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Quantifying Dynamic Leakage
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SUMMARY A program is non-interferent if it leaks no secret infor-
mation to an observable output. However, non-interference is too strict
in many practical cases and quantitative information flow (QIF) has been
proposed and studied in depth. Originally, QIF is defined as the average
of leakage amount of secret information over all executions of a program.
However, a vulnerable program that has executions leaking the whole se-
cret but has the small average leakage could be considered as secure. This
counter-intuition raises a need for a new definition of information leakage
of a particular run, i.e., dynamic leakage. As discussed in [5], entropy-
based definitions do not work well for quantifying information leakage dy-
namically; Belief-based definition on the other hand is appropriate for de-
terministic programs, however, it is not appropriate for probabilistic ones.

In this paper, we propose new simple notions of dynamic leakage
based on entropy which are compatible with existing QIF definitions for
deterministic programs, and yet reasonable for probabilistic programs in
the sense of [5]. We also investigated the complexity of computing the pro-
posed dynamic leakage for three classes of Boolean programs. We also
implemented a tool for QIF calculation using model counting tools for
Boolean formulae. Experimental results on popular benchmarks of QIF
research show the flexibility of our framework. Finally, we discuss the im-
provement of performance and scalability of the proposed method as well
as an extension to more general cases.
key words: quantitative information flow, hybrid monitor, dynamic leakage

1. Introduction

Researchers have realized the importance of knowing where
confidential information reaches by the execution of a pro-
gram to verify whether the program is safe. The non-
interference property, namely, any change of confidential
input does not affect public output, was coined in 1982
by Goguen and Meseguer [14] as a criterion for the safety.
This property, however, is too strict in many practical cases,
such as password verification, voting protocol and averaging
scores. A more elaborated notion called quantitative infor-
mation flow (QIF) [23] has been getting much attention of
the community. QIF is defined as the amount of information
leaking from secret input to observable output. The pro-
gram can be considered to be safe (resp. vulnerable) if this
quantity is negligible (resp. large). QIF analysis is not easier
than verifying non-interference property because if we can
calculate QIF of a program, we can decide whether it sat-
isfies non-interference or not. QIF calculation is normally
approached in an information-theoretic fashion to consider
a program as a communication channel with input as source,
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and output as destination. The quantification is based on en-
tropy notions including Shannon entropy, min-entropy and
guessing entropy [23]. QIF (or the information leakage) is
defined as the remaining uncertainty about secret input af-
ter observing public output, i.e., the mutual information be-
tween source and destination of the channel. Another quan-
tification proposed by Clarkson, et al. [11], is the difference
between ‘distances’ (Kullback-Leibler divergence) from the
probability distribution on secret input that an attacker be-
lieves in to the real distribution, before and after observing
the output values.

While QIF is about the average amount of leaked in-
formation over all observable outputs, dynamic leakage is
about the amount of information leaked by observing a par-
ticular output. Hence, QIF is aimed to verify the safety of
a program in a static scenario in compile time, and dynamic
leakage is aimed to verify the safety of a specific running of
a program. So which of them should be used as a metric to
evaluate a system depends on in what scenario the software
is being considered.

Example 1.1:

if source < 16 then output ← 8 + source
else output ← 8

In Example 1.1 above, assume source to be a positive in-
teger, then there are 16 possible values of output, from 8
to 23. While an observable value between 9 and 23 reveals
everything about the secret variable, i.e., there is only one
possible value of source to produce such output, a value
of 8 gives almost nothing, i.e., there are so many possible
values of source which produce 8 as output. Taking the
average of leakages on all possible execution paths results
in a relatively small value, which misleads us into regard-
ing that the vulnerability of this program is small. There-
fore, it is crucial to differentiate risky execution paths from
safe ones by calculating dynamic leakage, i.e., the amount
of information that can be learned from observing the out-
put which is produced by a specific execution path. But, as
discussed in [5], any of existing QIF models (either entropy
based or belief tracking based) does not always seem rea-
sonable to quantify dynamic leakage. For example, entropy-
based measures give sometimes negative leakage. Usually,
we consider that the larger the value of the measure is, the
more information is leaked, and in particular, no informa-
tion is leaked when the value is 0. In the interpretation, it is
not clear how we should interpret a negative value as a leak-
age metric. Actually, [5] claims that the non-negativeness is
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a requirement for a measure of dynamic QIF. Also, MONO,
one of the axioms for QIF in [2] turns out to be identical
to this non-negative requirement. Belief-based one always
give non-negative leakage for deterministic programs but it
may become negative for probabilistic programs. In addi-
tion, the measure using belief model depends on secret val-
ues. This would imply (1) even if a same output value is ob-
served, the QIF may become different depending on which
value is assumed to be secret, which is unnatural, and (2) a
side-channel may exist when further processing is added by
system managers after getting quantification result. Hence,
as suggested in [5], it is better to introduce a new notion for
quantifying dynamic leakage caused by observing a specific
output value.

The contributions of this paper are three-fold.

• We present our criteria for an appropriate definition of
dynamic leakage and propose two notions that satisfy
those criteria. We propose two notions because there is
a trade-off between the easiness of calculation and the
preciseness (see Sect. 2).

• Complexity of computing the proposed dynamic leak-
ages is analyzed for three classes of Boolean programs.

• By applying model counting of logical formulae, a pro-
totype was implemented and feasibility of computing
those leakages is discussed based on experimental re-
sults.

According to [5], we arrange three criteria that a ‘good’
definition of dynamic leakage should satisfy, namely, the
measure should be (R1) non-negative, (R2) independent of
a secret value to prevent a side channel and (R3) compat-
ible with existing notions to keep the consistency within
QIF as a whole (both dynamic leakage and normal QIF).
Based on those criteria, we come up with two notions of
dynamic leakage QIF1 and QIF2, where both of them sat-
isfy all (R1), (R2) and (R3). QIF1, motivated by entropy-
based approach, takes the difference between the initial and
remaining self-information of the secret before and after ob-
serving output as dynamic leakage. On the other hand, QIF2
models that of the joint probability between secret and out-
put. Because both of them are useful in different scenar-
ios, we studied these two models in parallel in the theoret-
ical part of the paper. We call the problems of computing
QIF1 and QIF2 for Boolean programs CompQIF1 and Com-
pQIF2, respectively. For example, we show that even for
deterministic loop-free programs with uniformly distributed
input, both CompQIF1 and CompQIF2 are �P-hard. Next,
we assume that secret inputs of a program are uniformly
distributed and consider the following method of computing
QIF1 and QIF2 (only for deterministic programs for QIF2
by the technical reason mentioned in Sect. 4): (1) translate
a program into a Boolean formula that represents relation-
ship among values of variables during a program execution,
(2) augment additional constraints that assign observed out-
put values to the corresponding variables in the formula, (3)
count models of the augmented Boolean formula projected
on secret variables, and (4) calculate the necessary probabil-

ity and dynamic leakage using the counting result. Based on
this method, we conducted experiments using our prototype
tool with benchmarks taken from QIF related literatures, in
which programs are deterministic, to examine the feasibil-
ity of automatic calculation. We also give discussion, in
Sect. 5.3, on difficulties and possibilities to deal with more
general cases, such as, of probabilistic programs. In step
(3), we can flexibly use any off-the-shelf model counter. To
investigate the scalability of this method, we used four state-
of-the-art counters, SharpCDCL [15] and GPMC [24], [32]
for SAT-based counting, an improved version of aZ3 [22]
for SMT-based counting, and DSharp-p [20], [30] for SAT-
based counting in d-DNNF fashion. Finally, we discuss the
feasibility of automatic calculation of the leakage in general
case.

