
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.1 JANUARY 2022
65

PAPER Special Section on Enriched Multimedia — Multimedia Technologies Enhancing User Experience —

Effects of Image Processing Operations on Adversarial Noise and
Their Use in Detecting and Correcting Adversarial Images

Huy H. NGUYEN†a), Student Member, Minoru KURIBAYASHI††, Junichi YAMAGISHI†,†††, Members,
and Isao ECHIZEN†,†††,††††, Fellow

SUMMARY Deep neural networks (DNNs) have achieved excellent
performance on several tasks and have been widely applied in both
academia and industry. However, DNNs are vulnerable to adversarial ma-
chine learning attacks in which noise is added to the input to change the
networks’ output. Consequently, DNN-based mission-critical applications
such as those used in self-driving vehicles have reduced reliability and
could cause severe accidents and damage. Moreover, adversarial exam-
ples could be used to poison DNN training data, resulting in corruptions
of trained models. Besides the need for detecting adversarial examples,
correcting them is important for restoring data and system functionality to
normal. We have developed methods for detecting and correcting adver-
sarial images that use multiple image processing operations with multiple
parameter values. For detection, we devised a statistical-based method that
outperforms the feature squeezing method. For correction, we devised a
method that uses for the first time two levels of correction. The first level is
label correction, with the focus on restoring the adversarial images’ origi-
nal predicted labels (for use in the current task). The second level is image
correction, with the focus on both the correctness and quality of the cor-
rected images (for use in the current and other tasks). Our experiments
demonstrated that the correction method could correct nearly 90% of the
adversarial images created by classical adversarial attacks and affected only
about 2% of the normal images.
key words: adversarial machine learning, image processing operation,
detecting adversarial image, correcting adversarial image, data cleansing,
deep neural network

1. Introduction

Despite the success of deep learning in both academia and
industry, deep neural networks (DNNs) are vulnerable to
adversarial attacks [1], and this has attracted much atten-
tion and effort. Besides traditional logical attacks in which
adversarial noise is added to image or audio files, attack-
ers can now create physical adversarial examples [2]–[6].
When autonomous systems have become mainstream, phys-
ical adversarial attacks may threaten their safety and relia-
bility. Besides white-box attacks, in which attackers have
full knowledge of the inner configuration of the target mod-

Manuscript received March 27, 2021.
Manuscript revised July 12, 2021.
Manuscript publicized October 5, 2021.
†The authors are with The Graduate University for Advanced

Studies, Kanagawa-ken, 240–0193 Japan.
††The author is with Graduate School of Natural Science and

Technology, Okayama University, Okayama-shi, 700–8530 Japan.
†††The authors are with National Institute of Informatics, Tokyo,

101–8430 Japan.
††††The author is with University of Tokyo, Tokyo, 113–8654

Japan.
a) E-mail: nhhuy@nii.ac.jp

DOI: 10.1587/transinf.2021MUP0005

els, attackers will also be able to perform black-box attacks,
which are more likely since attackers need acquire only the
models’ outputs [7]. Moreover, attackers are able to cre-
ate universal adversarial perturbations that are applicable to
multiple inputs [8] and to create adversarial examples that
can be used to attack multiple DNNs [9]. Such adversarial
examples could be used to directly attack DNN-based sys-
tems or to poison the training data of DNNs to corrupt their
models (a “data poisoning attack”) [10].

Approaches to counter adversarial attacks can be clas-
sified into four groups: adversarial example detection, ad-
versarial training, input pre-processing, and randomization
or private keying. Some approaches were designed for
multiple domains while others were simply designed for
a single domain like the image one. For adversarial ex-
ample detection, a statistical-based approach is commonly
used [11], [12]. Another approach is to build a detector that
takes raw images [13] or features from intermediate layers
of the targeted DNN [14], [15] as input. Ma et al. used
local intrinsic dimensionality to characterize the adversar-
ial subspace [16]. Xu et al. presented a feature squeezing
method in which the differences in the DNN’s outputs be-
tween the normal and squeezed images are used for de-
tection [17]. Liang et al. subsequently proposed an adap-
tive noise reduction method [18]. For adversarial training,
there are several approaches including distillation [19], ob-
fuscating gradients [20], optimizing the saddle point formu-
lation [21], and applying the reverse cross-entropy loss func-
tion [22]. For input pre-processing, Guo et al. trained DNNs
on transformed images (to which cropping, total variance
minimization, and/or quilting operations had been applied)
so as to mitigate adversarial noise [23]. Prakash et al. pro-
posed using a DNN-based adaptive JPEG encoder to pre-
process the input [24]. For randomization or private keying,
Taran et al. proposed a key-based diversified aggregation
mechanism to defend against gray- and black-box adver-
sarial attacks [25]. Several adversarial databases have been
independently created for evaluation, but guidelines for cre-
ating them have not been reported in detail [11], [17], [23].

In this paper, we present methods for detecting and cor-
recting adversarial examples in the digital image domain.
By limiting our focus to the digital image domain, we can
use more domain knowledge and can use many potential ef-
ficient and cheap image processing operations for our frame-
work. We target classical adversarial attacks that do not con-
sider optimizing the robustness of adversarial perturbations

Copyright c© 2022 The Institute of Electronics, Information and Communication Engineers



66
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.1 JANUARY 2022

Fig. 1 Visualization of our contributions.

against transformations. These attacks generally require less
computation than robust ones, so attackers can easily create
a massive number of adversarial examples in a short period
of time. One practical use is for data poisoning. We target
both black-box and white-box attack scenarios.

Our approach is to use multiple image processing op-
erations with multiple parameters for detection and correc-
tion. These parameters include the quality factor (QF) of
JPEG compression, the scaling factor, the size of the Gaus-
sian blur kernel, and the rotation angle. We hypothesized
and then verified that the classification labels of the ad-
versarial images change when the values of the parameters
change while the classification labels of normal images re-
main mostly unchanged. Our approach to detection and cor-
rection does not require any modification or re-training of
the target DNNs. In summary, our contribution is three-fold
(visualized in Fig. 1):

• We introduce a standardized procedure for creating a
normal dataset and an adversarial dataset. The lat-
ter includes several state-of-the-art targeted and non-
targeted adversarial attacks [7]. Targeted attacks are
attacks that try to change the output label of a DNN
to a predefined label while non-targeted attacks are at-
tacks that aim to make the output label of a DNN dif-
ferent from the original one. Both datasets are derived
from the ImageNet validation set [26]. The adversarial
dataset created using this procedure has protocols for
evaluating seen and unseen attacks to measure the mod-
els’ generalizability. This standardized procedure is ex-
pected to promote fair comparisons and reproducible
research in adversarial machine learning (ML).
• We present a method that uses operation-oriented char-

acteristics for detecting adversarial images. It is un-
realistic to use an exhaustive search to find the opti-
mal combination of multiple image processing oper-
ations with multiple parameter values. We thus ob-
served the changes in DNN output with an increase
in the strength of image processing operations, which

work as a kind of noise removal filter. Using simu-
lation, we quantitatively evaluated and identified the
best choice of operation-oriented characteristics. This
method is more advanced than the feature squeezing
method [17], which uses only three image processing
operations with manually set parameter values.
• We present a method that uses for the first time two lev-

els of adversarial image correction: label correction (to
restore the correct labels of the adversarial images for
the current task) and image correction (to mitigate the
adversarial noise in the adversarial images so that the
targeted DNN can correctly work on them and mak-
ing these images usable in other tasks). In label cor-
rection, only the outputs of the DNNs are of interest
while in image correction, the quality and usability of
the corrected images as well as the labels are of inter-
est. Our proposed method is heuristic and is based on
using multiple image processing operations with multi-
ple parameter values. Unlike Guo et al.’s method [23],
our method does not require re-training of the DNNs
and is applicable to their pre-trained models. Unlike
Prakash et al.’s method [24], our method uses multiple
standardized image processing operations rather than
a customized DNN-based JPEG encoder, which is not
robust to adversarial attacks.

