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PAPER

Multi-Hypothesis Prediction Scheme Based on the Joint Sparsity
Model

Can CHEN†, Chao ZHOU†, Nonmembers, Jian LIU††, and Dengyin ZHANG†††,††††a), Members

SUMMARY Distributed compressive video sensing (DCVS) has re-
ceived considerable attention due to its potential in source-limited commu-
nication, e.g., wireless video sensor networks (WVSNs). Multi-hypothesis
(MH) prediction, which treats the target block as a linear combination of
hypotheses, is a state-of-the-art technique in DCVS. The common approach
is under the supposition that blocks that are dissimilar from the target block
are given lower weights than blocks that are more similar. This assumption
can yield acceptable reconstruction quality, but it is not suitable for sce-
narios with more details. In this paper, based on the joint sparsity model
(JSM), the authors present a Tikhonov-regularized MH prediction scheme
in which the most similar block provides the similar common portion and
the others blocks provide respective unique portions, differing from the
common supposition. Specifically, a new scheme for generating hypothe-
ses and a Euclidean distance-based metric for the regularized term are pro-
posed. Compared with several state-of-the-art algorithms, the authors show
the effectiveness of the proposed scheme when there are a limited number
of hypotheses.
key words: distributed compressive video sensing (DCVS), multi-
hypothesis (MH) reconstruction, joint sparsity model (JSM), wireless video
sensor networks (WVSNs)

1. Introduction

Compressed sensing (CS) [1], [2], which involves signal
sampling with far fewer measurements than required by
Nyquist theory [3], is emerging as a desirable framework
for signal acquisition. Under certain conditions [4], a sig-
nal x ∈ Rn×1 can be reconstructed with a high probabil-
ity from its measurement vector y ∈ Rm×1 (m < n) by
solving an optimization problem. According to different
sparse models, two categories of CS recovery exist: (1) sin-
gle subspace models, in which there are k non-zero coeffi-
cients in the representation vector corresponding to x which
lies in a k-dimensional single subspace spanned by k basis
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vectors [2], [5], and (2) union of subspace models, for which
x lies in a union of subspaces [6]–[8] corresponding to a
block-sparse structure [9]. Several convex or greedy algo-
rithms can be employed to iteratively solve these optimiza-
tion problems [36]–[39]. However, these algorithms suffer
from high computational complexity issues. Thus, several
works have introduced deep learning networks to recover
signals from measurements [10]–[13]. Moreover, unrolling
methods [14], [15] combine deep learning networks and iter-
ative algorithms to learn more realistic signals from training
data.

Recently, CS has been widely adopted in video acqui-
sition and reconstruction because it can alleviate the bur-
den on encoders. Combining CS and DVC [16], distributed
compressive video sensing (DCVS) [27], [41] has received
considerable attention from researchers. In DCVS, complex
motion estimation (ME) and motion compensation (MC)
processes are shifted from the encoder to the decoder, mak-
ing the method suitable for resource-limited applications,
e.g., wireless video sensor networks (WVSNs) [17]. To
reduce the storage requirements of encoders, Lu [18] pre-
sented a block-based scheme for DCVS instead of sampling
signals in a global manner. Various signal models have
been proposed to reconstruct video sequences, such as two-
dimensional (2D) models [19], [20] and three-dimensional
(3D) models [21]. However, 2D models do not exploit the
correlations among frames; and 3D models suffer from high
computational complexity issues. By incorporating ME/MC
techniques, Mun [22] presented a residual reconstruction
method for block-based DCVS that efficiently exploits tem-
poral and spatial correlations. Several schemes [23], [24]
that mine sparsity in the residual domain have been pro-
posed to enhance the reconstruction quality.

Multi-hypothesis (MH) prediction algorithms [27]–
[31], which utilize a linear combination of hypotheses to
predict the target block, can yield state-of-the-art results for
DCVS. Although extensive efforts have been made to im-
prove these algorithms, there are still some challenges that
must be addressed:

1). Generate the hypothesis set. Generally, blocks ex-
tracted directly from side information (SI) within a search
window centered on the target block are stacked to generate
the hypothesis set. Several adaptive schemes have been pro-
posed to optimize the hypothesis set [25], [26]. However,
determining how to utilize these blocks and further improve
the reconstruction quality remains a research question.