Related work The very early work on computational com-
plexity of QIF is that of Yasuoka and Terauchi. They
proved that even the problem of comparing QIF of two pro-
grams, which is obviously not more difficult than calculat-
ing QIF, is not a k-safety property for any k [27]. Conse-
quently, self-composition, a successful technique to verify
non-interference property, is not applicable to the compar-
ison problem. Their subsequent work [28] proves a similar
result for bounding QIF, as well as the PP-hardness of pre-
cisely quantifying QIF in all entropy-based definitions for
loop-free Boolean programs. Chadha and Ummels [9] show
that the QIF bounding problem of recursive programs is not
harder than checking reachability for those programs. De-
spite given those evidences about the hardness of calculating
QIF, for this decade, precise QIF analysis gathers much at-
tention of the researchers. In [15], Klebanov et al. reduce
QIF calculation to �SAT problem projected on a specific set
of variables as a very first attempt to tackle with automat-
ing QIF calculation. On the other hand, Phan et al. re-
duce QIF calculation to �SMT problem for utilizing existing
SMT (satisfiability modulo theory) solvers. Recently, Val
et al. [25] reported a method that can scale to programs of
10,000 lines of code but still based on SAT solver and sym-
bolic execution. However, there is still a gap between such
improvements and practical use, and researchers also work
on approximating QIF. Köpf and Rybalchenko [16] propose
approximated QIF computation by sandwiching the precise
QIF by lower and upper bounds using randomization and
abstraction, respectively with a provable confidence. Leak-
Watch of Chothia et al. [10], also gives approximation with
provable confidence by executing a program multiple times.
Its descendant called HyLeak [7] combines the randomiza-
tion strategy of its ancestor with precise analysis. Also using
randomization but in Markov Chain Monte Carlo (MCMC)
manner, Biondi et al. [6] utilize ApproxMC2, an existing
model counter created by some of the co-authors. Ap-
proxMC2 provides approximation on the number of models
of a Boolean formula in CNF with adjustable precision and
confidence. ApproxMC2 uses hashing technique to divide
the solution space into smaller buckets with almost equal
number of elements, then counts the models for only one
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bucket and multiplies it by the number of buckets. As for
dynamic leakage, McCamant et al. [17] consider QIF as net-
work flow through programs and propose a dynamic anal-
ysis method that can work with executable files. Though
this model can scale to very large programs, its precision is
relatively not high. Alvim et al. [2] give some axioms for a
reasonable definition of QIF to satisfy and discuss whether
some definitions of QIF satisfy the axioms. Note that these
axioms are for static QIF measures, which differ from dy-
namic leakage. However, given a similarity between static
and dynamic notions, we investigated how our new dynamic
notions fit in the lens of the axioms (refer to Sect. 2).

Dynamic information flow analysis (or taint analysis)
is a bit confusing term that does not mean an analysis of dy-
namic leakage, but a runtime analysis of information flow.
Dynamic analysis can abort a program as soon as an unsafe
information flow is detected. Also, hybrid analysis has been
proposed for improving dynamic analysis that may abort a
program too early or unnecessarily. In hybrid analysis, the
unexecuted branches of a program is statically analyzed in
parallel with the executed branch. Among them, Bielova et
al. [4] define the knowledge κ(z) of a program variable z as
the information on secret that can be inferred from z (techni-
cally, κ(z)−1(v) is the same of the pre-image of an observed
value v of z, defined in Sect. 2). In words, hybrid analy-
sis updates the ‘dynamic leakage’ under the assumption that
the program may terminate at each moment. Our method
is close to [4] in the sense that the knowledge κ(z)−1(v) is
computed. The difference is that we conduct the analysis
after the a program is terminated and v is given. We think
this is not a disadvantage compared with hybrid analysis be-
cause the amount of dynamic leakage of a program is not
determined until a program terminates in general.

Structure of the remaining parts: Sect. 2 is dedicated to
introduce new notions, i.e., QIF1 and QIF2, of dynamic
leakage and some properties of them. The computational
complexity of CompQIF1 and CompQIF2 is discussed in
Sect. 3. Section 4 gives details on calculating dynamic leak-
age based on model counting. Experimental results and dis-
cussion are provided in Sect. 5 and the paper is concluded in
Sect. 6.

2. New Notions for Dynamic Leakage

2.1 QIF1 and QIF2

The standard notion for static quantitative information flow
(QIF) is defined as the mutual information between random
variables S for secret input and O for observable output:

QIF = H(S ) − H(S |O) (1)

where H(S ) is the entropy of S and H(S |O) is the expected
value of H(S |o), which is the conditional entropy of S when
observing an output o. Shannon entropy and min-entropy
are often used as the definition of entropy, and in either case,
H(S ) − H(S |O) ≥ 0 always holds by the definition.

In [5], the author discusses the appropriateness of the
existing measures for dynamic QIF and points out their
drawbacks, especially, each of these measures may become
negative. Hereafter, let S and O denote the finite sets of in-
put values and output values, respectively. Since H(S |O) =∑

o∈O p(o)H(S |o), [5] assumes the following measure ob-
tained by replacing H(S |O) with H(S |o) in (1) for dynamic
QIF:

QIFdyn(o) = H(S ) − H(S |o). (2)

However, QIFdyn(o) may become negative even if a program
is deterministic (see Example 2.1). Another definition of
dynamic QIF is proposed in [11] as

QIFbelie f (ṡ, o) = DKL(pṡ||pS ) − DKL(pṡ||pS |o) (3)

where DKL is KL-divergence defined as DKL(p||q) =∑
s∈S p(s) log p(s)

q(s) , and pṡ(s) = 1 if s = ṡ and pṡ(s) = 0 oth-

erwise. Intuitively, QIFbelie f (ṡ, o) represents how closer the
belief of an attacker approaches to the secret ṡ by observing
o. For deterministic programs, QIFbelie f (ṡ, o) = − log p(o) ≥
0 [5]. However, QIFbelie f may still become negative if a pro-
gram is probabilistic (see Example 2.2).

Let P be a program with secret input variable S and
observable output variable O. For notational convenience,
we identify the names of program variables with the corre-
sponding random variables. Throughout the paper, we as-
sume that a program always terminates. The syntax and se-
mantics of programs assumed in this paper will be given
in the next section. For s ∈ S and o ∈ O, let pS O(s, o),
pO|S (o|s), pS |O(s|o), pS (s), pO(o) denote the joint probabil-
ity of s ∈ S and o ∈ O, the conditional probability of o ∈ O
given s ∈ S (the likelihood), the conditional probability of
s ∈ S given o ∈ O (the posterior probability), the marginal
probability of s ∈ S (the prior probability) and the marginal
probability of o ∈ O, respectively. We often omit the sub-
scripts as p(s, o) and p(o|s) if they are clear from the context.
By definition,

p(s, o) = p(s|o)p(o) = p(o|s)p(s), (4)

p(o) =
∑
s∈S

p(s, o), (5)

p(s) =
∑
o∈O

p(s, o). (6)

We assume that (the source code of) P and the prior proba-
bility p(s) (s ∈ S) are known to an attacker. For o ∈ O, let
preP(o) = {s ∈ S | p(s|o) > 0}, which is called the pre-image
of o (by the program P).

Considering the discussions in the literature, we aim to
define new notions for dynamic QIF that satisfy the follow-
ing requirements:

(R1) Dynamic QIF should be always non-negative because
an attacker obtains some information (although some-
times very small or even zero) when he observes an
output of the program.

(R2) It is desirable that dynamic QIF is independent of a
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Fig. 1 QIF1 (the upper) and QIF2 (the lower)

secret input s ∈ S. Otherwise, the controller of the
system may change the behavior for protection based
on the estimated amount of the leakage that depends
on s, which may be a side channel for an attacker.

(R3) The new notion should be compatible with the exist-
ing notions when we restrict ourselves to special cases
such as deterministic programs, uniformly distributed
inputs, and taking the expected value.

The first proposed notion is the self-information of the se-
cret inputs consistent with an observed output o ∈ O. Equiv-
alently, the attacker can narrow down the possible secret in-
puts after observing o to the pre-image of o by the program.
We consider the self-information of s ∈ S after the observa-
tion as the logarithm of the probability of s divided by the
sum of the probabilities of the inputs in the pre-image of o
(see the upper part of Fig. 1).