The rest of the paper is organized as follows: In Sect. 2,
we introduce our standardized procedure for creating the
normal and adversarial datasets used for the experiments de-
scribed in this paper. Next, in Sect. 3, we discuss the effects
of using multiple image processing operations with multi-
ple parameter values on both normal and adversarial im-
ages. The observed distinctive effects are used as the back-
bone for the proposed adversarial image detection method
described in Sect. 4 and the image correction method de-
scribed in Sect. 5. We summarize the key points and discuss
future work in Sect. 6.

2. Dataset Creation

2.1 Overview

Although several normal and adversarial datasets have been
independently created, detailed guidelines for their cre-
ation are lacking [11], [17], [23]. We thus created our own
datasets as shown in Fig. 2 for use in our experiments. We
applied several policies when designing them:

• They must be large enough to be used to train both
handcrafted and convolutional neural network (CNN)
based methods.
• The adversarial dataset must contain images for vari-

ous types of adversarial attacks including both targeted
and non-targeted ones [7]. This is crucial to building
protocols for seen and unseen attacks.
• Since the datasets were derived from the ImageNet

database, we followed its protocol by utilizing the top-
5 accuracy as the metric for all experiments. A correct



NGUYEN et al.: EFFECTS OF IMAGE PROCESSING OPERATIONS ON ADVERSARIAL NOISE AND THEIR USE IN DETECTING
67

Fig. 2 Overview of dataset creation procedure using a CNN. The same procedure was used with
VGG-16, VGG-19, ResNet-18, and ResNet-50 networks to together create a full normal dataset (for
normal images) and a full adversarial dataset (for adversarial images).

classification is defined to be when one of the top-5
predicted labels is the true label.
• All images in the normal dataset must be correctly clas-

sified by the targeted CNNs (100% accuracy). All im-
ages in the adversarial dataset must be misclassified by
the targeted CNNs (0% accuracy). To make the attacks
realistic, the images in the adversarial dataset are saved
as JPEG files since some adversarial noise is mitigated
when saving.
• Since some labels fall into the same category (for ex-

ample, different breeds of dogs), the adversarial attacks
should produce adversarial images with a label belong-
ing to a different category than the original one.

In the next sections, we describe in detail the dataset
construction and the adversarial attacks used. Finally, we
describe the analysis we performed on the newly created
datasets to determine their quality and to gain some insight
about them.

2.2 Dataset Construction

We used the images from the validation set of the Ima-
geNet database [26] (which has ground-truth labels) to gen-
erate the adversarial images used in our experiments. There
were 1,000 labels in total. For the object-recognition CNNs,
we used the VGG-16 and VGG-19 networks [27] and the
ResNet-18 and ResNet-50 networks [28] pre-trained on the
ImageNet database, implemented using the PyTorch frame-
work [29]. We used the Pillow library† for image process-
ing and the FoolBox library (version 1.8.0) [30] for adver-
sarial image generation. Twelve commonly used methods
(Table 1) were used to perform targeted and non-targeted
adversarial attacks.

As shown in Fig. 2, we used each CNN to classify
five million images from the ImageNet 2012 validation set.
Classification was considered correct when the ground-truth
label was one of the predicted top-5 labels. We then ran-
domly selected 1,000 images per CNN from the correctly
classified images; therefore, there were 4,000 normal im-

†https://pillow.readthedocs.io/en/stable

Table 1 Number of successful adversarial images created from 1,000
input images using FoolBox library [30] on VGG-16, VGG-19, ResNet-18,
and ResNet-50 networks.

Method VGG-16 VGG-19 ResNet-18 ResNet-50
Targeted attacks:
L-BFGS [1] 618 623 348 229
BIM [2] 693 711 531 431
PGD [2] 651 678 484 348
L1-iter [30] 661 591 680 513
L2-iter [30] 820 746 722 583
Non-targeted attacks:
Gradient [30] 654 548 590 517
FGSM [31] 509 450 451 379
Deep Fool [32] 707 671 658 604
Newton [33] 571 505 558 425
ADef [34] 1 4 1 1
JSMA [35] 102 86 114 71
Carlini-Wagner [36] 427 361 401 299

ages in total. We limited the number because the time re-
quired to craft adversarial images from them is quite long.
These 4,000 images were added to the normal dataset. We
then performed the 12 adversarial attacks listed in Table 1
on the 4,000 images as described in Sect. 2.3. The Pillow li-
brary was used to save them as JPEG files with a QF of 100
to preserve most of the adversarial noise. We then loaded
the saved images and used the same CNN to classify them
again to ensure that they were still misclassified (the pre-
dicted top-5 results did not contain the ground-truth label).
We obtained 22,326 misclassified adversarial images in total
and added them to the adversarial dataset.

We distributed the obtained normal and adversarial im-
ages into training (train), development (dev), and evaluation
(eval) sets as detailed in Table 2. The train set was used
for training, the dev set was used to select the model, and
the eval set was used to test the detectors. We ensured that
the normal images and their adversarial versions in the train,
dev, and eval sets did not overlap so that the detectors would
not remember the training images. There were three attack
settings: targeted, non-targeted, and combination. The tar-
geted and non-targeted attack settings were used to test the
generalization of the adversarial image detectors while the
combination setting was used mainly for hyper-parameter



68
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.1 JANUARY 2022

selection for the proposed detection method. This combi-
nation attack setting was also used for all experiments on
adversarial image correction.

2.3 Crafting Adversarial Images

To craft the adversarial images used for the targeted attacks,
we used the limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) method proposed by Szegedy et al. [1],
the basic iterative method (BIM) using L-infinity, the pro-
jected gradient descent (PGD) method described by Kurakin
et al. [2], and the L1- and L2- versions of BIM (L1-iter
and L2-iter) implemented in FoolBox [30]. For the indexes
of the image labels of the ImageNet database, nearby la-

Table 2 Details of normal and adversarial image datasets, which were
divided into training, development, and evaluation sets for three attack set-
tings.

