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SUMMARY The concepts of programmable switches and software-
defined networking (SDN) give developers flexible and deep control over
the behavior of switches. We expect these concepts to dramatically im-
prove the functionality of switches. In this paper, we focus on the concept
of Deeply Programmable Networks (DPN), where data planes are pro-
grammable, and application switches based on DPN. We then propose a
method to improve the performance of a key-value store (KVS) through an
application switch. First, we explain the DPN and application switches.
The DPN is a network that makes not only control planes but also data
planes programmable. An application switch is a switch that implements
some functions of network applications, such as database management sys-
tem (DBMS). Second, we propose a method to improve the performance
of Cassandra, one of the most popular key-value based DBMS, by imple-
menting a caching function in a switch in a dedicated network such as a
data center. The proposed method is expected to be effective even though
it is a simple and traditional way because it is in the data path and the
center of the network application. Third, we implement a switch with the
caching function, which monitors the accessed data described in packets
(Ethernet frames) and dynamically replaces the cached data in the switch,
and then show that the proposed caching switch can significantly improve
the KVS transaction performance with this implementation. In the case of
our evaluation, our method improved the KVS transaction throughput by up
to 47%.
key words: application switch, programmable switch, DPN, TCP migra-
tion, KVS, cassandra

1. Introduction

In the computer network field, a network switch has been
silent and transparent and not highly functional. Some func-
tions, for example, ECN [1], RED [2], or CoDel [3], have
been proposed for improving the functionality of network
elements, but these do not allow network elements to work
as complexly and functionally as a computer that has a large
scale operating system. Recently emerging technologies of
programmable control planes and data planes [4] are provid-
ing a novel network style, such as programming a network
switch in order to improve the performance of an application
running in a data center [5].

In this paper, we propose a concept of an application
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switch and a method for improving the performance of a
key-value store (KVS) to address the challenge of improving
application performance through a programmable network
element. This paper is based on our previous conference
papers [5]–[9]. The concept was proposed in a poster pa-
per [6]. This concept focuses on an environment where the
server administrator and the switch administrator are the
same, and the administrator can run programs on the switch.
In this concept, the administrator implements application
functions, such as caching of KVS, on the switch to im-
prove application performance. In the paper, we pointed it
out that an application switch causes a compatibility prob-
lem with TCP. The papers [7]–[9] discussed the potential of
the application switch with an experimental implementation
of a cache-like function of KVS. In addition, we proposed
a method to improve the performance of KVS constructed
with Cassandra [10], [11] by implementing a caching func-
tion that monitors accesses and dynamically replaces the
data in an application switch. We also showed a way to solve
TCP’s problems by adjusting TCP sequence numbers.

The remainder of this paper is organized as follows.
Section 2 refers to related work. Section 3 explains our pro-
posed concept of an application switch. Section 4 proposes
a dynamic caching method using an application switch. Sec-
tion 5 evaluates the proposed method. Section 6 presents a
discussion, and Sect. 7 concludes this work.

2. Related Work

2.1 Software-Defined Network and Programmable Switch

SDN: McKeown et al. proposed OpenFlow [12] for SDN
(Software-defined networking). This is one of the break-
throughs for flex programmable switches. Network elements
in a network can be controlled in a logically centralized man-
ner with OpenFlow. Only control planes can be flexibly
controlled by software with OpenFlow, but this led to the
concept of the programmable switch and was an innovative
work.

P4: Bosshart et al. proposed the programming language
P4 [4] for programming data forwarding planes. P4 can work
with control protocols of SDN, e.g. OpenFlow. P4 enables
the construction of new functions in a switch by not hardware
implementation but programming. This provides a variety
of benefits such as flexibility, ease to implement and test,
cost reduction of implementation, and open architecture of

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers



660
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.5 MAY 2024

Fig. 1 Comparison of SDN, DPN and Traditional network

Fig. 2 SDN and DPN

network elements. Although P4 provides programming to
monitor the data described in the header of each packet, it
does not provide inspection of the packet payload, which is
called Deep Packet Inspection (DPI). Exactly writing, a user
can monitor the payload with P4 by defining their custom
header in its payload. However, the user cannot define a
variable-length header that requires lexical analysis.

DPN: Deeply Programmable Network (DPN) is a net-
work and technology that enables data plane programming.
FLARE is a network architecture for this network. A network
switch is constructed using the Click Modular Router [13],
which is a programming language for implementing a net-
work element, on DPN. The language processor implemen-
tation of Click is open source software, and a developer can
modify existing elements and create a new element of Click
in the C++ language. A program can access and modify all
bytes in a packet, including the payload, using this language.
It can also support lexical analysis by implementing a Click
element in the C++ language.

