
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.9 SEPTEMBER 2019
1693

LETTER Special Section on Log Data Usage Technology and Office Information Systems

Effects of Software Modifications and Development After an
Organizational Change on Software Metrics Value

Ryo ISHIZUKA†a), Naohiko TSUDA†, Nonmembers, Hironori WASHIZAKI†, Yoshiaki FUKAZAWA†, Members,
Shunsuke SUGIMURA††, and Yuichiro YASUDA††, Nonmembers

SUMMARY Deterioration of software quality developed by multiple
organizations has become a serious problem. To predict software degra-
dation after an organizational change, this paper investigates the influence
of quality deterioration on software metrics by analyzing three software
projects. To detect factors indicating a low evolvability, we focus on the
relationships between the change in software metric values and refactoring
tendencies. Refactoring after an organization change impacts the quality.
key words: software quality, software metrics, organizational change, out-
sourcing

1. Introduction

Software development often involves multiple organiza-
tions. A common cost-savings measure is to outsource part
of software development, even though software developed
by multiple organizations tends to have a lower quality. This
is because software development with multiple organiza-
tions often leads to differences in recognizing software spec-
ifications, poor change controls, and inconsistencies in the
software architecture [1], [2].

The influences of organizational changes have also
been shown. Sato et al. [3] found that source files devel-
oped by multiple organizations tend to be more faulty than
other files from two open source projects.

Our research aims to detect factors that negatively in-
fluence software developments by multiple organizations.
To capture the changes in software from various angles,
we focus on software metrics and editing tendencies of the
source code. Previously we analyzed the characteristics of
source codes developed by multiple organizations [4]. This
paper narrows the relationships between the change in the
software metric values and the editing tendencies after an
organizational change.

2. Case Study Design

In this paper, we analyze the influence of refactoring and
adding features on software quality after an organizational
change. Table 1 summarizes the software subjects. Tool A

Manuscript received November 12, 2018.
Manuscript revised April 7, 2019.
Manuscript publicized June 13, 2019.
†The authors are with Department of Computer Science and

Engineering, Waseda University, Tokyo, 169–8555 Japan.
††The authors are with ICT Development Center, Komatsu Ltd.,

Hiratsuka-shi, 254–0014 Japan.
a) E-mail: ryo issy@fuji.waseda.jp

DOI: 10.1587/transinf.2018OFL0004

Table 1 Details of the experimental subjects

and Tool B are internal and outsourced tools with a change
in the subcontractor. OpenOffice.org (OOo) is an office
suite developed by Sun MicroSystems, which branched into
two successor software programs: LibreOffice (LibO) and
Apache OpenOffice (AOO). LibO was developed by the
Document Foundation, which was founded by OOo devel-
opers. AOO was developed by the Apache Software Foun-
dation.

To capture the changes in quality, we measured five
software metrics and the number of software defects. The
software metrics were selected to realize a multifaceted
evaluation. Direct Fan Out (DFO) and Visibility Fan Out
(VFO) were used to assess the file dependency [5]. VFO
captures the changes in the software architecture by count-
ing both direct and indirect dependencies between source
files. Moreover, we selected Lines of Code (LOC) to
find complex files, Ratio of Code Clones to maintain code
clones, and Ratio of Comments to evaluate readability.
These metrics are generally used as simple software met-
rics. We used a static analysis tool (Understand) [6] and two
code clone detection tools [7], [8] to measure these metrics.
Tables 2 and 3 show the transition of the software metric
values of subjects.

To detect deteriorated software quality, we identified
modified files and counted the number of defects modified in
each file after an organizational change. To count the num-
ber of defects of Tool A and Tool B, we manually identified
modified files with defect information in the development
history. We found about 3.54 defects per file in 28 source
files of Tool A and about 3.24 defects per file in 21 files of
Tool B. To count the number of defects of LibO and AOO,
we used the szz algorithm [9] from the git commit log. We
found about 3.48 defects per file in 22,728 files in LibO from
129,916 commits and about 0.15 defects per file in 23,386
files in AOO from 5,824 commits.

To capture the editing tendency of the source code, we
tracked how the source code was modified by refactoring

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers



1694
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.9 SEPTEMBER 2019

Table 2 Transition of the software metric values of the final version of each series of OOo, LibO, and
AOO

Table 3 Transition of the software metrics values of Tool A and Tool B

Table 4 Changes of module “sw” of LibO

and adding features. We manually identified these at each
release and compared whether each fix or refactoring af-
fected the metrics value. Table 4 show the editing tendency
of one module in LibO, which we conducted code review.

