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PAPER

Energy Minimization over m-Branched Enumeration for
Generalized Linear Subspace Clustering

Chao ZHANG†a), Member

SUMMARY In this paper, we consider the clustering problem of in-
dependent general subspaces. That is, with given data points lay near or
on the union of independent low-dimensional linear subspaces, we aim
to recover the subspaces and assign the corresponding label to each data
point. To settle this problem, we take advantages of both greedy strategy
and energy minimization strategy to propose a simple yet effective algo-
rithm based on the assumption that an m-branched (i.e., perfect m-ary) tree
which is constructed by collecting m-nearest neighbor points in each node
has a high probability of containing the near-exact subspace. Specifically,
at first, subspace candidates are enumerated by multiple m-branched trees.
Each tree starts with a data point and grows by collecting nearest neigh-
bors in the breadth-first search order. Then, subspace proposals are further
selected from the enumeration to initialize the energy minimization algo-
rithm. Eventually, both the proposals and the labeling result are finalized
by iterative re-estimation and labeling. Experiments with both synthetic
and real-world data show that the proposed method can outperform state-
of-the-art methods and is practical in real application.
key words: general subspace clustering, energy minimization, multi-
branch enumeration

1. Introduction

Linear subspace clustering is a classic and important prob-
lem widely studied in computer vision [1], [2], computer
graphics [3], [4], and data mining [5], [6] communities.
Considering data points/features Q = {qi} drawn from an
unknown union of linear subspaces S = {S j}, the problem
can be described in the form of matrix factorization as

Q = BXT , (1)

where the columns of B constitute a basis for the column
space of Q. The matrix X contains coefficients for forming
the columns of Q from the basis (a low-dimensional repre-
sentation). Based on the assumption that Q lie on or near
an unknown union of subspaces, it can be partitioned into
clusters,

Q = [Q1,Q2, . . . ,QW ]. (2)

Our purpose is to represent given Q in the union-of-subspace
form by recovering each cluster which can be explained by
a low-dimensional subspace,

Q = [S 1XT
1 , S 2XT

2 , . . . , S W XT
W ], (3)
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and the models of the subspaces are unknown (i.e., subspace
parameters are not given), which requires estimation of gen-
eral subspaces. Posing assumptions on the subspace can
improve the clustering result if the assumptions are correct.
However, in practice, the data points could be drawn from
multiple sources, and the latent subspaces of the data points
can be different. For example, 1D subspaces with data sets
in different number of dimensions can have different geo-
metric parameters.

Among sizable works, many state-of-the-art methods
belong to either of the following two categories: nearest
neighbor (NN) based methods and energy based methods.
Regarding the former category, methods find the nearest
neighbor point to expand the current subspace, and select
output subspaces typically by maximizing the number of
inliers within some fixed threshold [7]. For the latter cat-
egory, if the models of the subspaces can be parametrically
represented, clustering can be conducted by optimizing the
subspace parameters with a global energy function to de-
scribe the quality of each candidate solution [8]. Never-
theless, these techniques still suffer from many challenges:
(1) Both the data segmentation and the subspace parameters
are unknown in many practical situations. (2) The distri-
bution of data within each subspace is generally unknown.
(3) When subspaces are close to each other, the problem
becomes harder because there are points which can belong
to either of the subspaces. To alleviate these difficulties,
both NN or energy-based methods usually follow a two-step
strategy. In the first step, subspace proposals are randomly
or greedily enumerated and evaluated. In the second step,
subspace proposals and labeling results are iteratively up-
dated by either inlier maximization or energy minimization.
Such a strategy can be conducted in different ways with dif-
ferent limitations, as concluded as follows:

• Limitation of exhaustive methods: Assuming point set
QA among Q lay on a certain d-dimensional subspace
S, there exist Cd−1

|Q|−1 candidate subspaces through each
point qi ∈ Q. Investigating all the candidates exhaus-
tively can be very expensive and impractical.