QIF1(o) = − log(
∑

s′∈preP(o)

p(s′)). (7)

The second notion is the self-information of the joint events
s′ ∈ S and an observed output o ∈ O (see the lower part of
Fig. 1). This is equal to the self-information of o.

QIF2(o) = − log(
∑
s′∈S

p(s′, o)) (8)

= − log p(o) = − log p(s, o) + log p(s|o). (9)

Both notions are defined by considering how much possi-
ble secret input values are reduced by observing an output.
We propose two notions because there is a trade-off between
the easiness of calculation and the appropriateness. As il-
lustrated in Example 2.2, QIF2 can represent the dynamic
leakage more appropriately than QIF1 in some cases. On
the other hand, the calculation of QIF1 is easier than QIF2
as discussed in Sect. 4. Both notions are independent of the
secret input s ∈ S (Requirement (R2)).

0 ≤ QIF1(o) ≤ QIF2(o). (10)

If we assume Shannon entropy,

QIF = −
∑
s∈S

p(s) log p(s)

+
∑
o∈O

p(o)
∑
s∈S

p(s|o) log p(s|o) (11)

= −
∑
s∈S

p(s) log p(s)

+
∑

s∈S,o∈O
p(s, o) log p(s|o). (12)

If a program is deterministic, for each s ∈ S, there is exactly
one os ∈ O such that p(s, os) = p(s) and p(s, o) = 0 for
o � os, and therefore

QIF =
∑

s∈S,o∈O
p(s, o)(− log p(s, o) + log p(s|o)). (13)

Comparing (9) and (13), we see that QIF is the expected
value of QIF2, which suggests the compatibility of QIF2
with QIF (Requirement (R3)) when a program is determin-
istic. Also, if a program is deterministic, QIFbelie f (ṡ, o) =
− log p(o), which coincides with QIF2(o) (Requirement
(R3)). By (10), Requirement (R1) is satisfied. Also in (10),
QIF1(o) = QIF2(o) holds for every o ∈ O if and only if the
program is deterministic.

Theorem 2.1: If a program P is deterministic, for every
o ∈ O and s ∈ S,

QIFbelie f (s, o) = QIF1(o) = QIF2(o) = − log p(o).

If input values are uniformly distributed, QIF1(o) =

log |S|
|preP(o)| for every o ∈ O. �

Let us get back to the Example 1.1 in the previous sec-
tion to see how new notions convey the intuitive meaning of
dynamic leakage. We assume: both source and output are
8-bit numbers of which values are in 0..255, source is uni-
formly distributed over this range. Then, because the pro-
gram in this example is deterministic, as mentioned above
QIF1 coincides with QIF2. We have QIF1(output = 8) =
− log 241

256 = 0.087bits while QIF1(output = o) = − log 1
256 =

8bits for every o between 9 and 23. This result addresses
well the problem of failing to differentiate vulnerable output
from safe ones of QIF.

Example 2.1: Consider the following program taken from
Example 1 of [5]:

if S = s1 then O← a else O← b

Assume that the probabilities of inputs are p(s1) = 0.875,
p(s2) = 0.0625 and p(s3) = 0.0625. Then, we have the
following output and posterior probabilities:

p(a) = 0.875, p(b) = 0.125
p(s1|a) = 1, p(s2|a) = p(s3|a) = 0
p(s1|b) = 0, p(s2|b) = p(s3|b) = 0.5

If we use Shannon entropy, H(S ) = 0.67, H(S |a) = 0
and H(S |b) = 1. Thus, QIFdyn(b) = −0.33, which
is negative as pointed out in [5]. Also, QIF2(a) =
− log p(a) = − log 0.875 = 0.19 and QIF2(b) = − log p(b) =
− log 0.125 = 3. QIF2(a) < QIF2(b) reflects the fact that the
difference of the posterior and the prior of each input when
observing b is larger (s1 : 0.875→ 0, s2, s3 : 0.0625→ 0.5)
than observing a (s1 : 0.875→ 1, s2, s3 : 0.0625→ 0).

Since the program is deterministic, QIFbelie f (s, o) =
QIF1(o) = QIF2(o).
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o a b
QIFdyn(o) 0.67 −0.33
QIF2(o) 0.19 3

�

Example 2.2: The next program is quoted from Example
2 of [5] where c1 r[]1−r c2 means that the program chooses
c1 with probability r and c2 with probability 1 − r.

if S = s1 then O← a 0.81[]0.19O← b
else O← a 0.09[]0.91O← b

Assume that the probabilities of inputs are p(s1) = 0.25 and

p(s2) = 0.75. (p(a), p(b)) = (0.25, 0.75)

(
0.81 0.19
0.09 0.91

)
=

(0.27, 0.73) and the posterior probabilities are calculated by
(4) as:

p(s1|a) = 0.75, p(s2|a) = 0.25
p(s1|b) = 0.065, p(s2|b) = 0.935

Let us use Shannon entropy for QIFdyn. As H(S ) =
H(S |a) = −0.25 log 0.25−0.75 log 0.75, QIFdyn(a) = H(S )−
H(S |a) = 0. As already discussed in [5], QIFdyn(a) = 0
though an attacker may think that S = s1 is more proba-
ble by observing O = a. For each o ∈ {a, b}, QIFbelie f (s, o)
takes different values (one of them is negative) depending
on whether s = s1 or s2 is the secret input. QIF2(a) =
− log p(a) = − log 0.27 = 1.89 and QIF2(b) = − log p(b) =
− log 0.73 = 0.45. QIF1(a) = QIF1(b) = 0 because the set
of possible input values does not shrink whichever a or b
is observed. Similarly to Example 2.1, QIF2(a) > QIF2(b)
reflects the fact that the probability of each input when ob-
serving a varies more largely (s1 : 0.25 → 0.75, s2 :
0.75 → 0.25) than when observing b (s1 : 0.25 → 0.065,
s2 : 0.75→ 0.935). In this example, the number |S| of input
values is just two, but in general, |S| is larger and we can
expect |preP(o)| is much smaller than |S| and QIF1 serves a
better measure for dynamic QIF.

o a b
QIFdyn(o) 0 0.46

QIFbelie f (s1, o) 1.58 −1.94
QIFbelie f (s2, o) −1.58 0.32

QIF1(o) 0 0
QIF2(o) 1.89 0.45

�

A program is non-interferent if for every o ∈ O such that
p(o) > 0 and for every s ∈ S, p(o) = p(o|s). Assume
a program P is non-interferent. By (4), p(s) = p(s|o) for
every o ∈ O (p(o) > 0) and s ∈ S, then QIF = 0 by (11). If
P is deterministic in addition, p(o) = p(o|s) = 1 for o ∈ O
(p(o) > 0) and s ∈ S. That is, if a program is deterministic
and non-interferent, it has exactly one possible output value.

Relationship to the hybrid monitor Let us see how our
notions relate to the knowledge tracking hybrid monitor pro-
posed by Bielova et al. [4].

Example 2.3: Consider the following program taken from
Program 5 of [4]:

if h then z← x + y
else z← y - x;
output z

where h is a secret input, x and y are public inputs and z is a
public output.

In [4], the knowledge about secret input h carried by
public output z is κ(z) = λρ.if ([[h]]ρ, [[x+y]]ρ, [[y−x]]ρ) where
ρ is an initial environment (an assignment of values to h,
x and y) and [[e]]ρ is the evaluation of e in ρ. If h = 1,
x = 0 and y = 1, then z = 1. In [4], to verify whether
this value of z reveals any information about h in this setting
of public inputs (i.e., x = 0, y = 1), they take κ(z)−1(1) =
{ρ|if ([[h]]ρ, [[x + y]]ρ, [[y − x]]ρ) = 1} = {ρ|if ([[h]]ρ, 1, 1) = 1}.
Because if ([[h]]ρ, 1, 1) = 1 for every ρ, [4] concluded that
z = 1 in that setting leaks no information.