2). Regularize the optimization problem. Regularized
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terms play important roles in MH prediction. By assum-
ing that the weight vector of hypotheses is sparse, Do pro-
posed the DISCOS approach [27]. Moreover, Fowler [28]
presented a Tikhonov-regularized MH scheme for sparsity
that was irrelevant. Additionally, several derivatives of this
method [29], [30] have been proposed. However, these reg-
ularizations share the common assumption that blocks that
are dissimilar from the target block should be given lower
weights than blocks that are more similar to the target, lim-
iting the reconstruction performance of MH prediction.

The joint sparsity model (JSM) [40], which assumes
that two successive frames or blocks in the same scene
are visually similar and have similar common and unique
portions, can effectively exploit the relevant correlations in
DCVS. Based on JSM, a Tikhonov-regularized MH predic-
tion scheme is presented in this study. The main contribu-
tions of this study are two-fold:

1). Based on JSM, the authors propose a new scheme
for generating the hypothesis set and a Euclidean distance-
based metric for the regularized term.

2). The proposed theory, that the most similar block
provides the similar common portion and the others
blocks provide respective unique portions, breaks with the
common-sense supposition that blocks that are more similar
to the target should be given higher weights than dissimilar
blocks.

The remainder of this paper is organized as follows.
Section 2 provides the research background, and we review
JSM and the frameworks of MH prediction. In Sect. 3, we
describe the relationships between JSM and MH prediction
and present the proposed Tikhonov-regularized MH predic-
tion scheme in detail. The experimental results and conclu-
sions are provided in Sect. 4 and Sect. 5, respectively.

2. Background

2.1 Joint Sparsity Model (JSM)

JSM [40] assumes that two successive frames or blocks in
the same scene are visually similar and they should have
similar common and unique portions. Conceptually, the two
vectored frames or blocks, xi ∈ Rn×1 and xi+1 ∈ Rn×1, can be
expressed as follows.

xi = xc + xu i (1)

xi+1 = xc + xu i+1 (2)

where xc ∈ Rn×1 is the similar common portion and xu i ∈
Rn×1 and xu i+1 ∈ Rn×1 denote the respective unique portions
of xi and xi+1, respectively.

2.2 Multi-Hypothesis (MH) Prediction-Based Framework

Based on ME/MC, scholars proposed the MH prediction
technique for DCVS to enhance the reconstruction quality.
MH prediction uses a linear combination of blocks to esti-
mate the target block. DCVS shifts complex ME/MC tasks

from the encoder to the decoder to alleviate the burden on
the encoder. Thus, the vectored target block xi ∈ Rn×1 is
unavailable and only the measurement vector yi ∈ Rm×1 is
available at the decoder. Based on the JL lemma [34], MH
recasts the optimization problem from the pixel domain to
the measurement domain:

ωi = arg min
ω
‖yi − ΦHiω‖22 (3)

where Φ ∈ Rm×n represents the measurement matrix, Hi ∈
Rn×p denotes the set of p hypotheses directly extracted from
the SI within a search window centered on the target block,
and ωi ∈ Rp×1 is the weight vector. Several regularizations
have been proposed to solve this optimization problem, e.g.,
sparse-based regularization [27], [30], Tikhonov regulariza-
tion [28], [31], and elastic net-based regularization [29]. To
implement DCVS in resource-limited WVSNs for real-time
field environmental monitoring, the overriding objective is
to not increase the computational complexity. Thus, we ex-
pand the Tikhonov-regularized MH prediction method [28]
to obtain the proposed scheme due to its low computational
complexity and acceptable performance. Using Tikhonov
regularization, the calculation of the weight vector of the i-
th block ω̄i ∈ Rp×1 can be described as follows.

ω̄i = arg min
ω
‖yi − ΦHiω‖22 + λ‖Γω‖22 (4)

where λ is a non-negative real value parameter and Γ ∈ Rp×p

is a Tikhonov regularization matrix. The closed form of (4)
can be given as follows.

ω̄i =
(
(ΦHi)

T (ΦHi) + λΓ
TΓ

)−1
(ΦHi)

T yi (5)

Residual reconstruction [22] is performed after MH predic-
tion to further enhance the reconstruction quality. Com-
monly, Γ is given as follows:

Γ = diag
(
‖yi − ΦHi,1‖22, . . . , ‖yi − ΦHi,p‖22

)
(6)

where Hi, j=1,2...p denotes each hypothesis of Hi. This ap-
proach is based on the common-sense assumption that
blocks that are dissimilar from the target block should be
given lower weights than blocks that are more similar. This
assumption can yield acceptable reconstruction quality, but
it is not suitable for scenarios with more details. Thus, we
propose a multi-hypothesis prediction scheme based on the
joint sparsity model to enhance the details.