• Limitation of greedy methods: Expanding each qi ∈ Q
to a subspace iteratively by collecting the neighbor with
maximum projection distance can result in |Q| subspace
candidates. However, greedy search, which makes a
locally optimal choice, will easily be misled by points
of other subspaces, especially when the points of two
subspaces are very close.
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• Limitation of energy based methods: Unlike the ex-
haustive or greedy methods which select proposals
from a large number of candidates, the accuracy of en-
ergy based methods largely depends on the initial ran-
dom subspace proposals. Also, optimizing model pa-
rameters by minimizing the energy, which includes the
sum of geometric errors, is applicable in affine or ho-
mography models but difficult in general cases.

In this paper, as the main technical contribution, we
take advantages of both greedy methods and energy-based
methods to propose a three-step method. First, subspace
candidates are greedily enumerated by m-branched trees
through each data point, which is likely to include appro-
priate subspace proposals. Secondly, subspace proposals
are estimated/reestimated from the candidates by maximiz-
ing the number of inliers. Thirdly, each data point is as-
signed with a label (i.e., each proposal can be treated as a
label) to calculate the value of a pre-designed energy func-
tion. The optimal labeling result at the current iteration can
be achieved by minimizing the energy function. The second
and the third steps can be iteratively run until the energy
value stops decreasing.

2. Related Work

Motivated by the explosion of multi-source data in real-
world applications, various algorithms have been proposed
in the last decades. Many recent works focus to settle the
following two challenges due to the attribute of the data:
(1) clustering with prohibitively high-dimensional data [5].
With the increase of data dimension, the distance metrics
between data points become less discriminative, and it is a
common phenomenon that all the data are nearly equidis-
tant from each other when the dimension is prohibitively
large. Moreover, as the segmentation of the data is un-
known, dimension reduction and feature selection methods
can not perform well. (2) clustering with noisy [9] or miss-
ing data [10]. Nuisances, including noise, outliers, and miss-
ing entries can confuse the algorithms by involving irrele-
vant or excluding relevant attributes, which will further re-
quire the robustness of distance metrics and possibly lead
to a different clustering result. In this paper, rather than the
above two challenges, we focus on the challenge caused by
the general structure of linear subspace (i.e., the geometric
structure of the clusters is not specified). Especially, when
two subspaces are very close, or subspaces include outliers,
the clustering problem becomes harder because both the
structure of subspaces and the distribution of data points is
unknown, the assumption that a point and its nearest neigh-
bors likely belong to the same subspace no longer holds for
some data points.

Regarding linear subspace clustering, matrix factor-
ization based algorithms have been extensively applied to
noise-free or noiseless data. Given a data matrix M, one
can find the potential subspaces by equivalently estimating
a permutation of M’s approximation X, which is a multi-

plication of two matrices. One of them has columns as or-
thogonal basis and the other one is consist of coefficients
to approximate M from basis. Classic algorithms, take
Costeira and Kanade algorithm [11] as an example, find
X using singular value decomposition (SVD). In a more
recent work [12], a global constraint of the relationship
between subspaces is exploited, which restricts multiple
lower-dimensional subspaces to lay in a higher-dimensional
subspace by further factorizing the data points in each sub-
space with a shared global matrix. GPCA [13], [14] methods
can deal both independent and dependent linear subspaces
by clustering normals of data points. Derivating multiple
polynomials can calculate normals for each data point. The
combination of polynomials fit the union of subspaces. In-
stead of linear dependent subspaces, we aim to cluster gen-
eral independent subspaces.