Attack Setting/Datasets Normal Adversarial Total Ratio
Targeted attacks:
Train 2,800 8,392 11,192 1:3.00
Dev 600 1,623 2,223 1:2.71
Eval 600 1,646 2,246 1:2.74
Non-targeted attacks:
Train 2,800 7,718 10,518 1:2.75
Dev 600 1,469 2,069 1:2.45
Eval 600 1,478 2,078 1:2.46
Combination attacks:
Train 2,800 16,110 18,910 1:5.75
Dev 600 3,092 3,692 1:5.15
Eval 600 3,124 3,724 1:5.21

Fig. 3 Average PSNR (blue) and SSIM (red) between adversarial images used for targeted and non-
targeted attacks and corresponding original images. Error bars indicate min and max values.

bels often fall into the same group. For example, 239 is
“Bernese mountain dog,” 245 is “French bulldog,” and 250
is “Siberian husky.” All of them are dog breeds. To max-
imize the effect of the adversarial attacks, the target label
should be in a different category than the original label. The
target label for the adversarial attack image was thus shifted
100 steps right from the predicted top-1 label for the nor-
mal image. It is important to note that we used the top-
1 predicted label, not the ground-truth label annotated in
the database to perform adversarial attacks in order to make
them more realistic (which is in accordance with the view-
point of an attacker attacking a large-scale system without
any knowledge of the ground-truth labels). Since there were
1,000 labels in total, modular operation was used to ensure
the shifted label index was in the range [0, 1000). The attack
objective was to achieve a target class probability of 99%.

For non-targeted attacks, we used the basic gradient at-
tack method implemented in FoolBox [30], the fast gradient
signed method (FGSM) proposed by Goodfellow et al. [31],
the Deep Fool method proposed by Moosavi-Dezfooli et
al. [32], the Newton method proposed by Jang et al. [33], the
ADef method proposed by Alaifari et al. [34], the Jacobian-
based saliency map attack (JSMA) method proposed by Pa-
pernot et al. [35], and the method proposed by Carlini and
Wagner [36]. Since these methods are non-targeted attacks,
the attack objective was to change the predicted top-5 labels
so that they differed from the original predicted top-1 labels.



NGUYEN et al.: EFFECTS OF IMAGE PROCESSING OPERATIONS ON ADVERSARIAL NOISE AND THEIR USE IN DETECTING
69

2.4 Dataset Analysis

As shown by the results in Table 1, the VGG networks
were generally more vulnerable to targeted attacks than the
ResNet networks, resulting in more misclassified images.
One possible explanation is that the skip connections used
by ResNet networks make them more robust than the VGG
networks. The modified BIM attack using the L2 distance
(L2-iter) was the most effective attack overall. The non-
targeted attacks were more difficult to carry out since they
needed to change the top-5 labels so that they did not in-
clude the current top-1 labels. Among the attack methods,
Deep Fool was the most successful while the ADef attack
was the least successful overall, producing only one or four
adversarial images for each network. The JSMA method
also had limited success, with around 100 adversarial im-
ages for each network.

Beside the success rate of attacks, we also evaluated the
quality of the obtained adversarial images by calculating the
peak-signal-to-noise ratio (PSNR) and the structural similar-
ity index measure (SSIM) [37] between them and their cor-
responding original images. The results are shown in Fig. 3.
Although there were some extreme cases, the average PSNR
was about 40 dB while the average SSIM was greater than
0.9. This means that the quality of the adversarial images
was high and that the perceived quality of the original im-
ages was preserved. The L-BFGS, Deep Fool, and Carlini-
Wagner attacks produced adversarial images with the high-
est quality whereas the Gradient and FGSM attacks pro-
duced ones with the lowest quality. The L-BFGS, PGD,
Deep Fool, ADef, JSMA, and Carlini-Wanger attacks pro-
duced adversarial images with stable and high SSIM.

3. Effects of Image Processing Operations on Normal
and Adversarial Images

Some image processing operations like JPEG compres-
sion, spatial smoothing, and scalar quantization have re-
cently been found to have noticeable effects on adversarial
noise [17], [18], [23]. We expand on this and hypothesize
that using multiple common image processing operations
(already implemented in many image processing libraries)
and multiple parameter values will provide much more use-
ful information than using operations with fixed values as
in previous work. Furthermore, the effects of multiple pa-
rameter values on adversarial images differ from those on
natural images depending on the differences in the values.
Although common image processing operations like JPEG
compression, Gaussian blurring, rotation, and scaling do not
substantially affect the usability of the processed images,
they have certain non-linear effects on adversarial noise.
JPEG compression reduces the number of bits needed for
storage. Gaussian blurring removes high-frequency com-
ponents and thus acts as a low-pass filter. Rotation, which
requires the use of an interpolation algorithm to adjust the

pixels, removes noise†. Scaling up also removes noise while
scaling down, which reduces the entropy of an image (the
degree of disorder, which is used to characterize the tex-
ture of an image), reduces the amount of noise. These ef-
fects on adversarial noise can be used to distinguish ad-
versarial images from normal images as well as to correct
adversarial images. It should thus be possible to identify
operation-dependent characteristics from the outputs of an
object-recognition CNN as the strength of an operation is
gradually increased.

To confirm this hypothesis, we applied the four image
processing operations to images from our two datasets and
classified the resulting images using the VGG-16, VGG-19,
ResNet-18, and ResNet-50 networks. The parameter values
were as follows:

• JPEG compression with QF ∈ {100, 95, 90, 85, 80, 75,
70, 65, 60, 55, 50, 45, 40, 35, 30, 25}.
• Gaussian blurring with kernel size ∈ {2, 3, 4, 5}.
• Clockwise image rotation with angle ∈ {1◦, 2◦, 3◦, 4◦,

5◦, 6◦, 7◦, 8◦} and without reversing back. Nearest-
neighbor interpolation was used.
• Image scaling with scale ∈ {0.75, 0.8, 0.85, 0.9, 0.95,

1.05, 1.1, 1.15, 1.2, 1.25} and without reversing back.
Nearest-neighbor interpolation was used.

The image operations were done using Pillow version
6.1.0. Some of the results for ResNet-50 are shown in
Table 3. Similar effects were also observed for VGG-16,
VGG-19, and ResNet-18. The combined result of all net-
works is visualized in Fig. 4. JPEG compression with a QF
of 100 changed the top-5 labels for both the normal and ad-
versarial images, and the effect on adversarial images was
clearer. Reducing image quality by increasing the compres-
sion ratio greatly reduced the number of misclassified ad-
versarial images and slightly increased that of misclassified
normal images. A large increase in the ratio increased the
misclassification rate for normal images. The results for
scaling and rotation were similar to those for compression
while those for Gaussian blurring differed slightly. JPEG
compression is thus the best candidate to eliminate adver-
sarial noise while scaling is the best for preserving the cor-
rectness of normal images. One result in particular should
be noted: the number of misclassified normal images after
applying a 3 × 3 Gaussian blur kernel was higher than after
applying the other operations, which is not good for our ob-
jectives, i.e., detection and correction of adversarial images.
In summary, these results support our hypothesis that the
classification labels of the adversarial images change when
the values of the parameters change while the classification
labels of normal images remain mostly unchanged. The next
two sections describe the methods we devised for detecting
and correcting adversarial examples by exploiting variations
in the outputs of a DNN.