3. The Proposed Tikhonov-Regularized MH Predic-
tion Scheme

In this section, based on JSM, we propose a Tikhonov-
regularized MH prediction scheme. Unlike the existing MH
prediction schemes, which assume that blocks dissimilar to
the target block are given lower weights than those more
similar to the target block, the proposed scheme assumes
that the most similar block provides a similar common por-
tion, whereas the other blocks provide respective unique
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portions. Specifically, a new scheme for generating hy-
potheses and a Euclidean distance-based metric for the reg-
ularized term are proposed.

According to (1) and (2), xi+1 can be predicted by xi:

xi+1 = xc + xu i+1 = xi + (xu i+1 − xu i)

= xi + (xi+1 − xi)

= x′c + x′u i+1 (7)

where x′c = xi and x′u i+1 = xi+1 − xi. In other words,
x′c ∈ Rn×1 can be regarded as the similar common portion
provided by the similar block xi, and x′u i+1 ∈ Rn×1 as the
respective unique portions provided by the residual block
xi+1 − xi. Based on JSM, the final MH prediction x̄i ∈ Rn×1

can be expressed as follows.

x̄i = x′c + x′u i (8)

Thus, we propose the assumption that the most similar block
�

Hi ∈ Rn×1 provides the similar common portion x′c and the
others blocks

�

Hi ∈ Rn×(p−1) provide respective unique por-
tions x′u i:

x̄i = x′c + x′u i =
�

Hi +
�

Hi
�
ωi (9)

where �
ωi ∈ R(p−1)×1 represents the corresponding weight

vector of
�

Hi.

3.1 Hypothesis Set Generation Scheme

We first generate the initial hypothesis set H̄i ∈ Rn×p by di-
rectly extracting blocks from the SI within a search window
centered on the target block. Then, we use the Euclidean
distance between measurement vectors to select the most
similar block

�

Hi:
�

Hi = arg min
H̄i, j

‖yi − ΦH̄i, j‖22 (10)

where H̄i, j=1...p denotes each hypothesis in H̄i. In (7), re-
spective unique portions are provided by the residual block
between the similar block and the other blocks. Thus, we
generate

�

Hi as follows.
�

Hi =
(
H̄i,1 − �

Hi, . . . , H̄i,p−1 − �

Hi

)
(11)

Note that the dimension of
�

Hi is p − 1 because we remove
�

Hi from H̄i and each row of
�

Hi is the residual between each
hypothesis and

�

Hi.

3.2 Euclidean Distance-Based Metric

Unlike existing MH prediction schemes, the proposed
scheme implements Tikhonov-regularized MH prediction
for the measurement vector of respective unique portions �yi
instead of yi.

�yi = yi − Φ �

Hi (12)

In the proposed scheme, a similar common portion is pro-
vided by

�

Hi, and respective unique portions are provided by

�

Hi. To preserve the respective unique portions over the sim-
ilar common portion, we assign higher weights to blocks in
�

Hi that are dissimilar from those in
�

Hi. Thus, we propose
a Euclidean distance-based metric Γ̄ ∈ R(p−1)×(p−1) for the
Tikhonov-regularized MH prediction as follows.

Γ̄ = diag

(
1

‖ �Hi − �

Hi,1‖22
, . . . ,

1

‖ �Hi − �

Hi,p−1‖22

)
(13)

Note that residual blocks in
�

Hi have less energy because
the blocks in H̄i are highly related. Thus, assigning higher
weights to these dissimilar blocks will not affect the simi-
lar common portion but will enhance the respective unique
portions. Furthermore, the measurement vector of the orig-
inal block which can be regarded as a low-dimensional fea-
ture vector can be unreliable when used in similarity mea-
surements. Thus, we use pixel-domain vectors instead of
measurement-domain vectors to measure similarity. By sub-
stituting �yi,

�

Hi, and Γ̄ for yi, Hi, and Γ in (5) and (9), we
obtain �

ωi and x̄i.

4. Results

In this section, we denote the proposed scheme as MH-JSM.
We compare it with some other state-of-the-art MH algo-
rithms experimentally and conceptually: (1). MH-TIK [28],
which adopts a single Tikhonov regularization; (2). MH-
wEnet [29], which associates a weighted l1 regularization
and a Tikhonov regularization as the reweighted elastic
net regularization; and (3). MH-ST [30], which combines a
Tikhonov regularization and a sparsity regularization on the
frame. We evaluate MH-JSM based on the following classi-
cal CIF (352×288) sequences: Coastguard, Container, Fore-
man and Hall. We use the average peak signal-to-noise ratio
(PSNR) of all non-key frames as the comparative index. We
adopt the bilateral MC [35] algorithm to generate the SI for
each non-key frame. The number of hypotheses is highly
correlated with the MH prediction performance. Thus, we
conduct experiments with different numbers of hypotheses
(e.g. p = 10 and p = 40). In all experiments, other parame-
ters are set as in [28] to maintain equality. Specifically, the
sampling rate of key frames is set to 0.7, the group of pic-
tures (GOP) is set to 8, and the size of block is set to 16.
All experiments were conducted in MATLAB R2015b on a
Dell laptop with an Intel (R) Core (TM) i7-4710HQ CPU
(2.5 GHz).