There are also several works that are capable of deal-
ing with general subspace structure. Sparse Subspace Clus-
tering (SSC) [15], which is one of the spectral clustering-
based methods, proposes that an arbitrary data point in the
data set can be represented by the combination of any other
points. Finding which subspace the point belongs corre-
sponds to finding a sparse combination, which has a min-
imum number of nonzero coefficients. As SSC does no
rely on finding neighbor points with certain distance met-
rics, it can deal with data nuisances well. The drawback
is, since the sparsest combination is obtained by solving a
sparse optimization problem, the solution becomes less con-
fident when the number of points per dimension is small.
Both the advantage and drawback can be observed in the
experiment of this paper. SSC Orthogonal Matching Pur-
suit (SSC-OMP) [16] proposes to replace the optimization
procedure in SSC [15] by OMP algorithm, which greedily
and incrementally select the dictionary elements that are
most likely to be correct at current. Low-Rank Represen-
tation (LRR) [17] solves the problem in a similar way of
SSC, which finds a low-rank representation instead of sparse
representation by nuclear norm minimization. Furthermore,
Low-Rank and Sparse Subspace Clustering (LRSSC) [18]
combines both L1 norm in [15] and the nuclear norm in
[18]. Thresholding based Subspace Clustering (TSC) [19]
is also based on spectral clustering, which constructs the
adjacency matrix based on calculating inner products be-
tween data points. Nearest Subspace Neighbor (NSN) [7]
constructs a neighbor matrix at first and followed by cluster-
ing step with Greedy Subspace Recovery (GSR) or spectral
clustering. For each point, neighbors are sequentially col-
lected by finding the largest norm of the projection onto the
subspace spanned by the correct neighbors collected so far.
NSN+GSR guarantees exact clustering performance, espe-
cially in noise-less conditions. However, when the data set
involves data nuisances, the performance decreases because
the algorithm may fail in collecting correct neighbors in the
early stage, and lead to wrong subspace estimation. The
procedure of our subspace enumeration is inspired by [7].

Subspace clustering can be recast as a geometric model
fitting problem if the model of the subspaces is given.
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Fig. 1 Overview of the proposed method. The right arrow indicates the execution order of each step.
Our method starts with a given data set Q of data points lay on or near different subspaces (the points
are in 3D and the subspace is 2D here as an example). Upright and rotated numbers indicate the points
on/near two different subspaces respectively.

RANSAC [20] and its variants [21], [22] belongs to a well-
known category which aims to estimate the parameters of
the model that with the largest number of inliers (i.e., max-
imum consensus). It performs well when the data only fol-
low one model. In the multi-model/multi-subspace case, [8]
proposes PEARL based on α-expansion [23], which formu-
lates the clustering task as a optimal labeling problem, and
the optimal solution can be achieved by minimizing a global
energy function. Random cluster models (RCM) [24] is pro-
posed to generate hypotheses based on larger-than-minimal
subsets to improve the quality of the hypotheses and con-
struct a graph cuts based method for labeling. The procedure
of our energy minimization is based on [8], which finds op-
timal labeling with enumerated subspace proposals instead
of randomly initialized proposals.

3. Our Approach

3.1 Overview and Notation

For easy understanding, we first illustrate the whole pro-
cedure of our method in Fig. 1 as an overall description,
then the detailed explanation for each step will be given
in the following subsections. At first, given a set of N
points Q = {q1, . . . qi, . . . qN}, qi ∈ Rp (p = 3 in the illus-
tration), points lay on or near a union of subspaces (two
2D subspaces in the illustration). For each qi, a subspace
enumeration (SE) Ai is generated, which is an m-branched
tree with each root-to-leaf path being a subspace candidate,
will be explained in Sect. 3.2. Secondly, subspace propos-
als (SPs) S0 = {S0

1, . . . ,S0
W } are selected from SEs for la-

beling, where the superscript indicates the iteration num-
ber. The selection procedure will be introduced in Sect. 3.3.
Thirdly, each qi is assigned with a label from SPs to max-
imize the number of inliers according to a threshold, and
the labeling result is the initial input to the energy mini-
mization part (α-expansion). Then, the labeling result is
iteratively updated by α-expansion followed by a SP re-
estimation procedure, which will be introduced in Sects. 3.4
and 3.5. Throughout the paper, we denote the set of N
indices by [N] = {1, 2, . . . ,N}, and span{·} is to denote a
subspace spanned by a set of vectors/points. For exam-
ple, span{v1, . . . , vN} = {v : v =

∑N
i=1 αivi, α1, . . . , αN ∈ R}.

ProjUy denotes the projection of y onto the subspaceU (i.e.,

Table 1 Notation and description.