†We used nearest-neighbor interpolation in our experiments.



70
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.1 JANUARY 2022

Table 3 Number of top-5 misclassified images for ResNet-50 network from both normal and adver-
sarial datasets before and after applying image processing operations.

Attack Setting/Datasets Original
JPEG Compression Scaling Gaussian Blurring Rotation

100 80 60 40 20 0.75 0.85 0.95 1.05 1.15 1.25 3 × 3 2◦ 5◦
Normal images 0 1 18 33 46 92 43 23 18 13 26 29 259 32 57
Targeted attack:
L-BFGS [1] 229 221 27 31 41 67 45 27 26 25 38 36 43 40 58
BIM [2] 431 423 47 49 59 88 51 38 40 42 57 50 65 60 79
PGD [2] 348 339 28 40 47 82 44 29 28 27 42 34 58 48 69
L1-iter [30] 513 507 51 51 56 81 55 48 51 55 67 59 73 79 84
L2-iter [30] 583 575 44 46 55 88 56 42 46 46 64 52 67 74 89
Non-targeted attack:
Gradient [30] 517 515 112 89 93 114 94 77 91 107 124 115 108 126 155
FGSM [31] 379 373 128 129 134 139 100 71 92 120 155 127 95 138 158
Deep Fool [32] 604 594 32 21 27 55 33 24 34 37 34 30 59 59 50
Newton [33] 425 411 60 38 36 61 34 27 41 49 47 38 82 76 68
ADef [34] 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
JSMA [35] 71 72 29 18 29 38 35 23 23 20 25 20 33 35 44
Carlini-Wagner [36] 299 289 28 24 31 60 29 20 25 18 33 27 38 43 49

Fig. 4 Percentages of incorrectly classified normal and adversarial images after applying four image
processing operations. Note that before applying these operations, the accuracy on normal images
was 100% and on adversarial images was 0%. (Due to our dataset design, unqualified images were
eliminated.)

4. Detecting Adversarial Images

As demonstrated in the previous section, the four image pro-
cessing operations had different effects on normal and ad-
versarial images. Moreover, changing the parameter val-
ues changed the DNN outputs. We utilize these effects
and two statistical-based features, a counting feature (de-
scribed in Sect. 4.1) and a differences feature (described in
Sect. 4.2), to detect adversarial images. With each of these
two features, we use four traditional machine learning clas-
sifiers (traditional classifiers, described in Sect. 4.3), and
a CNN-based classifier (stats-CNN classifier, described in
Sect. 4.4). For comparison, we used a feature squeezing
method [17] as a baseline since it and our detection method
are conceptually similar. To make our results more convinc-
ing, we also used as baselines two CNN-based classifiers

that take raw images as input (raw-image CNN classifiers)
(described in Sect. 4.4).

As statistical-based features of our detection method,
we define three variables:

• L = (a, b, c, d, e): top-5 label for image I (normal or
adversarial) predicted using a CNN before applying
image processing operation i (e.g., JPEG compression
with a QF of 80 or 5◦ clockwise rotation).
• Li = (ai, bi, ci, di, ei): top-5 label for an image after

applying image processing operation i.
• n: total number of image processing operations (38 in

our experiments).

4.1 Counting Feature

We define C(a) as the number of occurrences of label a ∈
L = (a, b, c, d, e) at the first position in an ordered top-5



NGUYEN et al.: EFFECTS OF IMAGE PROCESSING OPERATIONS ON ADVERSARIAL NOISE AND THEIR USE IN DETECTING
71

Table 4 Accuracy (in %) of each classifier using counting feature (count) and differences feature
(diff.) on eval set.

Classifier
JPEG Compression Scaling Gaussian Blurring Rotation JPEG + Scaling All
Count Diff. Count Diff. Count Diff. Count Diff. Count Diff. Count Diff.

SVM (SVC) [38] 90.98 91.92 92.56 92.32 87.35 87.35 89.90 89.39 92.86 94.04 93.39 94.20
Random forest [39] 90.57 89.82 91.08 91.27 86.87 86.04 88.24 88.59 92.16 91.94 92.35 92.35
LDA [40] 89.98 90.36 91.97 91.62 85.77 87.35 89.15 89.29 92.86 92.67 92.21 92.86
MLP [41] 91.25 90.41 92.32 92.35 86.95 87.38 89.66 89.02 93.56 92.19 93.37 92.29

label set {Li|i = 1, . . . , n}.
C(a) is defined as

C(a) =
n∑

i=1

δ(a, ai), (1)

with

δ(a, ai) =

⎧⎪⎪⎨⎪⎪⎩
1, if a = ai

0, if a � ai.
(2)

The same equation is used for b, c, d, and e at the sec-
ond, third, fourth, and fifth positions, respectively. There-
fore, the features of each image are {C(a),C(b),C(c),C(d),
C(e)}.

The following is a simple example of the counting
feature using three image processing operations. Given
L = (100, 105, 198, 213, 479), we have

• L1 = (100, 97, 198, 220, 221)
• L2 = (101, 80, 201, 119, 212)
• L3 = (100, 89, 213, 117, 304)

after applying the image processing operations. The result-
ing counting features are {2, 0, 1, 0, 0}.

4.2 Differences Feature

We define Δ(a, ai) as the binary differential function used to
measure the difference between two labels a and ai:

Δ(a, ai) = 1 − δ(a, ai). (3)

The differences feature derived from input image I can
be expressed as the set

{(Δ(a, ai),Δ(b, bi),Δ(c, ci),Δ(d, di),Δ(e, ei))|i = 1, . . . , n}.
The differences features obtained using this example

are {0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1}.

4.3 Feature Selection and Hyper-Parameter Tuning

Using the two statistical-based features introduced above
(counting and differences), we evaluated the performance of
detectors using one of the four traditional machine learning
classifiers: the C-support vector classification (SVC) ver-
sion of the support vector machine (SVM) classifier [38],
the random forest classifier [39] with 100 trees and a max-
imum depth of 2, the linear discriminant analysis (LDA)

classifier [40], and the multiple layer perception (MLP) clas-
sifier [41]. All of them were implemented in the scikit-
learn library version 0.21.3†. For simplicity, we call them
traditional classifiers. It is important to note that we use
the terms “detector” and “classifier” interchangeably. In
this feature selection and hyper-parameter tuning step, we
trained them on only the dataset for the combination attack
setting.

As shown in Table 4, the differences feature and the
counting one generally produced similar accuracies. Among
the individual image processing operations, the scaling one
achieved the highest accuracy for all detectors. The combi-
nation of JPEG compression and scaling and the combina-
tion of all operations resulted in higher accuracy than using
any of them individually. However, these combinations also
increased the feature size, and more classification operations
were required for the object detection CNNs (VGG-Nets
and ResNets) to produce those features. For the counting
feature, using the MLP-based detector on the features from
JPEG compression and the scaling operation resulted in the
highest accuracy (93.56%) while for the differences feature,
using the SVM-based detector on all features from all im-
age processing operations resulted in the highest accuracy
(94.20%).