On the other hand, with that settings of x = 0 and
y = 1, given z = 1 as the observed output, h can be either
true or f alse. For the program is deterministic, QIF1(z =
1) = QIF2(z = 1) = − log

∑
p(s′ |o)>0 p(s′) = − log(p(h =

true) + p(h = f alse)) = − log 1 = 0, which is consistent
with that of [4] though the approach looks different. Actu-
ally, the function κ(z) encodes all information revealed from
a value of z about secret input. By applying κ(z)−1 for a spe-
cific value o of z, we get the pre-image of o. In other words,
κ(z)−1(o) is exactly what we are getting toward quantifying
our notions of dynamic leakage. The monitor proposed in
[4] tracks the knowledge about secret input carried by all
variables along an execution of a program according to the
inlined operational semantics. It seems, however, impracti-
cal to store all the knowledge during an execution, and fur-
thermore, it would take time to compute the inverse of the
knowledge when an observed output is fixed.

2.2 An Axiomatic Perspective

The three requirements (R1), (R2) and (R3) we presented
summarize the intuitions about dynamic leakage following
the spirit of [5]. However, those requirements lack a firm
back-up theory, whilst in [2] Alvim et al. provide a set of
axioms for QIF. Despite there is difference between QIF and
dynamic leakage, we investigate in this subsection how well
our notions fit in the lens of those axioms to confirm their
feasibility to be used as a metric.

2.2.1 Preliminaries

This subsection briefly summarizes the background theory
of [2] to make this paper self-contained. Following the no-
tation in Sect. 2.1, let P be a program with secret input vari-
able S and observable output variable O and let S and O
denote the sets of input values and output values, respec-
tively. We denote a prior distribution over S by π just for
readability in this subsection. Let DX denote the set of all
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probability distributions over a finite set X. The prior vul-
nerability V : DS → R (R is the set of reals) is defined
based on the type of threat which is considered in the con-
text. For instance, we may define Bayes prior vulnerability
Vb(π) = maxs∈S π(s).

A hyper-distribution (abbrev. hyper) over a finite set
X is a distribution on distributions on X. Thus, the set of
all hypers over X is D(DX), which is abbreviated as D2X.
A program P transforms a prior distribution π ∈ DS to a
collection of posterior distributions p(s|o) (as a function that
takes s ∈ S as an argument) with probability p(o). Hence,
P can be regarded as a mapping from DS to D2S. Then,
the posterior vulnerability V̂ : D2S → R is defined either
as the expected value (ExpΔV) or as the maximum value
(max	Δ
 V) of the prior vulnerability over a hyper Δ ∈ D2S,
in which 	Δ
 denotes the set of posterior distribution with
non-zero probability. We use [π] to denote the point-hyper
assigning probability 1 to π, and [π, P] to denote the hyper
obtained by the action of P on π.

In [2], three axioms for prior vulnerability and three
axioms for posterior vulnerability are proposed.

For prior vulnerability,
Continuity (CNTY): ∀π.V is a continuous function of π;
Convexity (CVX): ∀∑

i aiπ
i.V(

∑
i aiπ

i) ≤ ∑
i aiV(πi); and

Quasiconvexity (Q-CVX): ∀∑
i aiπ

i.V(
∑

i aiπ
i) ≤ maxiV(πi),

provided ai are non-negative real numbers adding up to 1.
For posterior vulnerability,

Non-interference (NI): ∀π.V̂[π] = V(π);
Data-processing inequality (DPI):
∀π, P,Q.V̂[π, P] ≥ V̂[π, PQ]; and
Monotonicity (MONO): ∀π, P : V̂[π, P] ≥ V(π), provided
P,Q are programs, and PQ denotes the sequential composi-
tion of P and Q in this order.

2.2.2 Fit in the Lens of Axioms

Information leakage, either static or dynamic, is basically
defined as the difference between prior vulnerability and
posterior vulnerability. Recall QIF1 and QIF2 are defined as
the reducing amount of self-information of the secret input
and the joint event (between secret input and output) respec-
tively. Hence, given secret s, output o, we can regard the
prior vulnerabilities for QIF1 as V1(π) = π(s), for QIF2 as
V2(π) = p(s, o), and the posterior vulnerabilities in that or-
der V̂1[π, P] = π(s)∑

s′∈preP(o) π(s′) , V̂2[π, P] = p(s, o|o) = p(s|o).

In both of the cases, neither are posterior vulnerabilities the
maximum value (max	Δ
) nor the expected value (ExpΔV)
of prior vulnerabilities over some Δ, which is different from
those in [2]. This difference in definition is unavoidable to
consider QIF1 and QIF2 from the axiomatic perspective be-
cause these are dynamic notions.

(1) For prior vulnerability, both QIF1 and QIF2 satisfy
CNTY, CVX and Q-CVX.

(2) For posterior vulnerability, we found that QIF1 sat-
isfies all the three axioms: NI, MONO and DPI whilst QIF2
satisfies only the first two axioms but the last one, DPI.

In fact, QIF2 still aligns well to DPI in cases for deter-
ministic programs, and only misses for probabilistic ones.
Note that in deterministic cases, QIF1 ≡ QIF2 by Theo-
rem 2.1. Hence, for deterministic programs, QIF2 satis-
fies DPI because QIF1 does. For it is quite trivial and the
space is limited, we will omit the proof of those satisfac-
tion. Instead, we will give a counterexample to show that
QIF2 does not satisfy DPI when programs are probabilis-
tic. Let P1 : {s1, s2} → {u1, u2} and P2 : {u1, u2} → {v1}
in which P2 is a post-process of P1. Also assume the fol-
lowing probabilities: πS : p(s1) = p(s2) = 0.5; p(u1|s1) =
0.1, p(u2|s1) = 0.9, p(u1|s2) = 0.3, p(u2|s2) = 0.7 and
p(v1|u1) = p(v1|u2) = 1, in which s1, s2, u1, u2, v1 anno-
tate events that the corresponding variables have those val-
ues. Given these settings, in the cases that u1 and v1 are the
output of P1 and P1P2 respectively, we have V̂2[πS , P1] =
p(s1|u1) = 0.5×0.1

0.5×0.1+0.5×0.3 = 0.25, and V̂2[πS , P1P2] =
p(s1|v1) = 0.5×0.1+0.5×0.9

0.5×0.1+0.5×0.9+0.5×0.3+0.5×0.7 = 0.5. In other words,

V̂2[πS , P1P2] > V̂2[πS , P1], which is against DPI.
It turns out that, provided some unavoidable differences

in definition, our proposed notions satisfy all the axioms
except DPI. We came to the conclusion that DPI is not a
suitable criterion to verify if a dynamic leakage notion is
reasonable. It is because dynamic leakage is about a spe-
cific execution path, in which the inequality of DPI does no
longer make sense, rather than the average on all possible
execution paths. Therefore, it is not problematic that QIF2
does not satisfy DPI for probabilistic programs while QIF2
for deterministic programs and QIF1 satisfy DPI.

3. Complexity Results

3.1 Program Model

Let B = {,⊥} be the set of truth values, N = {1, 2, . . .} be
the set of natural numbers and N0 = N ∪ {0}. Also let Q
denote the set of rational numbers. We assume probabilistic
Boolean programs where every variable stores a truth value
and the syntactical constructs are assignment to a variable,
conditional, probabilistic choice, while loop, procedure call
and sequential composition:

e ::=  | ⊥ | X | ¬e | e ∨ e | e ∧ e

c ::= skip | X ← e | if e then c else c end

| c r[]1−r c | while e do c end | π(�e; �X) | c; c

where X stands for a (Boolean) variable, r is a constant ra-
tional number such that 0 ≤ r ≤ 1. In the above BNFs,
objects derived from the syntactical categories e and c are
called expressions and commands, respectively.

A procedure π has the following syntax:

in �X; out �Y; local �Z; c

where �X, �Y , �Z are sequences of input, output and local vari-
ables, respectively (which are disjoint from one another).
Let Var(π) = {V | V appears in �X, �Y or �Z}. We will use
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the same notation Var(e) and Var(c) for an expression e
and a command c. A program is a tuple of procedures
P = (π1, π2, . . . , πk) where π1 is the main procedure. P is
also written as P(�S , �O) to emphasize the input and output
variables �S and �O of π1 = in �S ; out �O; local �Z; c.