NOTATION DESCRIPTION
m Parameter for constructing m-branched tree.
N Number of total data points/SEs.
n Number of data points per subspace.
Q Input data set.
qi i th data point in Q.
Ai SE with respect to qi.
p Ambient dimension.
d Subspace dimension (same as the depth of each SE).
ai Subspace spanned by i th root-to-leaf path.
T Number of enumerated subspaces in one SE.
S0,S1, . . . ,S∗ Estimated union of subspaces after each iteration. S0 is

the initial and S∗ is the final result.
S A single general subspace.
W Number of estimated subspaces.
L0,L1, . . . ,L∗ Labeling result after each iteration.

Li = S: assign qi to S.
Li == S: is true if S is assigned to qi.

Proju y = arg minu∈U ‖y − u‖2). I{·} is an indicator function
to turn the true/false into 1/0. All the important notations are
summarized in Table 1 for clarity.

3.2 Subspace Enumeration

Greedy method [7] collects neighbors sequentially at each
data point by maximizing the number of inliers, assuming
that the current collected points span a correct subspace.
This assumption can easily fail when the data set incorpo-
rates outliers or the data points are close with each other,
in which case the nearest neighbor is not necessarily on the
same subspace. On the other hand, spanning subspace from
the points in the data set can result in a nearly infinite num-
ber of combinations, and the probability of “clean” subsets
of points decreases exponentially with the increase in the
size of the subsets [25]. To alleviate the influence brought
by the outliers, we enumerate subspace candidates in a tree
structure, to keep the top-m points at each stage of local op-
timum selection, instead of selecting only the top point as
the optimal choice. As shown in Alg. 1, given a data point
qt, T subspace candidates through qt, denoted byAt will be
enumerated. In Line 1, all the vectors (points) are normal-
ized to unit vectors for simpler projection calculation. As
the linear subspaces are closed under scalar multiples, this
will not change the estimation result. A perfect m-ary tree
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Algorithm 1 Subspace Enumeration (SE)
Input: A data point qt , data point set Q = {q1, . . . qN }, subspace dimension

d, branch number m
Output: An SE with respect to qt: At = {a1, . . . , aT },T = md−1, at ∈ Rd

1: qi ← qi/
∥∥∥qi

∥∥∥
2 ,∀i ∈ [N] // Normalize magnitudes

2: Build an empty perfect m-ary tree with depth d
3: Root node← t
4: for each internal node in depth-first order do
5: U ← span{qk |k ∈ P}
6: // P includes nodes on the path from the root to the current node
7: I ← P
8: for i = 1, . . . ,m do
9: k̂ = arg max

k∈[N]\I
ProjUqk

10: // qk̂ is the closest point toU
11: Assign data index k̂ to i th child of current node
12: I ← P ∪ k̂
13: end for
14: end for
15: for each leaf node a j from left to right do
16: a j ← span{qk |k ∈ P}
17: // Points with indices in each leaf node span an ES
18: end for

is then built with each node to restore indices of the data
points. The root node is initialized by t and in each root-to-
leaf path, the neighbor points are sequentially collected in
a greedy fashion. In Line 5, points in root-to-current node
path span a subspace U, and the point which is closest to
U is newly collected in Line 9. The U in each node is
represented by a matrix, with whose columns are the or-
thonormal basis calculated by Gram-Schmidt orthonormal-
ization. Therefore, ProjUqk can be calculated by ‖U	qk‖2.
In Line 16, over each root-to-leaf path, a subspace candidate
is spanned by all the points on the path for further subspace
proposal and re-estimation.

3.3 Subspace Proposal

After generating subspace enumerations through each data
point, we are ready to select subspace proposals. Although
the number of subspace candidates has been limited to a
certain scale after enumeration, it is still impractical to test
them all. To select high-quality candidates as proposals via
a fixed selection criteria, the number of points which are
close to each subspace are counted. It is natural because
many points should lay on or near a true subspace. In Line 2
of Alg. 2, points with their projections larger than a certain
threshold, which mean inlier points, are counted to select the
best subspace candidate Âi from eachAi. From Line 7, sub-
space proposals are further selected from N subspace candi-
dates. Line 8 is to find the index of the best subspace can-
didate which can maximize the number of inliers among the
N subspace candidates achieved by running Line 1 ∼ Line
4. In Line 10, note that the points for evaluating a certain
subspace can only be used once. That is, if the points have
already assigned to previous subspaces, they can no longer
be used for evaluating other subspaces. The output of Alg. 2
is used for labeling in Sect. 3.4, and can also be updated by
Alg. 3. As pointed out by [24] that the quality of proposals