4.4 CNN-Based Classifiers

In addition to the traditional machine learning algorithms
described in Sect. 4.3, we used two simple feed-forward
CNNs as classifiers, one that takes the counting feature as
input and one that takes the differences feature. The two
CNNs used all the features extracted using the four image
processing algorithms: JPEG compression, scaling, Gaus-
sian blurring, and rotation. Each CNN had five layers of
1-D convolution (each convolution layer was followed by
a batch normalization layer and a rectified linear unit), and
two fully connected layers at the end with a dropout rate of
50%. For simplicity, we call these two networks stats-CNN
classifiers.

We also used two common CNNs that take raw images
as input: ResNet-50 [28] and XceptionNet [42]. The Xcep-
tionNet one is commonly used for forgery detection [43].
We modified their last fully connected layer so that the out-
put was binary. These two CNN-based classifiers take im-
ages as input and output the probabilities that those images
are adversarial. Since there was limited training data, be-
side training them from scratch, we also fine-tuned their Im-

†https://scikit-learn.org/stable



72
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.1 JANUARY 2022

ageNet pre-trained versions. For simplicity, we call these
two networks raw-image CNN classifiers.

For both the stats- and raw-image CNN classifiers, we
used a learning rate of 5 × 10−4 for all cases. Each net-
work was trained for 150 epochs, and the checkpoint with
the highest accuracy on the dev set was selected for evalua-
tion.

4.5 Evaluation

We selected the two best traditional classifiers, the SVM
(SVC) one using all features and the MLP one using the
JPEG compression and scaling features, to compare with
the stats-CNN classifiers, the raw-image CNN classifiers,
and the feature squeezing method [17]. We tested them on
two scenarios: (1) seen attacks in which all classifiers were
trained and tested on the dataset for the combination setting
and (2) unseen attacks in which all classifiers were trained
on the dataset for the targeted attack setting and were tested
on the dataset for the non-targeted attack setting and vice
versa. The dataset details are listed in Table 2. Since the
feature squeezing method only requires training on normal
images, we used the “Best Joint Detection (5-bit, 2x2, 11-3-
4)” setting [17] (designed for the ImageNet database) with
a threshold of 1.2128 pre-trained for all scenarios. Since
the output of the feature squeezing method is binary, EERs
could not be calculated. For the other methods, the accura-
cies were calculated using a threshold of 0.5. The experi-
ment results are shown in Table 5.

Overall, the raw-image CNN classifiers outperformed
the statistical-based ones (including the traditional classi-
fiers and the stats-CNN classifier) and the feature squeez-
ing method in both the seen and unseen scenarios. Be-
tween the two raw-image CNN classifiers, surprisingly, the
XceptionNet one trained from scratch achieved better per-
formance and outperformed its fine-tuned version with ac-
curacies greater than 99% and EERs less than 1%. On the
other hand, the ResNet classifier with fine-tuning outper-
formed its trained version. The performances of the tradi-
tional classifiers and the stats-CNN classifiers were similar,
indicating that their scores are the upper limits for the statis-
tical features. Although having limited results and limited
generalizability compared with the raw-image CNN classi-
fiers, our statistical-based classifiers nevertheless have rea-
sonable discriminative ability and overall outperformed the
feature squeezing method. These results support our hy-
pothesis that using various parameter values is better than
using fixed ones. In addition, it is important to note that
CNN-based classifiers, especially raw-image ones, are po-
tentially vulnerable to second-level adversarial attacks. That
is, attackers can disguise their adversarial images by adding
secondary adversarial noise to alter the output of the adver-
sarial image detector from adversarial to normal. In this
case, our statistical-based detection method is more robust.

Another interesting result is that the detectors trained
on the dataset for the non-targeted attack setting had better
generalizability than those trained on the dataset for the tar-

Table 5 Accuracy and EER (in %) of each detector on eval sets. First
two detectors were best statistical-based classifiers selected on basis of re-
sults presented in previous section. Next four were CNN-based detectors
used as baselines.

Attack Setting/Detector Accuracy EER
Seen attacks (Combination):
MLP - counting feature 93.56 10.00
SVM - differences feature 94.20 9.67
CNN - counting feature 93.29 10.21
CNN - differences feature 94.09 9.50
Feature squeezing [17] 83.97 -
ResNet-50 (training) 83.89 49.09
ResNet-50 (fine-tuning) 99.49 0.66
XceptionNet (training) 99.95 0.15
XceptionNet (fine-tuning) 99.60 0.49
Targeted attacks→ Non-targeted attacks:
MLP - counting feature 68.62 18.81
SVM - differences feature 71.03 15.16
CNN - counting feature 60.39 21.31
CNN - differences feature 66.79 17.73
Feature squeezing [17] 72.71 -
ResNet-50 (training) 71.13 50.50
ResNet-50 (fine-tuning) 95.72 3.17
XceptionNet (training) 99.42 0.60
XceptionNet (fine-tuning) 83.69 12.95
Non-targeted attacks→ Targeted attacks:
MLP - counting feature 93.63 3.77
SVM - differences feature 93.99 3.76
CNN - counting feature 93.32 3.04
CNN - differences feature 93.32 4.02
Feature squeezing [17] 84.42 -
ResNet-50 (training) 99.42 0.61
ResNet-50 (fine-tuning) 99.02 0.97
XceptionNet (training) 100.00 0.00
XceptionNet (fine-tuning) 99.78 0.52

geted attack one. This can be interpreted to mean that the ad-
versarial noise created by non-targeted attacks is more gen-
eral than that created by targeted attacks. Therefore, when
designing an adversarial machine learning dataset, it is cru-
cial to include a sufficient amount of data for non-targeted
attacks.

5. Correcting Adversarial Images

Given that the image processing operations substantially re-
duced the number of misclassified adversarial images while
only slightly affecting the normal images, we utilized them
to correct adversarial images. We developed a correction
method with two levels of correction:

• Label correction: Restore the original labels of adver-
sarial images. At this level, only the output labels are
of interest; for example, only the true label of a manip-
ulated stop sign is of interest to a self-driving car.
• Image correction: Mitigate adversarial noise in adver-

sarial images to restore their original labels and make
them usable for other tasks. At this level, the quality
and usability of the corrected images as well as the la-
bels are of interest. Image correction is therefore more
complicated than label correction.

Our correction method can be used independently or in



NGUYEN et al.: EFFECTS OF IMAGE PROCESSING OPERATIONS ON ADVERSARIAL NOISE AND THEIR USE IN DETECTING
73

combination with an adversarial image detector. Since it is
not always clear whether an image is normal or adversarial,
a correction method should work well on both normal and
adversarial images. Details of the label correction and image
correction algorithms are described in the next two sections.

5.1 Label Correction Algorithm

We define SL = {Li|i = 1, . . . , n} as the set of top-5 labels ac-
quired by applying n image processing operations to image
I. The frequencies of every label in SL are calculated, and
the five labels with the highest frequencies are identified as
the corrected top-5 ones.