A command X ← e assigns the value of Boolean ex-
pression e to variable X. A command c1 r[]1−r c2 means that
the program chooses c1 with probability r and c2 with proba-
bility 1−r. Note that this is the only probabilistic command.
A command π(�e; �X) is a recursive procedure call to π with
actual input parameters �e and return variables �X. The se-
mantics of the other constructs are defined in the usual way.

The size of P is the sum of the number of commands
and the maximum number of variables in a procedure of P.

If a program does not have a recursive procedure call
and k = 1, it is called a (non-recursive) while program. If
a while program does not have a while loop, it is called a
loop-free program (or straight-line program). If a program
does not have a probabilistic choice, it is deterministic.

3.2 Assumption and Overview

We define the problems CompQIF1 and CompQIF2 as fol-
lows.

Inputs: a probabilistic Boolean program P,
an observed output value o ∈ O, and
a natural number j (in unary) specifying the error
bound.
Problem: Compute QIF1(o) (resp. QIF2(o)) for P
and o.

(General assumption)

(A1) The answer to the problem CompQIF1 (resp.
CompQIF2) should be given as a rational number (two
integer values representing the numerator and denom-
inator) representing the probability

∑
s′∈preP(o) p(s′)

(resp. p(o)).
(A2) If a program is deterministic or non-recursive, the an-

swer should be exact. Otherwise, the answer should
be within j bits of precision, i.e., | (the answer) −∑

s′∈preP(o) p(s′)(resp. p(o)) | ≤ 2− j.

If we assume (A1), we only need to perform additions and
multiplications the number of times determined by an analy-
sis of a given program, avoiding the computational difficulty
of calculating the exact logarithm. The reason for assuming
(A2) is that the exact reachability probability of a recursive
program is not always a rational number even if all the tran-
sition probabilities are rational (Theorem 3.2 of [13]).

When we discuss lower-bounds, we consider the cor-
responding decision problem by adding a candidate answer
of the original problem as a part of an input. The results
on the complexity of CompQIF1 and CompQIF2 are sum-
marized in Table 1. As mentioned above, if a program is
deterministic, QIF1 = QIF2.

Recursive Markov chain (abbreviated as RMC) is de-
fined in [13] by assigning a probability to each transition in

Table 1 Complexity results

programs deterministic
probabilistic

CompQIF1 CompQIF2

loop-free
PSPACE PSPACE PSPACE
�P-hard (Theorem 3.1) (Theorem 3.1)

(Proposition 3.1) �P-hard �P-hard

while
PSPACE-comp PSPACE-comp EXPTIME

(Proposition 3.2) (Theorem 3.2) (Theorem 3.3)
PSPACE-hard

recursive
EXPTIME-comp EXPSPACE EXPSPACE
(Proposition 3.3) (Theorem 3.4) (Theorem 3.4)

EXPTIME-hard EXPTIME-hard

recursive state machine (abbreviated as RSM) [1]. Proba-
bilistic recursive program in this paper is similar to RMC
except that there is no program variable in RMC. If we
translate a recursive program into an RMC, the number of
states of the RMC may become exponential to the number
of Boolean variables in the recursive program. In the same
sense, deterministic recursive program corresponds to RSM,
or equivalently, pushdown systems (PDS) as mentioned and
used in [9]. Also, probabilistic while program corresponds
to Markov chain. We will review the definition of RMC in
Sect. 3.6.1.

3.3 Deterministic Case

We first show lower bounds for deterministic loop-free,
while and recursive programs. For deterministic recursive
programs, we give EXPTIME upper bound as a corollary of
Theorem 3.4.

Proposition 3.1: CompQIF1(= CompQIF2) is �P-hard for
deterministic loop-free programs even if the input values are
uniformly distributed.
(Proof) We show that �SAT can be reduced to CompQIF1
where the input values are uniformly distributed. It is nec-
essary and sufficient for CompQIF1 to compute the number
of inputs �s such that p(�s|�o) > 0 because

∑
p(�s|�o)>0 p(�s) =

|{�s ∈ �S | p(�s|�o) > 0}|/| �S|. For a given propositional logic
formula φwith Boolean variables �S , we just construct a pro-
gram P with input variables �S and an output variable O such
that the value of φ for �S is stored to O. Then, the result of
CompQIF1 with P and o =  coincides with the number of
models of φ. �

Proposition 3.2: CompQIF1(= CompQIF2) is PSPACE-
hard for deterministic while programs.
(Proof) The proposition can be shown in the same way as the
proof of PSPACE-hardness of the non-interference problem
for deterministic while programs by a reduction from quan-
tified Boolean formula (QBF) validity problem given in [9]
as follows. For a given QBF ϕ, we construct a determin-
istic while program P having one output variable such that
P is non-interferent if and only if ϕ is valid as in the proof
of Proposition 19 of [9]. The deterministic program is non-
interferent if and only if the output of the program is always
, i.e., p() = 1. Thus, we can decide if φ is valid by check-
ing whether p() = 1 or not for the deterministic program,
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the output value , and the probability 1. �

Proposition 3.3: CompQIF1(= CompQIF2) is EXPTIME-
complete for deterministic recursive programs.
(Proof) EXPTIME upper bound can be shown by translat-
ing a given program to a pushdown system (PDS). Assume
we are given a deterministic recursive program P and an
output value o ∈ O. We apply to P the translation to a recur-
sive Markov chain (RMC) A in the proof of Theorem 3.4.
The size of A is exponential to the size of P. Because P
is deterministic, A is also deterministic; A is just a recur-
sive state machine (RSM) or equivalently, a PDS. It is well-
known [8] that the pre-image of a configuration c of a PDS
A preA(c) = {c′ | c′ is reachable to c in A} can be computed
in polynomial time by so-called P-automaton construction.
Hence, by specifying configurations outputting o as c, we
can compute preP(o) = preA(c) in exponential time.

The lower bound can be shown in the same way as the
EXPTIME-hardness proof of the non-interference problem
for deterministic recursive programs by a reduction from the
membership problem for polynomial space-bounded alter-
nating Turing machines (ATM) given in the proof of Theo-
rem 7 of [9]. From a given polynomial space-bounded ATM
M and an input word w to M, we construct a deterministic
recursive program P having one output variable such that P
is non-interferent if and only if M accepts w as in [9]. As in
the proof of Proposition 3.2, we can reduce to CompQIF1
instead of reducing to the non-interference problem. �

3.4 Loop-Free Programs

We show upper bounds for loop-free programs. For
CompQIF2, the basic idea is similar to the one in [9], but
we have to compute the conditional probability p(�o|�s). For
CompQIF1, �PNP upper bound can be obtained by a similar
result on model counting if the input values are uniformly
distributed.

Theorem 3.1: CompQIF1 and CompQIF2 are solvable in
PSPACE for probabilistic loop-free programs. CompQIF1
is solvable in �PNP if the input values are uniformly dis-
tributed.
(Proof) We first show that CompQIF2 is solvable in
PSPACE for probabilistic loop-free programs. If a program
is loop-free, we can compute p(�o|�s) for every �s in the same
way as in [9], multiply it by p(�s) and sum up in PSPACE.
Note that in [9], it is assumed that a program is determin-
istic and input values are uniformly distributed, and hence
it suffices to count the input values �s such that p(�o|�s) = 1,
which can be done in PCH3. In contrast, we have to compute
the sum of the probabilities of p(�s)p(�o|�s) for all �s ∈ �S. We
can easily see that CompQIF1 is solvable in PSPACE for
probabilistic loop-free programs in almost the same way as
CompQIF2. Instead of summing up p(�s)p(�o|�s) for all �s ∈ �S,
we just have to sum up p(�s) for all �s ∈ �S such that p(�o|�s) > 0
(if and only if p(�s|�o) > 0).