Algorithm 2 Subspace Proposal (SP)
Input: SE setA = {A1, . . . ,AN }, data point set Q = {q1, . . . qN }
Output: Union of subspace proposals S0 = {S0

1, . . . ,S0
W },W < N

1: for i = 1, . . .N do
2: Âi = arg max

a j∈Ai

∑N
t=1 I{Proja j

qt ≥ 1 − ε}
3: // Select the ES Âi from eachAi which maximizes the number of

inliers
4: end for
5: I ← [N]
6: w← 1
7: while I � ∅ do
8: î = arg max

i∈I
∑N

t=1 I{ProjÂi
qt ≥ 1 − ε}

9: S0
w = Âî // Select W subspaces as proposals (i.e., input of Alg. 3)

10: I ← I\{t|ProjS0
w

qt ≥ 1 − ε}
11: // Ensure the proposals distribute sparsely
12: w← w + 1
13: end while

is central to clustering, which will affect not only the con-
vergence speed but also the clustering accuracy. Although
it has been claimed in [8] that the PEARL algorithm may
converge to good subspaces even from a small set of rough
proposals, selected “guesses” rather than random “guesses”
may yield in better results.

3.4 Label Assignment

We utilize PEARL [8] for labeling by treating each SP as
a label. The main difference is, in [8], initial proposals are
generated by randomly sampling points following a geomet-
ric model, while our SPs are generated by Alg. 1 and 2 with-
out any prior knowledge. The set of SPs S0 is treated as a
set of current labels, and our task is to assign SPs (labels) to
each data point, i.e., labeling. The optimal labeling result is
achieved by minimizing the following energy function,

E(L) =
∑

i∈[N]

‖qi − Li(L
	
i qi)‖2

+ λ
∑

(qi,q j)∈N
exp

⎛⎜⎜⎜⎜⎜⎝−
‖qi − q j‖2
δ2

⎞⎟⎟⎟⎟⎟⎠ I{Li � Lj},
(4)

where L = {Lt |t ∈ [N]} is the labeling result. Each Lt is
assigned with a subspace. The first data term measures the
geometric error over all the points. The squared perpen-
dicular distance between a point and its label (subspace) is
used. Data term gets smaller when appropriate labels are as-
signed to points. The second term is the smooth term which
measures the smoothness of points locally (i.e., the labels of
points are assumed to be the same with a high probability for
each pair of neighboring points). Here, we follow the sug-
gestion of [8] to adopt Potts model [23]: increase the smooth
term when a point and its neighbor are not assigned with
the same label. The penalty is exponential, with a constant
parameter σ to control the smoothness of the exp function.
The minimization is conducted by running α-expansion [23]
until the energy function stops decreasing, which can be in-
tuitively understood as a procedure to balance between the
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number of inliers and smoothness. Of course, the labeling
result relies largely on the quality of the SPs. For better
labeling result, we use currently estimated inliers to update
the SPS and rerun the label assignment algorithm repeatedly
until the labeling result converges.

3.5 Subspace Re-Estimation

Once the labeling result is calculated with current SPs, the
SPs can be re-estimated for running a new round of label
assignment. We combine label assignment to explain the re-
estimation in Alg. 3. S0 → . . . → Si → . . . → S∗ is the re-
finement procedure of subspace clustering, with Si denoting
the clustering result after i-th iteration of label assignment
and subspace re-estimation. S∗ and L∗ are the final cluster-
ing and labeling results. From Line 1 to Line 4, the labeling
result is initialized by assigning the closest subspace (label)
to each point. Line 7 is the label assignment procedure in-
troduced in Sect. 3.4, and in Line 8, SPs are re-estimated by
solving the following equation,

Ŝi
w = arg max

S∈Leaves(Si
w)

∑

Li
t==Si

w

ProjSqt, (5)

where Leaves(·) is a function to return subspaces spanned
by root-to-leaf paths in the SE that the input subspace be-
longs. The sum term is to calculate the projection over the
points that are assigned with the input subspace (label). In
other words, the re-estimation here is to find a neighboring
subspace candidate in the m-branched tree that can better fit
the points assigned with the same subspace (label).

