This paper proposes and examines the three in-memory shuffling methods designed to address problems in MapReduce shuffling caused by skewed data. Coupled Shuffle Architecture (CSA) employs a single pairwise all-to-all exchange to shuffle both blocks, units of shuffle transfer, and meta-blocks, which contain the metadata of corresponding blocks. Decoupled Shuffle Architecture (DSA) separates the shuffling of meta-blocks and blocks, and applies different all-to-all exchange algorithms to each shuffling process, attempting to mitigate the impact of stragglers in strongly skewed distributions. Decoupled Shuffle Architecture with Skew-Aware Meta-Shuffle (DSA w/ SMS) autonomously determines the proper placement of blocks based on the memory consumption of each worker process. This approach targets extremely skewed situations where some worker processes could exceed their node memory limitation. This study evaluates implementations of the three shuffling methods in our prototype in-memory MapReduce engine, which employs high performance interconnects such as InfiniBand and Intel Omni-Path. Our results suggest that DSA w/ SMS is the only viable solution for extremely skewed data distributions. We also present a detailed investigation of the performance of CSA and DSA in various skew situations.
Harunobu DAIKOKU
University of Tsukuba
Hideyuki KAWASHIMA
Keio University
Osamu TATEBE
University of Tsukuba
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Harunobu DAIKOKU, Hideyuki KAWASHIMA, Osamu TATEBE, "Skew-Aware Collective Communication for MapReduce Shuffling" in IEICE TRANSACTIONS on Information,
vol. E102-D, no. 12, pp. 2389-2399, December 2019, doi: 10.1587/transinf.2019PAP0019.
Abstract: This paper proposes and examines the three in-memory shuffling methods designed to address problems in MapReduce shuffling caused by skewed data. Coupled Shuffle Architecture (CSA) employs a single pairwise all-to-all exchange to shuffle both blocks, units of shuffle transfer, and meta-blocks, which contain the metadata of corresponding blocks. Decoupled Shuffle Architecture (DSA) separates the shuffling of meta-blocks and blocks, and applies different all-to-all exchange algorithms to each shuffling process, attempting to mitigate the impact of stragglers in strongly skewed distributions. Decoupled Shuffle Architecture with Skew-Aware Meta-Shuffle (DSA w/ SMS) autonomously determines the proper placement of blocks based on the memory consumption of each worker process. This approach targets extremely skewed situations where some worker processes could exceed their node memory limitation. This study evaluates implementations of the three shuffling methods in our prototype in-memory MapReduce engine, which employs high performance interconnects such as InfiniBand and Intel Omni-Path. Our results suggest that DSA w/ SMS is the only viable solution for extremely skewed data distributions. We also present a detailed investigation of the performance of CSA and DSA in various skew situations.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.2019PAP0019/_p
Copy
@ARTICLE{e102-d_12_2389,
author={Harunobu DAIKOKU, Hideyuki KAWASHIMA, Osamu TATEBE, },
journal={IEICE TRANSACTIONS on Information},
title={Skew-Aware Collective Communication for MapReduce Shuffling},
year={2019},
volume={E102-D},
number={12},
pages={2389-2399},
abstract={This paper proposes and examines the three in-memory shuffling methods designed to address problems in MapReduce shuffling caused by skewed data. Coupled Shuffle Architecture (CSA) employs a single pairwise all-to-all exchange to shuffle both blocks, units of shuffle transfer, and meta-blocks, which contain the metadata of corresponding blocks. Decoupled Shuffle Architecture (DSA) separates the shuffling of meta-blocks and blocks, and applies different all-to-all exchange algorithms to each shuffling process, attempting to mitigate the impact of stragglers in strongly skewed distributions. Decoupled Shuffle Architecture with Skew-Aware Meta-Shuffle (DSA w/ SMS) autonomously determines the proper placement of blocks based on the memory consumption of each worker process. This approach targets extremely skewed situations where some worker processes could exceed their node memory limitation. This study evaluates implementations of the three shuffling methods in our prototype in-memory MapReduce engine, which employs high performance interconnects such as InfiniBand and Intel Omni-Path. Our results suggest that DSA w/ SMS is the only viable solution for extremely skewed data distributions. We also present a detailed investigation of the performance of CSA and DSA in various skew situations.},
keywords={},
doi={10.1587/transinf.2019PAP0019},
ISSN={1745-1361},
month={December},}
Copy
TY - JOUR
TI - Skew-Aware Collective Communication for MapReduce Shuffling
T2 - IEICE TRANSACTIONS on Information
SP - 2389
EP - 2399
AU - Harunobu DAIKOKU
AU - Hideyuki KAWASHIMA
AU - Osamu TATEBE
PY - 2019
DO - 10.1587/transinf.2019PAP0019
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E102-D
IS - 12
JA - IEICE TRANSACTIONS on Information
Y1 - December 2019
AB - This paper proposes and examines the three in-memory shuffling methods designed to address problems in MapReduce shuffling caused by skewed data. Coupled Shuffle Architecture (CSA) employs a single pairwise all-to-all exchange to shuffle both blocks, units of shuffle transfer, and meta-blocks, which contain the metadata of corresponding blocks. Decoupled Shuffle Architecture (DSA) separates the shuffling of meta-blocks and blocks, and applies different all-to-all exchange algorithms to each shuffling process, attempting to mitigate the impact of stragglers in strongly skewed distributions. Decoupled Shuffle Architecture with Skew-Aware Meta-Shuffle (DSA w/ SMS) autonomously determines the proper placement of blocks based on the memory consumption of each worker process. This approach targets extremely skewed situations where some worker processes could exceed their node memory limitation. This study evaluates implementations of the three shuffling methods in our prototype in-memory MapReduce engine, which employs high performance interconnects such as InfiniBand and Intel Omni-Path. Our results suggest that DSA w/ SMS is the only viable solution for extremely skewed data distributions. We also present a detailed investigation of the performance of CSA and DSA in various skew situations.
ER -