Next, we show that CompQIF1 is solvable in �PNP

if the input values are uniformly distributed. As stated in
the proof of Proposition 3.1, in this case, CompQIF1 can
be solved by computing the number of inputs s such that
p(�s|�o) > 0. Deciding p(�s|�o) > 0 for a given probabilis-
tic loop-free program P can be reduced to the satisfiability
problem of a propositional logic formula. Note that for any
probabilistic choice like X ← c1 r[]1−r c2 with 0 < r < 1,
we just have to treat it as a non-deterministic choice like
X = c1 or X = c2 because all we need to know is whether
p(�s|�o) > 0. We construct from P a formula φ with Boolean
variable corresponding to input and output variables of P
and intermediate variables. Here, we abuse the symbols �S
and �O, which are used for the variables of P, also as the
Boolean variables corresponding to them, respectively. The
formula φ is constructed such that φ ∧ �S = �s ∧ �O = �o is
satisfiable if and only if p(�s|�o)¿ 0 for �s and �o. Thus, the
number of inputs �s such that p(�s|�o) > 0 is the number of
truth assignments for �S such that φ ∧ �O = �o is satisfiable,
i.e., the number of projected models on �S . This counting
can be done in �PNP because projected model counting is in
�PNP [3]. �

3.5 While Programs

We show upper bounds for while programs. For CompQIF1,
we reduce the problem to the reachability problem of a
graph representing the state reachability relation. An up-
per bound for CompQIF2 will be obtained as a corollary of
Theorem 3.4.

Theorem 3.2: CompQIF1 is PSPACE-complete for proba-
bilistic while programs.
(Proof) It suffices to show that QIF1 is solvable in PSPACE
for probabilistic while programs. QIF1 for probabilistic
while programs is reduced to the reachability problem of
graphs that represents the reachability among states of P.
We construct a directed graph G from a given program P as
follows. Each node (l, σ) on G uniquely corresponds to a
location l on P and an assignment σ for all variables in P.
An edge from (l, σ) to (l′, σ′) represents that if the program
is running at l with σ then, with probability greater than 0, it
can transit to l′ with σ′ by executing the command at l. De-
ciding the reachability from a node to another node can be
done in nondeterministic log space of the size of the graph.
The size of the graph is exponential to the size of P due to
exponentially many assignments for variables. We see that
p(�s|�o) > 0 if and only if there are two nodes (ls, σs) and
(lo, ρo) such that ls is the initial location, lo is an end loca-
tion, σs(�S ) = �s, σo( �O) = �o, and (lo, ρo) is reachable from
(ls, σs) in G. Thus, p(�s|�o) > 0 can be decided in PSPACE,
and also

∑
p(�s|�o)>0 p(�s) can be computed in PSPACE. �

Theorem 3.3: CompQIF2 is solvable in EXPTIME for
probabilistic while programs.
(We postpone the proof until we show the result on recursive
programs.) �
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3.6 Recursive Programs

As noticed in the end of Sect. 3.1, we will use recursive
Markov chain (RMC) to give upper bounds of the complex-
ity of CompQIF1 and CompQIF2 for recursive programs be-
cause RMC has both probability and recursion and the com-
plexity of the reachability probability problem for RMC was
already investigated in [13].

3.6.1 Recursive Markov Chains

A recursive Markov chain (RMC) [13] is a tuple A =

(A1, . . . , Ak) where each Ai = (Ni, Bi,Yi, Eni, Exi, δi) (1 ≤
i ≤ k) is a component graph (or simply, component) con-
sisting of:

• a finite set Ni of nodes,
• a set Eni ⊆ Ni of entry nodes, and a set Exi ⊆ Ni of exit

nodes,
• a set Bi of boxes, and a mapping Yi : Bi → {1, . . . , k}

from boxes to (the indices of) components. To each box
b ∈ Bi, a set of call sites Callb = {(b, en) | en ∈ EnYi(b)}
and a set of return sites Retb = {(b, ex) | ex ∈ ExYi(b)}
are associated.

• δi is a finite set of transitions of the form (u, pu,v, v)
where

– the source u is either a non-exit node u ∈ Ni\Exi

or a return site.
– the destination v is either a non-entry node v ∈

Ni\Eni or a call site.
– pu,v ∈ Q is a rational number between 0 and 1 rep-

resenting the transition probability from u to v. We
require for each source u,

∑
{v′ |(u,pu,v′ ,v′)∈δi} pu,v′ = 1.

We write u
pu,v→ v instead of (u, pu,v, v) for readabil-

ity. Also we abbreviate u
1→ v as u→ v.

Intuitively, a box b with Yi(b) = j denotes an invocation of
component j from component i. There may be more than
one entry node and exit node in a component. A call site
(b, en) specifies the entry node from which the execution
starts when called from the box b. A return site has a similar
role to specify the exit node.

Let Qi = Ni ∪ ⋃
b∈Bi

(Callb ∪ Retb), which is called
the set of locations of Ai. We also let N =

⋃
1≤i≤k Ni,

B =
⋃

1≤i≤k Bi, Y =
⋃

1≤i≤k Yi where Y : B → {1, . . . , k},
δ =

⋃
1≤i≤k δi and Q =

⋃
1≤i≤k Qi.

The probability pu,v of a transition u
pu,v→ v is a rational

number represented by a pair of non-negative integers, the
numerator and denominator. The size of pu,v is the sum of
the numbers of bits of these two integers, which is called the
bit complexity of pu,v.

The semantics of an RMC A is given by the global (infi-
nite state) Markov chain MA = (V,Δ) induced from A where
V = B∗ × Q is the set of global states and Δ is the smallest
set of transitions satisfying the following conditions:

(1) For every u ∈ Q, (ε, u) ∈ V where ε is the empty string.

(2) If (α, u) ∈ V and u
pu,v→ v ∈ δ, then (α, v) ∈ V and

(α, u)
pu,v→ (α, v) ∈ Δ.

(3) If (α, (b, en)) ∈ V with (b, en) ∈ Callb, then (αb, en) ∈
V and (α, (b, en))→ (αb, en) ∈ Δ.

(4) If (αb, ex) ∈ V with (b, ex) ∈ Retb, then (α, (b, ex)) ∈ V
and (αb, ex)→ (α, (b, ex)) ∈ Δ.

Intuitively, (α, u) is the global state where u is a current lo-
cation and α is a pushdown stack, which is a sequence of
box names where the right-end is the stack top. (2) defines a
transition within a component. (3) defines a procedure call
from a call site (b, en); the box name b is pushed to the cur-
rent stack α and the location is changed to en. (4) defines
a return from a procedure; the box name b at the stack top
is popped and the location becomes the return site (b, ex).
For a location u ∈ Qi and an exit node ex ∈ Exi in the same
component Ai, let q∗(u,ex) denote the probability of reaching

(ε, ex) starting from (ε, u) †. Also, let q∗u =
∑

ex∈Exi
q∗(u,ex).

The reachability probability problem for RMCs is the one
to compute q∗(u,ex) within j bits of precision for a given RMC
A, a location u and an exit node ex in the same component
of A and a natural number j in unary.

The following property is shown in [13].

Proposition 3.4: The reachability probability problem for
RMCs can be solved in PSPACE. Actually, q∗(u,ex) can be
computed for every pair of u and ex simultaneously in
PSPACE by calculating the least fixpoint of the nonlinear
polynomial equations induced from a given RMC. �

3.6.2 Results

Theorem 3.4: CompQIF1 and CompQIF2 are solvable in
EXPSPACE for probabilistic recursive programs.
(Proof) We will prove the theorem by translating a given
program P into a recursive Markov chain (RMC) whose size
is exponential to the size of P. By Proposition 3.4, we obtain
EXPSPACE upper bound. Because an RMC has no program
variable, we expand Boolean variables in P to all (reach-
able) truth-value assignments to them. A while command is
translated into two transitions; one for exit and the other for
while-body. A procedure call is translated into a box and
transitions connecting to/from the box. For the other com-
mands, the translation is straightforward.