The re-estimation procedure can often be found in ge-
ometric multi-model fitting problems but can be hardly ap-
plied to clustering tasks with general structures. The reason
is that the geometric models have parameters to control the
subspace, and the models can be updated to better fit the
points by optimizing the parameters, while subspaces with
general structures can not achieve better SPs in this way. In-
stead of optimizing the geometric parameters, our method
solves this problem by searching the SP which better fits the
points from an m-branched enumeration. Both the Line 7
and Line 8 of Alg. 3 can decrease the energy Eq. (4), we can
iterate over these two steps until convergence (e.g., we can
stop the iterations when a new round of α-expansion does
not change the labeling result).

4. Experiment

In this Section, we compare our method against sev-
eral existing methods NSN+GSR [7], NSN+Spectral [7],
SSC [15], SSC-OMP [16], LRR [17], and TSC [19] with
both synthetic data and further against k-means and k-flats
with real-world data. The number of replicates of K-means,
K-flats, and the k-means used in the spectral clustering is
fixed to 10. The implementations of all the compared meth-
ods are provided by the authors, which are publicly avail-
able. We use clustering error (CE) as the criteria for evalu-

Algorithm 3 Iteration of Label Assignment and Subspace
Re-estimation
Input: Union of subspace proposals S0 = {S0

1, . . . ,S0
W }

Output: Estimated union of subspaces S∗ = {S∗1, . . . ,S∗W }, labeling result
L∗ = {L∗1, . . . , L∗N }, L∗t ∈ S∗ is a subspace (label) assigned to a given
data point qt

1: i← 0
2: for each qt do
3: Li

t = arg max
S∈S0

ProjSqt , Li
t ∈ Li // Label initialization

4: end for
5: repeat
6: i← i + 1
7: Run α-expansion with Eq. (4) to update the labels Li

8: Solve Eq. (5) to re-estimate subspace proposals
9: until increase of energy converges

10: S∗ = Si

11: L∗ = Li

Fig. 2 A example of data generation without/with inlier range. Param-
eter θ controls the range of inliers. Each color denotes different 1D linear
subspace.

ating the accuracy defined as following, which is also sug-
gested by [7],

(CE) = min
π∈ΠL

1
N

N∑

i=1

I

(
Lgti � π(L

∗
i )
)
, (6)

where ΠL is the permutation space of [L]. For example,
if we have two labels A and B, the permutation space is
{(A, B), (B, A)}. Function π is to convert the order of la-
beling assignment into according label order. Lgti is the
ground truth label of point qi. For example, if we have
four points and two labels, with their ground truth labels as
(A, B, A, B), the correct clustering result can be (A, B, A, B)
or (B, A, B, A). That is, CE is the proportion of incorrectly
labeled data points, which ignores the order of label assign-
ment (i.e., the labeling result is invariant up to permutation
of label indices).

4.1 Statistical Results with Synthetic Date

To validate the effectiveness of our proposed method, we
show statistical CE performance with randomly generated
synthetic data over 100 trials. To provide a comprehensive
comparison, we introduce inliers vary within a certain range
(i.e., points which approximately can be fitted to a subspace)
during the data generation, instead of inliers just lay on the
subspaces. Specifically, points lay on the ground truth sub-
spaces are first generated and then randomly shifted with
respect to each dimension, according to a given range pa-
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Fig. 3 Comparison of average CE over 100 random trials. The first column shows the results of our
method and others are compared methods. Here, d = 3 and the number of subspaces is fixed to five.
Basically, with smaller p and smaller n/d, the clustering task becomes more difficult, and lower CE
indicates better clustering performance. Also, the first row is with inliers lay exactly on the subspaces,
and from the second row, with the increase of θ, the inliers distribute more and more irregularly.