3. Case Study Results

In LibO, the value of DFO, the ratio of code clones, and
comments decreased. However, the LOC remained fairly
constant although new software features were added. On the
other hand, the value of VFO increased from version 4 but
DFO did not. Several refactorings such as the arrangement
of macros and the loop statements affected LOC. As for the
ratio of comments, the fact that the format of the comments
changed in version 4 series contributed a lot. As for DFO
and VFO, we considered that the software architecture was
redesigned prior to version 4, and the software dependency
became more complicated by adding new features.

The source code did not differ from AOO 4.1.0 because
the number of the commits for AOO decreased. In 2012,

there were 1927 commits for AOO per year, but only 204
commits in 2017. On the other hand, LibO had 19283 com-
mits in 2012 and 15922 commits in 2017. We attributed this
difference to the two reasons. First, Sun MicroSystems post-
poned the refactoring of OpenOffice for many years. Sec-
ond, most of the OOo developers were involved with LibO,
but few were involved with AOO. Then, the difference be-
tween LibO and AOO is the transition of the VFO values.
Hence, the complexity of the software architecture nega-
tively influences the understanding of the software for the
AOO developers.

Tool A and Tool B did not confirm that software ar-
chitectural refactorings such as method extraction were per-
formed. However, individual files such as indentation and
rewiring logic of the methods were refactored. Conse-
quently, the number of features in one file increased due
to the addition of the new features in subsequent releases.
Hence, LOC and the depth of the nest increased but the read-
ability of such methods decreased.

4. Conclusion

This paper analyzed the origin of quality degradation us-
ing software metric values and the editing tendencies after
an organizational change. First, the complexity of the soft-
ware negatively influenced the understanding of the soft-
ware. Second, the existence of refactoring after an orga-
nizational change positively influenced the metric value.
Thus, refactoring should be performed after an organiza-
tional change to maintain the software architecture. How-
ever, we cannot judge the universality of this evaluation as
only three software were assessed. In the future, we will
collect new software subjects.

References

[1] M.E. Conway, “How do committees invent?,” Datamation, vol.14,



LETTER
1695

no.4, pp.28–31, 1968.
[2] R.T. Nakatsu and C.L. Iacovou, “A comparative study of important

risk factors involved in offshore and domestic outsourcing of software
development projects: A two-panel Delphi study,” Information and
Management, vol.46, no.12, pp.57–68, 2009.

[3] S. Sato, H. Washizaki, Y. Fukazawa, S. Inoue, H. Ono, Y. Hanai, and
M. Yamamoto, “Effects of Organizational Changes on Product Met-
rics and Defects,” Proc. 20th Asia Pacific Software Engineering Con-
ference (APSEC 2013), pp.132–139, 2013.

[4] R. Ishizuka, N. Tsuda, H. Washizaki, Y. Fukazawa, S. Sugimura, and
Y. Yasuda, “Characteristics of unmaintainable source code in software
development by multiple organizations,” 3rd IEEE/ACIS International
Conference on Big Data, Cloud Computing, and Data Science Engi-
neering (BCD 2018), pp.49–54, 2018.

[5] D.J. Sturtevant and D. Joseph, “System design and the cost of ar-
chitectural complexity,” in Thesis (Ph.D.) Massachusetts Institute of
Technology, Engineering Systems Division, 2013.

[6] Scientific Toolworks, Inc., “Understand,” http://www.scitools.com/,
Last Accessed Oct. 2018.

[7] Nicad Clone Detector, https://www.txl.ca/txl-nicaddownload.html,
Last Accessed March 2019.

[8] PMD’s CPD, http://pmd.sourceforge.net/pmd-4.3.0/cpd.html, Last
Accessed Oct. 2018.

[9] J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes in-
duce fixes?,” Proc. 2nd International Workshop on Mining Software
Repositories (MSR 2005), pp.1–5, 2005.

http://dx.doi.org/10.1016/j.im.2008.11.005
http://dx.doi.org/10.1109/apsec.2013.28
http://dx.doi.org/10.1109/bcd2018.2018.00016
http://dx.doi.org/10.1145/1083142.1083147

