1, then we rearrange the resulting 12
items so that three items of size x are packed into a column and two items
of size b − (2 + x) are into a column.

Fig. 6 Ad hoc method for b = 11 in the proof of Lemma 4.

the amount of reductions d (= b + 2). Note that it gen-
erates 12η items in 6η boxes. See Fig. 5 for illustration.
• Since there are six items of size x, pack them into two

columns so that each column contains three items of
size x. Next, for each i ∈ {1, 2, . . . , η − 1}, pack an
item of size b − (2i − x) and an item of size 2i + x into
the same column, which generates six such columns.
Finally, pack two items of size b−(2η+x) into a column,
which generates three such columns.

Since η = �(x + y)/4� and b = 3x + y, we have

b − 6η ≥ b − 6

(
x + y

4
+

3
4

)

= b − 3
2

(
b − y

3
+ y

)
− 9

2

=
b
2
− 9 + 2y

2
,

which implies that b− 6η ≥ 0 holds if 6 ≤ b ≤ 10 or b ≥ 12.
If b−6η ≥ 1, for each of those b−6η boxes, we may simply
select one item and reduce its size to zero. Then, the number
of unused columns becomes

(b − 6η) + {12η − (2 + 6(η − 1) + 3)}
= (b − 6η) + (6η + 1)

= b + 1 = d − 1.

On the other hand, if b = 11, we can use the following ad
hoc method for the rearrangement of items. See Fig. 6 for
illustration.

• Classify 11 boxes into three types so that two boxes are
of Type A, four boxes are of Type B, and five boxes are
of Type C. For Type A boxes, generate an item of size
3 and an item of size 6 (note that such a reduction is
possible since (b− 3)+ (b− 6) = 2b− 9 = 13 = b+ 2);
for Type B boxes, generate an item of size 4 and an
item of size 5; and for Type C boxes, reduce the size of
an item to 0.
• Rearrange the resulting items so that two columns con-

tain three items of size 3, 4, and 4; two columns contain
two items of size 5 and 6; and one column contains two
items of size 5.

Then, the number of unused columns becomes 5+(12−5) =
12 = d − 1. Hence the lemma follows. Q.E.D.

The argument used in the proof of Lemma 4 can be extended
as follows.

Theorem 4: For any b ≥ 18, k-hop delivery of b stripes
to Bk − (b + c) peers is possible for any integer c satisfying
3 ≤ c ≤ √b/2.

Proof. If b ≥ 2c2 ≥ 18, we can solve the corresponding
simplified problem in the following manner. Let x = 	b/2c
,
y = b − 2cx, and

η =

⌈
(2c − 2)x + y

2c

⌉
=

⌈
x +

y − 2x
2c

⌉
.

Note that x ≥ 2c holds. Since

cη + x ≥ (2c − 2)x + y
2

+ x

=
2cx + y

2
=

b
2
,

we can pack two items of size b − (cη + x) into a column.
Similarly, since x ≤ b/2c, we can pack 2c items of size x
into one column.

• The size of several items is reduced as follows. For
each i ∈ {1, 2, . . . , η}, 1) select 2c boxes; 2) select two
items from each box; and 3) reduce the size of selected
items to x+ c(i− 1) and b− (ci+ x), respectively. Note
that it generates 4cη items of reduced size in 2cη boxes.
• Since there are 2c items of size x, pack them into one

column. Next, for each i ∈ {1, 2, . . . , η − 1}, pack an
item of size b − (ci + x) and an item of size ci + x into
one column, which generates 2c such columns. Finally,
pack two items of size b− (cη+ x) into a column, which
generates c such columns.

Now let us certify that we can select 2cη such boxes if b ≥
2c2. If b ≥ 2c2, it holds x ≥ c since

x = 	b/2c
 ≥ 	2c2/2c
 = c.

Since y ≤ 2c−1, x ≥ c implies y ≤ 2x, which further implies
x = η by the definition of η. Finally, if x = η then b ≥ 2cη
since b = 2cx + y ≥ 2cx.
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Table 1 The value of c covered by Corollary 1.

b c
2 1
3 1
4 1, 2
5 1, 2
6 1, 2, 3
7 1, 3
8 1, 2, 3, 4
9 1, 2, 4
10 1, 2, 4, 5
11 1, 2, 5
12 1, 2, 3, 4, 5, 6
13 1, 2, 3, 6
14 1, 2, 3, 6, 7
15 1, 2, 3, 7
16 1, 2, 3, 4, 7, 8
17 1, 2, 4, 8
18 1, 2, 3, 4, 8, 9
19 1, 2, 3, 4, 9
20 1, 2, 3, 4, 5, 9, 10

If b−2cη ≥ 1, for each of the remaining b−2cη boxes,
we may simply select one item and reduce its size to zero.
Then, the number of unused columns becomes

(b − 2cη) + {4cη − (1 + 2c(η − 1) + c)}
= b + c − 1 = d − 1.

Hence the claim follows. Q.E.D.

The reader should note that the argument used in the
above proof correctly works as long as x = η ≥ 1. This
condition can be restated as y ≤ 2x; i.e., b ≤ 2(c + 1)x =
2(c + 1)	b/2c
. Hence we have the following claim.

Corollary 1: k-hop delivery of b stripes to Bk − (b + c)
peers is possible for any integer c satisfying 2c ≤ b ≤
2(c + 1)	b/2c
.

For each 2 ≤ b ≤ 20, the value of c satisfying the above
inequality is summarized as follows: Theorem 4 indicates
that k-hop delivery of b stripes to Bk−(b+3) peers is possible
for any b ≥ 18, but it does not clarify whether it is possible
for b ≤ 17; which implies that even if it is possible, we
need to use an ad hoc method for b = 9, 10, 11, and 17. For
example, the above construction can be extended as follows.

Lemma 5: For any even b ≥ 2, k-hop delivery of b stripes
to Bk − {3b/2 − 	b/2σ
} peers is possible for any integer
σ ≥ 2.

Proof. Consider the corresponding simplified problem. By
letting x = 	b/σ
, we have d = (3/2)b−	x/2
. For each box,
select two items, and reduce the size of an item to b/2−�x/2�
and the size of another item to x. Since (b−x)+b/2+�x/2� =
(3/2)b − 	x/2
 = d, we can generate such a pair of items.
We then rearrange 2b items so that: 1) b/2 columns contain
two items of size b/2 − �x/2� and one item of size x; and
2) the remaining items of size x are packed into as small
number of columns as possible. Note that the first packing
is possible since 2 × �x/2� ≥ x and the second packing uses

�b/2σ� columns since it should pack b/2 items of size x so
that each column contains σ such items.

The number of unused columns becomes

2b − (b/2 + �b/2σ�) = (3/2)b − �b/2σ�
≥ (3/2)b − 	b/2σ
 − 1 = d − 1.

Hence the claim follows. Q.E.D.

The argument used in the above proof correctly works for
any x ≥ 2 if b/2 items of size x can be packed into �x/2�
columns, which is realized if 2x2 ≤ b; namely if x ≤ √b/2.
Hence the following claim follows.

Corollary 2: For any even b ≥ 2, k-hop delivery of b
stripes to Bk − (3/2)b − x peers is possible for any integer
x ≤ √b/2.

7. Concluding Remarks

This paper considers the problem of delivering b stripes to n
peers with a guaranteed latency. More concretely, we prove
that (k + 1)-hop delivery of b stripes to n peers is possible
for any n ≤ ∑k−1

i=0 bi. A future work is to derive a necessary
and sufficient condition on n to enable a k-hop delivery of b
stripes for n ≤ Bk − b − 2.
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