Table 1 shows the average PSNR for various video se-
quences. In the region where p = 40, compared with MH-
TIK, MH-wEnet, and MH-ST, the performance of MH-JSM
is unstable and poor at low sampling rates but satisfactory
at high sampling rates. This performance variation occurs
because the similar common portion has a greater impact on
the performance than the respective unique portions in MH-
JSM. However, adopting a larger search window to generate
more blocks can introduce a large number of uncorrelated
blocks, resulting in high-energy residual blocks in

�

Hi. These
high-energy residual blocks can influence the similar com-
mon portion. Furthermore, the Euclidean distance between
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Table 1 Reconstruction performance (dB) comparisons

Table 2 Reconstruction time (s) comparisons

measurement vectors is used to select the most similar block
�

Hi. The measurement vector of the original block which can
be regarded as a low-dimensional feature vector can be un-
reliable when used in similarity measurement applications,
especially at low sampling rates, resulting in failure in se-
lecting the most similar block. Table 1 shows that increasing
in the number of hypotheses cannot guarantee a reconstruc-
tion improvement for each algorithm because it enhances
the representation ability and introduces inaccurate hypothe-
ses. Moreover, the computational complexity exponentially
increases, as shown in Table 2. Thus, the ideal scheme im-
proves the reconstruction quality with as few hypotheses as
possible.

In the region where p = 10, MH-JSM stably out-
performs the other algorithms for the Container, Coast-
guard, and Hall sequences because the blocks extracted
from a small search window are highly correlated. We take

experiments with a sampling rate of 0.5 as examples. For the
Container sequence, MH-JSM outperforms MH-TIK, MH-
wEnet, and MH-ST by 1.76 dB, 1.95 dB, and 1.64 dB, re-
spectively. Moreover, for the Coastguard sequence, MH-
JSM outperforms these methods by 1.3 dB, 1.42 dB, and
1.07 dB. Additionally, for the Hall sequence, MH-JSM
outperforms the other methods by 1.97 dB, 2.12 dB, and
1.34 dB. However, MH-JSM does not obviously improve
the reconstruction quality for the Foreman sequence. These
results differ because the Foreman sequence is a shot-shifted
video sequence, and the others are shot-fixed video se-
quences. In shot-shifted video sequences, the same portion
of a frame in one shot can disappear in the next shot, mak-
ing it difficult to select the most similar block and related
blocks. However, this task is easy in shot-fixed video se-
quences. Figure 1 shows visual reconstruction comparisons
of the first non-key frame in the Container sequence at a
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Fig. 1 Visual comparisons of the Container sequence. (a) Original;
(b) MH-JSM (proposed); (c) MH-TIK; (d) MH-wEnet; (e) MH-ST

sampling rate of 0.1.
To investigate the complexity of different algorithms,

we present the reconstruction time of each algorithm in
Table 2. Overall, the reconstruction time of MH-JSM is
slightly greater than that of MH-TIK. This extra time is
required to divide blocks into two hypothesis sets instead
of generating one hypothesis set. To implement DCVS in
resource-limited WVSNs for real-time field environmental
monitoring, the overriding objective is to not increase the
computational complexity. Compared to other methods,
MH-JSM achieves a better balance between the reconstruc-
tion quality and computational complexity.

5. Conclusion

To implement DCVS in resource-limited WVSNs for
real-time field environmental monitoring, a Tikhonov-
regularized MH prediction scheme in which the most similar
block provides the similar common portion and the others
blocks provide respective unique portions is proposed in this
paper. The proposed scheme differs from the common-sense
assumption. Moreover, a new scheme for selecting hypothe-
ses and a Euclidean distance-based metric for the regular-
ized term are proposed. Compared to several state-of-the-
art algorithms, MH-JSM achieves a better balance between
the reconstruction quality and computational complexity. In
future work, strategies for selecting blocks in shot-shifted
scenes should be further investigated to improve the appli-
cability of MH-JSM.
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