5.2 Image Correction Algorithm

In the context of image classification, an image correction
method must satisfy the following conditions:

• Adversarial noise must be mitigated so that the cor-
rected images can be correctly classified by the DNN.
• The usability of the adversarial images must be recov-

ered and that of the normal images must be preserved.
• The quality of both the normal and adversarial images

must be preserved as much as possible.

Since JPEG compression has good performance on
both normal and adversarial images, we use it as the core
image processing operation to eliminate adversarial noise.
There are two ways of using JPEG compression for image
correction:

1. Baseline: Use a fixed QF for JPEG compression. The
downside with this approach is that there are trade-offs
between performance on normal and adversarial im-
ages and between performance and the quality of the
corrected images.

2. Proposed: Use a heuristic algorithm to determine the
optimal QF for JPEG compression. With this approach,
the corrected labels calculated with the label correction
algorithm are used to calculate the best QFs for pro-
ducing those labels. This is discussed in detail below.

We define flabel as the corrector function described in
Sect. 5.1 and I as the image to be corrected. The proposed
heuristic algorithm has three steps:

• Step 1: Calculate the corrected top-5 labels: Lcorr =

flabel(I).
• Step 2: For each label l in Lcorr, select the highest QF

from the sorted list of QFs {100, 95, 90, . . . , 40} that
produces l and put it into S QF .
• Step 3: Select a QF from S QF and use it to compress I

to obtain the corrected image.

The strategies that can be used for selecting a QF from
S QF in step 3 are visualized in Fig. 5. The candidates are
max, median, 2ndmin, and min of S QF . The higher the QF,
the better the quality of the corrected image. If the input im-
age is natural, max(S QF) is obviously the best choice. How-
ever, if the input image is adversarial, min(S QF) seem to

Fig. 5 Visualization of corrected top-5 labels calculated in step 1 of
heuristic algorithm and their corresponding QFs calculated in step 2. The
max, median, 2ndmin, and min of S QF labels on the axis represent the can-
didate QFs to be selected in step 3.

Fig. 6 Percentage of correct classification results after applying label
correction method to both normal and adversarial images.

be the safest choice. The performances achieved with these
choices are presented and discussed in the next section.

5.3 Evaluation

Since there is no learning required for the correction algo-
rithms, we tested them on the entire normal dataset and ad-
versarial image dataset. We tested label correction first and
then image correction.

5.3.1 Label Correction

We used JPEG compression, scaling, and their combination
for label correction. As shown in Fig. 6, JPEG compres-
sion had better performance than scaling for the adversar-
ial images, and their combination produced the best overall
performance. Only 1.88% of the normal images was mis-
classified after “correction” while 89.91% of the adversar-
ial images were corrected. If this correction was performed
after detection of adversarial images, about 98.12% of the
false positive inputs (normal images misclassified as adver-
sarial ones) would also be corrected, therefore boosting the
overall performance.

5.3.2 Image Correction

We tested the fixed QF baseline approach with several QF
values from 40 to 90 and the proposed heuristic algorithm
with S QF values of max, median, 2ndmin, and min. In ad-
dition, we built a convolutional denoising autoencoder [44]
to check whether it is useful for adversarial noise removal.
To avoid data overlapping, we trained it on the test set of the



74
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.1 JANUARY 2022

Table 6 Percentage of correct classification of corrected images (both
normal and adversarial).

Correction Method Normal Images Adversarial Images
QF 90 98.40 77.38
QF 80 97.17 86.24
QF 70 95.93 88.07
QF 60 94.97 88.46
QF 50 93.97 88.02
QF 40 93.12 87.28
Heuristic - max 99.65 25.81
Heuristic - median 99.55 54.03
Heuristic - 2ndmin 98.98 72.96
Heuristic - min 97.52 88.98
Denoising autoencoder 57.77 49.81

ImageNet database using Gaussian noise with σ = 0.1.
As shown in Table 6, the denoising autoencoder had

poor performances on both normal and adversarial images.
One explanation is that denoised images have different dis-
tributions than normal images; therefore, the DNNs could
not correctly classify most of them. For the fixed QF base-
line approach, there was a trade-off between performance
on normal and adversarial images. The QFs between 60 and
80 are safe choices for achieving balanced performance be-
tween the two types of images. With the heuristic algorithm,
using max(S QF) preserved most of the normal images, but
it was the worst at mitigating adversarial noise. Although
it sits at the mid-point of the S QF values, using median re-
sulted in poor correction of the adversarial images. Using
the two remaining values resulted in substantial improve-
ment in mitigating adversarial noise. Using min achieved
the best balance in performance between normal and ad-
versarial images: 97.52% correct classification for normal
images and 88.98% for adversarial images.

Examples of normal images, their corresponding ad-
versarial images, and their corrected versions are shown in
Fig. 7. There were no perceived substantial differences be-
tween the different versions, meaning that adversarial noise
is difficult to notice and that the correction algorithm did
not substantially degrade the quality of both the normal and
adversarial images. The average PSNR and SSIM between
the corrected adversarial images and their original versions
in the entire datasets are shown in Fig. 8. The heuristic -
min approach had higher PSNR and SSIM than the fixed QF
approach. The explanation for this is illustrated in Fig. 9,
which is a histogram of the QFs selected using the heuristic
- min approach for both normal and adversarial images. For
the normal images, in most cases, a QF of 100 was selected,
so their quality was almost completely preserved. For the
adversarial images, more than two-thirds of the selected QFs
were from 75 to 95, so their quality was also good. Since
there are some extreme cases in the adversarial dataset, the
correction algorithm could not fully recover their quality, re-
sulting in low values of PSNR and SSIM.

5.4 Considerations

Our experiments demonstrated the effectiveness of using

Fig. 7 From top to bottom: Examples of normal images, their corrected
versions, their adversarial versions, and the corrected versions of the adver-
sarial images (corrected using heuristic - min algorithm).

Fig. 8 Average PSNR (blue) and SSIM (red) between corrected adver-
sarial images and corresponding original images. Error bars indicate min
and max values.

image processing operations for both label correction and
image correction. For label correction, using multiple oper-
ations with multiple parameter values helped maximize the
chance of restoring the original labels. It also provides label
information for image correction. The proposed heuristic -
min algorithm effectively determines which QF is the best
for image correction so that image quality is preserved as
much as possible, which is better than using JPEG compres-
sion with a fixed QF. The correction algorithms can be used
independently, for instance, in data cleansing, or in combi-
nation with an adversarial image detector to provide multi-
ple outputs: (1) whether the input image is adversarial and
(2) if yes, what its true label is.



NGUYEN et al.: EFFECTS OF IMAGE PROCESSING OPERATIONS ON ADVERSARIAL NOISE AND THEIR USE IN DETECTING
75

Fig. 9 Histogram of JPEG QF calculated using heuristic - min algorithm on both normal and adver-
sarial images.