Let P = (π1, . . . , πk) be a given program. For 1 ≤ i ≤ k,
let Val(πi) be the set of truth value assignments to Var(πi).
We will use the same notation Val(e) and Val(c) for an ex-
pression e and a command c. For an expression e and an
assignment θ ∈ Val(e), we write eθ to denote the truth value
obtained by evaluating e under the assignment θ. For an
assignment θ and a truth value c, let θ[X ← c] denote the as-
signment identical to θ except θ[X ← c](X) = c. We use the

†Though we usually want to know q∗(en,ex) for an entry node en,
the reachability probability is defined in a slightly more general
way.
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Fig. 2 Construction of an RMC from a recursive program

same notation for sequences of variables �X and truth values
�c as θ[�X ← �c].

We construct the RMC A = (A1, . . . , Ak) from P where
each component graph Ai = (Ni, Bi,Yi, Eni, Exi, δi) (1 ≤ i ≤
k) is constructed from πi = in �X; out �Y; local �Z; ci as fol-
lows.

• Eni = {(ci, θ) | θ ∈ Val(πi) where θ(W) is arbitrary for
W ∈ �X and θ(W) = ⊥ for W ∈ �Y ∪ �Z}.

• Exi = {σ | σ is an assignment to �Y}.
• Ni, Bi, Yi and δi are constructed as follows.

(1) Ni ← Eni, Bi ← ∅, Yi ← the function undefined every-
where, δi ← {(skip, θ)→ θ|�Y | θ ∈ Val(πi)} where θ|�Y is
the restriction of θ to �Y . Note that θ|�Y ∈ Exi.

(2) Repeat the following construction until all the elements
in Ni are marked:
Choose an unmarked (c, θ) from Ni, mark it and do one
of the followings according to the syntax of c.

(i) c = X ← e; c′. Add (c′, θ[X ← eθ]) to Ni and add
(c, θ)→ (c′, θ[X ← eθ]) to δi.

(ii) c = if e then c1 else c2 end; c′. Add (c1; c′, θ) to
Ni and add (c, θ)→ (c1; c′, θ) to δi if eθ = . Add
(c2; c′, θ) to Ni and add (c, θ) → (c2; c′, θ) to δi if
eθ = ⊥.

(iii) c = c1 r[]1−r c2; c′. Add (c1; c′, θ) and (c2; c′, θ) to

Ni. Add (c, θ)
r→ (c1; c′, θ) and (c, θ)

1−r→ (c2; c′, θ)
to δi.

(iv) c = while e do c1 end; c′. Add (c′, θ) to Ni and
add (c, θ) → (c′, θ) to δi if eθ = ⊥. Add (c1; c, θ)
to Ni and add (c, θ)→ (c1; c, θ) to δi if eθ = .

(v) c = π j(�e′; �X′); c′ where π j =

in �X′′; out �Y ′′; local �Z′′; c j. Add a new box b
to Bi. Define Yi(b) = j. Add (c, θ) →
(b, (c j,⊥[ �X′′ ← �e′θ])) to δi where the assignment
⊥ denotes the one that assigns ⊥ to every variable.
For every σ ∈ Exj,

add (c′, θ[ �X′ ← �Y ′′σ]) to Ni and add
(b, σ) → (c′, θ[ �X′ ← �Y ′′σ]) to δi (see
Fig. 2).

The number |Q| of locations of the constructed RMC A is
exponential to the size of P. More precisely, |Q| is in the
order of the number of commands in P multiplied by 2N

where N is the maximum number of variables appearing in
a procedure of P because we construct locations of A by ex-
panding each variable to two truth values. Recall that both
QIF1(o) and QIF2(o) can be computed by calculating p(o|s′)
for each s′ ∈ S, i.e., the reachability probability from s′

to o. By Proposition 3.4, the reachability probability prob-
lem for RMCs are in PSPACE, and hence CompQIF1 and
CompQIF2 are solvable in EXPSPACE. �

Proof of Theorem 3.3

Let P be a given probabilistic while program and o ∈ O is
an output value. Our algorithm works as follows.

1. Compute preP(o).
2. Calculate

∑
s′∈S p(s′)p(o|s′) (see (9)).

In the proof of Theorem 3.4, a given program P is translated
into a recursive Markov chain A whose size is exponential
to the size of P. If a given program P is a while program, A
is an ordinary (non-recursive) Markov chain. The constraint
on the stationary distribution vector of A is represented by a
system of linear equations whose size is polynomial of the
size of A (see [19] for example) and the system of equa-
tions can be solved in polynomial time. Hence CompQIF2
is solvable in EXPTIME. �

4. Model Counting-Based Computation of Dynamic
Leakage

In the previous section, we show that the problems of cal-
culating dynamic leakage, i.e., CompQIF1 and CompQIF2,
are computationally hard. We still, however, propose a prac-
tical solution to these problems by reducing them to model
counting problems.

Reduction to model counting Model counting is a well-
known and powerful technique in quantitative software anal-
ysis and verification including QIF analysis. In existing
studies, QIF calculation has been reduced to model count-
ing of a logical formula using SAT solver [15] or SMT
solver [22]. Similarly, we are showing that it is possi-
ble to reduce CompQIF1 and CompQIF2 to model count-
ing in some reasonable assumptions. Let us consider
what is needed to compute based on their definitions (7)
and (9), i.e., QIF1 = − log(

∑
p(s′ |o)>0 p(s′)) and QIF2 =

− log(
∑

s′∈S p(s′)p(o|s′)).
For calculating QIF1 for a given output value o, it suf-

fices (1) to enumerate input values s′ that satisfy p(s′|o) > 0
(i.e., possible to produce o), and (2) to sum the prior proba-
bilities over the enumerated input values s′. (2) can be com-
puted from the prior probability distribution of input values,
which is reasonable to assume. When input values are uni-
formly distributed, only step (1) is needed because QIF1 is
simplified to log |S|

|preP(o)| by Theorem 2.1.
Let us consider QIF2. For deterministic programs,

QIF1 = QIF2 holds (Theorem 2.1). For probabilistic
programs, we need to compute the conditional probability
p(o|s′) for each s′, meaning that we have to examine all
possible execution paths. We would leave CompQIF2 for
probabilistic programs as future work.

Given a program P together with its prior probability
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Fig. 3 Reduction of computing dynamic leakage to model counting

distribution on input, and an observed output o, all we need
for CompQIF1 and CompQIF2 (deterministic case for the
latter) is the enumeration of preP(o), the input values consis-
tent with o. Also, we can forget the probability of a choice
command and regard it just as a nondeterministic choice.
Especially when input values are uniformly distributed, only
the number of elements of preP(o) is needed.

In the remainder of Sect. 4, we assume input values
are uniformly distributed for simplicity. Figure 3 illus-
trates the calculation flow using model counting. The ba-
sic idea is similar to other existing QIF analysis tools based
on model counting, namely, (1) feeding a target C program
into CBMC [29]; (2) getting a Boolean formula ϕ equivalent
to the source program in terms of constraints among vari-
ables in the program; (3) feeding ϕ into a projected model
counter that can count the models with respect to projection
on variables of interest; and (5) getting the result. The only
difference of this framework from existing ones is (4), aug-
menting information about an observed output value o into
the Boolean formula ϕ so that each model corresponds to
an input value which produces o. The set of the obtained
models is exactly the pre-image of o.

Pluggability There are several parts in the framework above
that can be flexibly changed to utilize the strength of dif-
ferent tools and/or approaches. Firstly, the projected model
counter at (5) could be either a projected �SAT solver (e.g.,
SharpCDCL) or a �SMT solver (e.g., aZ3). Consequently,
a formula at (3) could be either a SAT constraints (e.g., a
Boolean formula in DIMACS format) or a SMT constraints
(e.g., a formula in SMTLIB format) generated by CBMC.
Moreover, this framework can be extended to different pro-
gramming languages other than C, such as Java, having
JPF [26] and KEY [12] as two well-known counterparts of
CBMC. In the next section, we are showing experimental re-
sults in which we tried several set-ups of tools in this frame-
work to observe the differences.