rameter θ. For example, in Fig. 2 (a), the data points are gen-
erated exactly on the subspaces while in Fig. 2 (b), the data
points are generated by θ = 0.1. That is, x-axis and y-axis
values of points are summed by a value randomly generated
from [−0.1, 0.1]. For the evaluation data, at first, five d-
dimensional subspaces in Rp space are generated randomly.
Then, points are generated iid uniformly on each subspace.
Each point is then shifted by parameter θ. We run the com-
parative experiment with fixed d = 3, #subspaces=5, and
vary p and n/d to obtain statistical results. From Fig. 3, we
can observe that in most cases, the performance increases
with the increase of p and n/d. Our method outperforms
others totally when θ = 0 or θ = 0.01, while it is not
always the case when θ = 0.05 or θ = 0.1. This well

demonstrates the advantages and limitations of our proposed
method, which can be concluded as follows,
Advantages:

• Our method is power for exact clustering task (i.e., data
points are lying exactly on the subspaces). In Fig. 3 (a),
our method even achieves 0 error.

• Our method can deal with the situation when both
p and d are close and small. This is important for
many real-world applications (e.g., motion segmenta-
tion). For example, when p = 5, we can observe from
Fig. 3 that the CE of our method decreases most with
the increase of n/d, while some compared methods
even get higher CE.
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Fig. 4 Comparative results with face clustering task. We only show two subjects under 10 different
illumination conditions for illustration. Images within the same row belong to the same subject. A and
B are two labels to distinguish two subjects (labeling results of each method can be represented in A-B
or B-A order, which are equivalent). Colored A/B represents labeling result of competitive methods,
which are in the order of the legend. Best viewed in color.

Limitations:

• Unlike SSC or LRR, low CE can not be achieved when
the θ is large. As we will describe in Sect. 4.3, to deal
with larger data nuisances, larger scale of enumeration
need to be generated and an appropriate inlier thresold
is necessary, which is hard to be estimated from input
data without any prior knowledge.

• The scale of m-branched enumeration grows exponen-
tially with the increase of d, which practically limits
the support to large data nuisances.

4.2 Qualitative and Quantitative Results with Real Appli-
cation of Face Clustering

To further show the usefulness of the proposed method, we
compare some existing methods with respect to the face
clustering task. We use the extended Yale B dataset [26],
[27], which contains 2432 images with 38 subjects under 64
illumination conditions. Each image is cropped to 192 by
168 pixels and downscaled to 48 by 42 pixels. For better vi-
sualization, we randomly choose 10 illumination conditions
as shown in Fig. 4. Among the eight different methods, only
our method correctly cluster the two subjects (subspace). A
common failure of K-means and SSC is that they cluster
the images with respect to the light intensity: two images in
the fourth column are clustered as one subspace and the left
images form another cluster. Figure 5 shows the statistical
result, in which the proposed method has the lowest average
CE to show the effectiveness.

4.3 Effect of Hyper Parameters

There are two main parameters m and ε to affect the global
performance of the proposed method. To study their effects,
we give out the curves of average CE with respect to three
different parameter settings in Fig. 6. From Fig. 6 (a), we

Fig. 5 Comparative result of average CE. Two subjects are randomly se-
lected over 38 subjects for 100 trials to calculate the average CE.

Fig. 6 Effect of hyper parameters m and ε by synthetic test.

can observe that the average CE decreases with the increase
of m, except when the p is small. From Fig. 6 (b), we can
observe that closer the ε is to the range of ground truth inlier
(θ = 0.01), lower average CE can be achieved. These obser-
vations well reveal the limitations described in Sect. 4.1: the
performance depends on “reasonable guess” of θ and m has
a trade-off between accuracy and processing time.
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5. Conclusion

In this paper, we presented a subspace clustering algorithm
with general subspace structures. The main contribution is
to take advantages of both greedy strategy and energy min-
imization strategy to propose a hybrid solution. Extensive
experiments demonstrate that our method outperforms the
state-of-the-art methods in both synthetic and real-world sit-
uations. Despite the robustness of our method, it still has a
few limitations. The performance is likely to depend on the
initial setting of inlier threshold, and its computational cost
can grow exponentially with the increase of the enumeration
parameter. One potential way to solve these problems is to
predetermine the threshold through a learning-based method
and run the enumeration procedure in parallel. As the future
work, we would like to develop effective subspace proposal
evaluation methods for more real-world applications.
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