Full Text Views
96
Dedicated Short Range Communication (DSRC) is currently standardized as a leading technology for the implementation of Vehicular Networks. Non-safety application in DSRC is emerging beyond the initial safety application. However, it suffers from a typical issue of low data delivery ratio in urban environments, where static and moving obstacles block or attenuate the radio propagation, as well as other technical issues such as temporal-spatial restriction, capital cost for infrastructure deployments and limited radio coverage range. On the other hand, Content-Centric Networking (CCN) advocates ubiquitous in-network caching to enhance content distribution. The major characteristics of CCN are compatible with the requirements of vehicular networks so that CCN could be available by vehicular networks. In this paper, we propose a CCN-based vehicle-to-vehicle (V2V) communication scheme on the top of DSRC standard for content dissemination, while demonstrate its feasibility by analyzing the frame format of Beacon and WAVE service advertisement (WSA) messages of DSRC specifications. The simulation-based validations derived from our software platform with OMNeT++, Veins and SUMO in realistic traffic environments are supplied to evaluate the proposed scheme. We expect our research could provide references for future more substantial revision of DSRC standardization for CCN-based V2V communication.
Haiyan TIAN
Kobe University
Yoshiaki SHIRAISHI
Kobe University
Masami MOHRI
Gifu University
Masakatu MORII
Kobe University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Haiyan TIAN, Yoshiaki SHIRAISHI, Masami MOHRI, Masakatu MORII, "CCN-Based Vehicle-to-Vehicle Communication in DSRC for Content Distribution in Urban Environments" in IEICE TRANSACTIONS on Information,
vol. E102-D, no. 9, pp. 1653-1664, September 2019, doi: 10.1587/transinf.2018OFP0008.
Abstract: Dedicated Short Range Communication (DSRC) is currently standardized as a leading technology for the implementation of Vehicular Networks. Non-safety application in DSRC is emerging beyond the initial safety application. However, it suffers from a typical issue of low data delivery ratio in urban environments, where static and moving obstacles block or attenuate the radio propagation, as well as other technical issues such as temporal-spatial restriction, capital cost for infrastructure deployments and limited radio coverage range. On the other hand, Content-Centric Networking (CCN) advocates ubiquitous in-network caching to enhance content distribution. The major characteristics of CCN are compatible with the requirements of vehicular networks so that CCN could be available by vehicular networks. In this paper, we propose a CCN-based vehicle-to-vehicle (V2V) communication scheme on the top of DSRC standard for content dissemination, while demonstrate its feasibility by analyzing the frame format of Beacon and WAVE service advertisement (WSA) messages of DSRC specifications. The simulation-based validations derived from our software platform with OMNeT++, Veins and SUMO in realistic traffic environments are supplied to evaluate the proposed scheme. We expect our research could provide references for future more substantial revision of DSRC standardization for CCN-based V2V communication.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.2018OFP0008/_p
Copy
@ARTICLE{e102-d_9_1653,
author={Haiyan TIAN, Yoshiaki SHIRAISHI, Masami MOHRI, Masakatu MORII, },
journal={IEICE TRANSACTIONS on Information},
title={CCN-Based Vehicle-to-Vehicle Communication in DSRC for Content Distribution in Urban Environments},
year={2019},
volume={E102-D},
number={9},
pages={1653-1664},
abstract={Dedicated Short Range Communication (DSRC) is currently standardized as a leading technology for the implementation of Vehicular Networks. Non-safety application in DSRC is emerging beyond the initial safety application. However, it suffers from a typical issue of low data delivery ratio in urban environments, where static and moving obstacles block or attenuate the radio propagation, as well as other technical issues such as temporal-spatial restriction, capital cost for infrastructure deployments and limited radio coverage range. On the other hand, Content-Centric Networking (CCN) advocates ubiquitous in-network caching to enhance content distribution. The major characteristics of CCN are compatible with the requirements of vehicular networks so that CCN could be available by vehicular networks. In this paper, we propose a CCN-based vehicle-to-vehicle (V2V) communication scheme on the top of DSRC standard for content dissemination, while demonstrate its feasibility by analyzing the frame format of Beacon and WAVE service advertisement (WSA) messages of DSRC specifications. The simulation-based validations derived from our software platform with OMNeT++, Veins and SUMO in realistic traffic environments are supplied to evaluate the proposed scheme. We expect our research could provide references for future more substantial revision of DSRC standardization for CCN-based V2V communication.},
keywords={},
doi={10.1587/transinf.2018OFP0008},
ISSN={1745-1361},
month={September},}
Copy
TY - JOUR
TI - CCN-Based Vehicle-to-Vehicle Communication in DSRC for Content Distribution in Urban Environments
T2 - IEICE TRANSACTIONS on Information
SP - 1653
EP - 1664
AU - Haiyan TIAN
AU - Yoshiaki SHIRAISHI
AU - Masami MOHRI
AU - Masakatu MORII
PY - 2019
DO - 10.1587/transinf.2018OFP0008
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E102-D
IS - 9
JA - IEICE TRANSACTIONS on Information
Y1 - September 2019
AB - Dedicated Short Range Communication (DSRC) is currently standardized as a leading technology for the implementation of Vehicular Networks. Non-safety application in DSRC is emerging beyond the initial safety application. However, it suffers from a typical issue of low data delivery ratio in urban environments, where static and moving obstacles block or attenuate the radio propagation, as well as other technical issues such as temporal-spatial restriction, capital cost for infrastructure deployments and limited radio coverage range. On the other hand, Content-Centric Networking (CCN) advocates ubiquitous in-network caching to enhance content distribution. The major characteristics of CCN are compatible with the requirements of vehicular networks so that CCN could be available by vehicular networks. In this paper, we propose a CCN-based vehicle-to-vehicle (V2V) communication scheme on the top of DSRC standard for content dissemination, while demonstrate its feasibility by analyzing the frame format of Beacon and WAVE service advertisement (WSA) messages of DSRC specifications. The simulation-based validations derived from our software platform with OMNeT++, Veins and SUMO in realistic traffic environments are supplied to evaluate the proposed scheme. We expect our research could provide references for future more substantial revision of DSRC standardization for CCN-based V2V communication.
ER -