5. Experiments

We conducted some experiments to investigate the flexibil-
ity of the framework to reduce computing dynamic leak-
age to model counting introduced in the previous section,
as well as the scalability of this method. For the simplic-
ity to achieve this purpose, we restricted to calculate dy-
namic leakage for deterministic programs with uniformly
distributed input. Toward the analysis in more general
cases and possibilities on performance improvement, we

give some discussion and leave it as one of future work.

5.1 Overview

All experiments were done in a same PC with the follow-
ing specification: core i7-6500U, CPU@2.5GHz x 4, 8GB
RAM, Ubuntu 18.04 64 bits. We set one hour as time-out
and interrupted execution whenever the running time ex-
ceeds this duration. The model counters we used are de-
scribed below.

• aZ3: a �SMT solver developed by Phan et al. [22],
which is built on top of the state-of-the-art SMT solver
Z3. We used an improved version of aZ3 which is de-
veloped by Nakashima et al. [21]. It allows specifying
variables of interest, which is equivalent to projection
in SAT-based model counter.

• SharpCDCL: a �SAT solver with capability of pro-
jected counting based on Conflict-Driven Clause
Learning (CDCL) [33]. The tool finds a new projected
model and then adds a clause blocking to find the same
model again. It enumerates all projected models by re-
peating that.

• DSharp-p: another �SAT solver based on d-DNNF for-
mat [20]. The tool first translates a given formula into
d-DNNF format. It is known that, once given a d-
DNNF format of constraints, it takes only linear time
to the size of the formula to count models of those con-
straints. We used an extended version with the capabil-
ity of projected counting which is added by Klebanov
et al. [15], [30].

• GPMC: a projected model counter built on top of the
SAT solver glucose [31], in which component analysis
and caching used in the model counter SharpSAT are
implemented [32].

The benchmarks are taken from previous researches about
QIF analysis with most of them are taken from bench-
marks of aZ3 [22], except bin search32.c which is taken
from [18]. The difference between the ordinary QIF anal-
ysis and dynamic leakage quantification is that the former
is not interested in an observed output value, but the lat-
ter is. Therefore, for the purpose of these experiments, we
augmented the original benchmarks with additional infor-
mation about concrete values of public output (public in-
put also if there is some). Because we assume determin-
istic programs with uniformly distributed input, QIF1(o) =
QIF2(o) = log |S|

|preP(o)| by Theorem 2.1. Hence, without loss
of precision in comparison, we consider counting preP(o) as
the final goal of these experiments.

5.2 Results

Table 2 shows execution time of model counting based on
the four different model counters, in which t/o indicates that
the experiment was interrupted because of time-out and -
means the counter gave a wrong answer (i.e., only DSharp-
p miscounted for UNSAT cases, probably because the tool
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Table 2 Counting result and execution time (ms) of different settings

Benchmark Count aZ3 SharpCDCL DSharp-p GPMC
bin search32 1 781 37 52 9

crc8 32 303 11 31 36
crc32 8 294 8 32 32

dining6 6 1,305 44 t/o 49
dining50 50 t/o 199 t/o 193

electronic purse 5 525 137 9,909 223
grade 65 2,705,934 910,655 t/o 93,445

implicit flow 1 253 15 31 33
masked copy 65,536 t/o 9,214 30 32
mix duplicate 0 241 12 - 4

population count 32 477 19 37 34
sanity check 0 247 13 - 8
sum query 3 310 20 31 35

ten random outputs 1 249 18 32 34

does assume input formula to be satisfiable). By eliminating
parsing time from the comparison, we measured only time
needed to count models.

According to the experimental results, aZ3-based
model counting did not win the fastest for any benchmark,
and moreover its execution time is always at least ten times
slower than the best. On the other hand, DSharp-p seems
to take much time to translate formulas into d-DNNF for-
mat for dining6/50.c and grade.c, and gave wrong answers
for mix duplicate.c and sanity check.c, the number of mod-
els of which are 0, i.e., unsatisfiable. By and large, aZ3
and DSharp-p can hardly take advantage to the other tools,
SharpCDCL and GPMC, in dynamic leakage quantification.
Though SharpCDCL won 8 out of 14 benchmarks, the dif-
ference between the tools in those cases are not significant,
yet the execution times are too short that it can be fluctu-
ated by insignificant parameters. Therefore, it is better to
look at long run benchmarks, grade.c and masked copy.c.
In both cases, GPMC won by 9.7 times and 287.9 times re-
spectively. The execution times as well as the difference in
those two cases are significant. We also noticed that, those
two cases have 65,536 and 65 models, which are the two
biggest counts among the benchmarks. The more the num-
ber of the models is, the bigger is the difference between
execution times of GPMC and SharpCDCL. Hence, we can
empirically conclude that GPMC-based works much better
than SharpCDCL-based in cases the number of models is
large, while not so worse in other cases.

By implementing the prototype, we reaffirmed the pos-
sibility of automatically computing QIF1 and QIF2. Speak-
ing of scalability, despite of small LOC (Lines of Code),
there is still the case of grade.c (48 lines) for which all set-
tings take longer than one minute, a very long time from the
viewpoint of runtime analysis, to count models. There are
several directions to improve the current performance which
we leave as one of future work. First, because dynamic leak-
age should be calculated repeatedly for different observed
outputs but a same program, we can leverage such an ad-
vantage of d-DNNF that while transforming to a d-DNNF
format takes time, the model counting can be done in linear
time once a d-DNNF format is obtained. That is, we gen-
erate merely once in advance a d-DNNF format of the con-

straints representing the program under analysis, then each
time an observed output value is given, we make only small
modification and count models in linear time to the size of
the constraints. The difficulty of this direction lies in how to
augment the information of observed output to the generated
d-DNNF without breaking its d-DNNF structure. Another
direction is to loose the required precision to accept approx-
imate count. This could be done by counting on existing
approximate model counters.

5.3 Toward General Cases

In order to calculate QIF1 and QIF2 for a probabilistic pro-
gram with a non-uniform input distribution, we must iden-
tify projected models of the Boolean formula, rather than
the number of the models, to obtain the probabilities deter-
mined by them in general. GPMC, specialized for model
counting, does not compute the whole part of each model
explicitly. Hence, GPMC is not appropriate for a calculation
of the probability depending on the concrete models. On the
other hand, sharpCDCL basically enumerates all projected
models, and thus we think we can extend it as follows to
compute QIF1 and QIF2 in general cases.

To calculate QIF1 for a probabilistic program with a
non-uniform input distribution, we can replace each proba-
bilistic choice in a give program with a non-deterministic
choice as stated in Sect. 4, and then enumerate projected
models with respect to the input variables, summing up the
probabilities of the corresponding input values.

As for QIF2, we have to calculate not only the prob-
abilities of possible input values but also those of possi-
ble execution paths reachable to the observed output. To
achieve this, in addition to the replacement of probabilistic
choices with non-deterministic choices, we may insert vari-
ables to remember which branch is chosen at each of the
non-deterministic choices. Then, given a projected model
of the Boolean formula generated from the modified source
code with respect to the input variables and the additional
choice variables, we can get to know a possible input value
and an execution path from the projected model. For a pos-
sible input value s, p(o|s) is the sum of the probabilities of
all possible execution paths from s to the observed o.
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6. Conclusion

In this paper, we summarize three requirements as criteria
for reasonable dynamic leakage definitions to follow. Also
we defined two novel ones both of which satisfy all the crite-
ria and have understandable explanations of the background
perspectives. Besides giving proof of some of their char-
acteristics, we gave results on the hardness of computing
dynamic leakage under those definitions for three classes
of Boolean programs, including loop-free, while and recur-
sive. Despite of the hardness, we introduced a framework to
reduce the problems to model counting, which gets much
attention from researchers from various fields of interest.
Based on that framework, we implemented a prototype and
conducted some experiments to verify flexibility and scala-
bility of the framework. Lastly, we gave some discussion on
how to improve the performance and the whole picture of
computing dynamic leakage in general cases.

Beyond this paper, we leave the following as future
work: (1) utilizing the strength of d-DNNF format to im-
prove calculation performance, (2) approaching those prob-
lems in terms of approximated calculation and (3) tackling
the problems under more general assumptions.
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