6. Discussion and Future Work

Our results demonstrated that image processing operations
like JPEG compression, scaling, Gaussian blurring, and ro-
tation have different effects on normal and adversarial im-
ages depending on the parameter values. Although these
operations have negligible effects on normal images, they
are effective in mitigating adversarial noise, which is useful
for both detection and correction of adversarial images. Dif-
ferent from adversarial training, the proposed detection and
correction methods can be performed as a pre-filter to pro-
cess the data before being processed by a DNN. They are
thus applicable to all pre-trained DNNs without the need
for re-training. One disadvantage of using multiple image
processing operations with multiple parameter values is the
computation cost when several processed images need to be
classified.

Our results also demonstrated that using statistical fea-
tures based on image processing operations and using fea-
ture squeezing are not as effective as using features auto-
matically extracted by a CNN from raw images, especially
the XceptionNet one, which can be trained with a small
amount of data. However, the traditional classifiers using
handcrafted features are more robust than the CNN-based
ones when the attackers add adversarial noise to fool the ad-
versarial image detector (due to the fact that most of the cur-
rently implemented image processing operations are non-
differentiable). We also found that the adversarial noise cre-
ated by non-targeted attacks is more general than that cre-
ated by targeted attacks; therefore, it is important to include
non-targeted adversarial images in the training data.

Future work includes testing using more adversarial at-
tacks with multiple noise strengths on larger and more di-
verse databases. It also includes evaluating additional im-
age processing operations and reducing the computational
expense of detection and correction. Another important task
is dealing with robust adversarial examples, which is a chal-
lenging problem.

Acknowledgments

This research was supported by JSPS KAKENHI Grants
JP16H06302, JP17H04687, JP18H04120, JP18H04112,
JP18KT0051, and JP19K22846 and by JST CREST Grants
JPMJCR18A6 and JPMJCR20D3, Japan.

References

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I.
Goodfellow, and R. Fergus, “Intriguing properties of neural net-
works,” arXiv preprint arXiv:1312.6199, 2013.

[2] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” ILCR-W, 2017.

[3] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, F. Tramer,
A. Prakash, T. Kohno, and D. Song, “Physical adversarial examples
for object detectors,” WOOT, 2018.

[4] C. Sitawarin, A.N. Bhagoji, A. Mosenia, M. Chiang, and P. Mittal,
“Darts: Deceiving autonomous cars with toxic signs,” arXiv preprint
arXiv:1802.06430, 2018.

[5] A. Boloor, X. He, C. Gill, Y. Vorobeychik, and X. Zhang, “Simple
physical adversarial examples against end-to-end autonomous driv-
ing models,” arXiv preprint arXiv:1903.05157, 2019.

[6] L. Schönherr, K. Kohls, S. Zeiler, T. Holz, and D. Kolossa, “Ad-
versarial attacks against automatic speech recognition systems via
psychoacoustic hiding,” NDSS, 2019.

[7] H. Xu, Y. Ma, H. Liu, D. Deb, H. Liu, J. Tang, and A. Jain, “Ad-
versarial attacks and defenses in images, graphs and text: A review,”
arXiv preprint arXiv:1909.08072, 2019.

[8] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Uni-
versal adversarial perturbations,” CVPR, pp.1765–1773, 2017.

[9] C. Xie, Z. Zhang, Y. Zhou, S. Bai, J. Wang, Z. Ren, and A.L. Yuille,
“Improving transferability of adversarial examples with input diver-
sity,” CVPR, pp.2730–2739, 2019.

[10] H. Zhang, T. Zheng, J. Gao, C. Miao, L. Su, Y. Li, and K.
Ren, “Data poisoning attack against knowledge graph embedding,”
IJCAI, 2019.

[11] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. Mc-
Daniel, “On the (statistical) detection of adversarial examples,”
arXiv preprint arXiv:1702.06280, 2017.

[12] X. Li and F. Li, “Adversarial examples detection in deep networks
with convolutional filter statistics,” CVPR, pp.5764–5772, 2017.

[13] Z. Gong, W. Wang, and W.S. Ku, “Adversarial and clean data are not
twins,” arXiv preprint arXiv:1704.04960, 2017.

http://dx.doi.org/10.14722/ndss.2019.23288
http://dx.doi.org/10.1109/cvpr.2017.17
http://dx.doi.org/10.1109/cvpr.2019.00284
http://dx.doi.org/10.24963/ijcai.2019/674
http://dx.doi.org/10.1109/iccv.2017.615


76
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.1 JANUARY 2022

[14] J.H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detect-
ing adversarial perturbations,” ICLR, 2017.

[15] K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework for
detecting out-of-distribution samples and adversarial attacks,” NIPS,
pp.7167–7177, 2018.

[16] X. Ma, B. Li, Y. Wang, S.M. Erfani, S. Wijewickrema, G.
Schoenebeck, D. Song, M.E. Houle, and J. Bailey, “Characterizing
adversarial subspaces using local intrinsic dimensionality,” ICLR,
2018.

[17] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adver-
sarial examples in deep neural networks,” NDSS, 2018.

[18] B. Liang, H. Li, M. Su, X. Li, W. Shi, and X. Wang, “Detect-
ing adversarial image examples in deep neural networks with adap-
tive noise reduction,” IEEE Transactions on Dependable and Secure
Computing, vol.18, no.1, pp.72–85, 2018.

[19] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distil-
lation as a defense to adversarial perturbations against deep neural
networks,” SP, pp.582–597, IEEE, 2016.

[20] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give
a false sense of security: Circumventing defenses to adversarial ex-
amples,” ICLR, pp.274–283, 2018.

[21] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “To-
wards deep learning models resistant to adversarial attacks,” ICLR,
2018.

[22] T. Pang, C. Du, Y. Dong, and J. Zhu, “Towards robust detection of
adversarial examples,” NeurIPS, pp.4579–4589, 2018.

[23] C. Guo, M. Rana, M. Cisse, and L. Van Der Maaten, “Countering
adversarial images using input transformations,” ICLR, 2018.

[24] A. Prakash, N. Moran, S. Garber, A. DiLillo, and J. Storer, “Pro-
tecting jpeg images against adversarial attacks,” Data Compression
Conference, pp.137–146, IEEE, 2018.

[25] O. Taran, S. Rezaeifar, T. Holotyak, and S. Voloshynovskiy, “Ma-
chine learning through cryptographic glasses: combating adversar-
ial attacks by key-based diversified aggregation,” EURASIP journal
on information security, vol.2020, pp.1–18, 2020.

[26] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
IJCV, vol.115, no.3, pp.211–252, 2015.

[27] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” ICLR, 2015.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” CVPR, pp.770–778, 2016.

[29] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z.
Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentia-
tion in pytorch,” NIPS-W, 2017.

[30] J. Rauber, W. Brendel, and M. Bethge, “Foolbox: A python toolbox
to benchmark the robustness of machine learning models,” arXiv
preprint arXiv:1707.04131, 2017.

[31] I.J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harness-
ing adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[32] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a
simple and accurate method to fool deep neural networks,” CVPR,
pp.2574–2582, 2016.

[33] U. Jang, X. Wu, and S. Jha, “Objective metrics and gradient descent
algorithms for adversarial examples in machine learning,” ACSAC,
pp.262–277, ACM, 2017.

[34] R. Alaifari, G.S. Alberti, and T. Gauksson, “ADef: an iterative algo-
rithm to construct adversarial deformations,” ILCR, 2019.

[35] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z.B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
EuroS&P, pp.372–387, IEEE, 2016.

[36] N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” SP, pp.39–57, IEEE, 2017.

[37] A. Hore and D. Ziou, “Image quality metrics: Psnr vs. ssim,” ICPR,
pp.2366–2369, IEEE, 2010.

[38] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learn-

ing, vol.20, no.3, pp.273–297, 1995.
[39] T.K. Ho, “Random decision forests,” ICDAR, pp.278–282, IEEE,

1995.
[40] R.O. Duda, P.E. Hart, D.G. Stork, et al., Pattern classification, Wiley,

New York, 1973.
[41] D.W. Ruck, S.K. Rogers, M. Kabrisky, M.E. Oxley, and B.W. Suter,

“The multilayer perceptron as an approximation to a bayes opti-
mal discriminant function,” IEEE Transactions on Neural Networks,
vol.1, no.4, pp.296–298, 1990.

[42] F. Chollet, “Xception: Deep learning with depthwise separable con-
volutions,” CVPR, pp.1251–1258, 2017.

[43] A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M.
Niessner, “FaceForensics++: Learning to detect manipulated facial
images,” ICCV, pp.1–11, 2019.

[44] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, MIT
press, Cambridge, Massachusetts, 2016.

Huy H. Nguyen received a B.S. degree
in Information Technology from VNUHCM -
University of Science, Ho Chi Minh City, Viet-
nam, in 2013. He is currently pursuing a Ph.D.
degree in computer science at the Graduate
University for Advanced Studies (SOKENDAI),
Kanagawa, Japan. His current research interests
include security and privacy in biometrics and
machine learning.

Minoru Kuribayashi received B.E., M.E.,
and D.E. degrees from Kobe University, Japan,
in 1999, 2001, and 2004. He was a research
associate from 2002 to 2007 and an assistant
professor from 2007 to 2015 at Kobe Univer-
sity. Since 2015, he has been an associate pro-
fessor in the Graduate School of Natural Sci-
ence and Technology, Okayama University. His
research interests include multimedia security,
digital watermarking, cryptography, and coding
theory. He serves as an associate editor for JISA

and IEICE and as a vice chair of the APSIPA Multimedia Security and
Forensics Technical Committee. He is a member of the Information Foren-
sics and Security Technical Committee of the IEEE Signal Processing So-
ciety. He received the Young Professionals Award from the IEEE Kansai
Section in 2014 and the Best Paper Award at IWDW 2015 and 2019. He is
a senior member of the IEEE and IEICE.

http://dx.doi.org/10.14722/ndss.2018.23198
http://dx.doi.org/10.1109/tdsc.2018.2874243
http://dx.doi.org/10.1109/sp.2016.41
http://dx.doi.org/10.1109/dcc.2018.00022
http://dx.doi.org/10.1186/s13635-020-00106-x
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/cvpr.2016.90
http://dx.doi.org/10.1109/cvpr.2016.282
http://dx.doi.org/10.1145/3134600.3134635
http://dx.doi.org/10.1109/eurosp.2016.36
http://dx.doi.org/10.1109/sp.2017.49
http://dx.doi.org/10.1109/icpr.2010.579
http://dx.doi.org/10.1007/bf00994018
http://dx.doi.org/10.1007/bf00994018
http://dx.doi.org/10.1109/icdar.1995.598994
http://dx.doi.org/10.1109/72.80266
http://dx.doi.org/10.1109/cvpr.2017.195
http://dx.doi.org/10.1109/iccv.2019.00009


NGUYEN et al.: EFFECTS OF IMAGE PROCESSING OPERATIONS ON ADVERSARIAL NOISE AND THEIR USE IN DETECTING
77

Junichi Yamagishi received a Ph.D. from
the Tokyo Institute of Technology in 2006. He
was a senior research fellow in the Centre for
Speech Technology Research (CSTR) at the
University of Edinburgh, U.K., from 2006 to
2013. He is currently a professor at the Na-
tional Institute of Informatics in Japan. He was
awarded the Itakura Prize by the Acoustic So-
ciety of Japan, the Kiyasu Special Industrial
Achievement Award by the Information Pro-
cessing Society of Japan, and the Young Scien-

tists’ Prize by the Ministry of Education, Science and Technology, the JSPS
prize, and the DOCOMO prize in 2010, 2013, 2014, 2016, and 2018, re-
spectively. He served as a co-organizer for the bi-annual ASVspoof special
sessions at INTERSPEECH 2013-9, a co-organizer for the bi-annual Voice
conversion challenge at INTERSPEECH 2016 and Odyssey 2018, an orga-
nizing committee member for the 10th ISCA Speech Synthesis Workshop
2019, and a technical program committee member for IEEE ASRU 2019.
He also served as a member of the IEEE Speech and Language Technical
Committee, as an associate editor of the IEEE/ACM TASLP, and as a lead
guest editor for the IEEE JSTSP SI on Spoofing and Countermeasures for
Automatic Speaker Verification. He is currently a PI of the JST-CREST
and ANR supported VoicePersona project. He also serves as the chair of
the ISCA SynSIG and as a senior area editor of the IEEE/ACM TASLP.

Isao Echizen received B.S., M.S., and D.E.
degrees from the Tokyo Institute of Technology,
Japan, in 1995, 1997, and 2003, respectively. He
joined Hitachi, Ltd. in 1997 and until 2007 was a
research engineer in the company’s systems de-
velopment laboratory. He is currently a director
and a professor of the Information and Society
Research Division, the National Institute of In-
formatics (NII), and a professor in the Depart-
ment of Information and Communication En-
gineering, Graduate School of Information Sci-

ence and Technology, The University of Tokyo, Japan. He was a visiting
professor at Tsuda University, Japan, a visiting professor at the University
of Freiburg, Germany, and a visiting professor at the University of Halle-
Wittenberg, Germany. He is currently engaged in research on multimedia
security and multimedia forensics. He currently serves as a research di-
rector of the CREST FakeMedia project, Japan Science and Technology
Agency (JST). He received the Best Paper Award from the IPSJ in 2005
and 2014, the Fujio Frontier Award and the Image Electronics Technology
Award in 2010, the One of the Best Papers Award from the Information Se-
curity and Privacy Conference in 2011, the IPSJ Nagao Special Researcher
Award in 2011, the DOCOMO Mobile Science Award in 2014, the Infor-
mation Security Cultural Award in 2016, and the IEEE Workshop on In-
formation Forensics and Security Best Paper Award in 2017. He was a
member of the Information Forensics and Security Technical Committee
and the IEEE Signal Processing Society. He is the Japanese representative
on IFIP TC11 (Security and Privacy Protection in Information Processing
Systems), a member-at-large of the APSIPA Board of Governors, and an
editorial board member of the IEEE Transactions on Dependable and Se-
cure Computing and the EURASIP Journal on Image and Video Processing.