Figure 1 compares SDN and non-SDN networks. In the
case of non-SDN, which is called the traditional network in
the figure, each network element individually has a control
plane, and each element must be controlled separately. In
many cases, managing elements one by one is not easy and
its cost is expected to be higher than the cost of managing all
elements centrally. In the case of SDN including DPN, the
control plane is logically consolidated. In this case, it is ex-

pected that many elements can be easily managed. Figure 2
illustrates SDN and DPN. In the case of SDN, an adminis-
trator can control not only the application and controller, but
also the flow table of each data plane via software. In the
case of DPN, an administrator can fully control and utilize
even deeper devices such as its packet queue, the payloads of
these packets, and files on the storage devices in the switch.
These are easily controlled in a program written in C++.

2.2 TCP Migration

TCP migration is the process of changing one terminal,
called a peer, of an established TCP connection to another ter-
minal [14]. TCP identifies each connection with four num-
bers, which are the source and destination IP addresses and
the source and destination port numbers. Therefore, these
four values must be taken over to achieve transparent TCP
migration without modifying the TCP protocol. In addition,
when the connection returns to the old terminal, we call this
return migration in this paper, the difference between old and
new sequence numbers and Ack numbers should be managed
appropriately. Return migration is described in Sect. 4.

2.3 Application Switch

In this paper, we propose an application switch in Sect. 3.
The proposal is based on previous work as follows. First, we
proposed to optimize the data forwarding plane in a switch
based on DPI by programming the forwarding function [8].
Second, we proposed a switch with application functions in-
side [5]. In that work, our implementation only supported
connectionless communication using UDP (User Datagram
Protocol). Third, we pointed out that TCP connection mi-
gration and return migration are essential for accelerating
TCP-based network applications [6]. Fourth, we focused on
accelerating the performance of the database management
system (DBMS) by implementing a caching function in an
application switch [7]. In that work, we created a cache-like
prototype system. The system cached the data that would be
accessed again in the future, but it did not monitor the ac-
cess and statically stored the fixed data without replacing the
data in the cache. The application switch, not the server, re-
sponded to a query if the accessed data were in the cache. In
addition, the prototype implementation did not support TCP
sequence number management. We evaluated DBMS per-
formance using the prototype implementation and showed
its potential without considering the caching overhead and
problems caused by TCP sequence number management,
such as duplicate acks.

2.4 Cassandra Performance Improvement

A Cassandra system may consist of multiple server nodes. In
this case, a client can send a query to any node in the system.
When a client sends a query to a node, the node acts as a co-
ordinator for that query. It acts as a proxy between the client
and the nodes that have the requested data. It determines
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which nodes to forward the query to. Figure 21 illustrates
this behavior. In the case of (a), the requested data is stored in
Server2 and the client connects to Server1. Server1 acts as a
coordinator and forwards the query to Server2. Namely, the
query is transmitted as in A, B, C, and D. In the case of (b),
the data is stored in Server1 and Client connects to Server1.
In this case, Server1 replies the query without forwarding.
The request is transmitted as in A and B. Obviously, in the
case of (b), the client receives the response earlier than in
(a).

Vakili et al. proposed a coordinator cache to improve
the performance of Cassandra [15]. They proposed that the
coordinator node has a caching function. If the data is stored
in Server2 and the Client connects to Server1 multiple times,
the coordinator cache in Server1 stores the data. After the
coordinator cache stores the data as (c) in Fig. 21, Server1
responds to the request without forwarding the request. They
then evaluated their method and showed that it could improve
the performance of Cassandra.

However, they did not explain their method and imple-
mentation in detail while explaining the concept of their pro-
posal. Therefore, their proposed method cannot be exactly
implemented and replicated. Unlike our proposed method,
their method caches the data not in the switch but in a server,
their method has some disadvantages over our method. The
query must be transmitted to a server node even in the case of
a cache hit, while it is only forwarded to the switch with our
method. In addition, the Cassandra process, which is a large
process with high overhead, must be invoked even in the case
of a cache hit. Furthermore, the method is not transparent
and requires a user to modify the Cassandra implementation.
The implementation cost of their method can be large with
frequent updates of Cassandra implementation, while our
method only needs to be updated when the specification of
the query format is updated.

Gari et al. reported a detailed evaluation of the Cas-
sandra performance on AWS (Amazon Web Services) [16].
They evaluated the performance in several scenarios in as-
pects such as the achieved KVS transaction throughput and
CPU utilization. This comprehensive study is valuable and
useful for using and improving Cassandra. We have pro-
posed a method to improve Cassandra performance in an
aspect of improving disk I/O [17]. We studied the file access
frequency of Cassandra and found a large difference in ac-
cess frequency per byte. Our method advises the operating
system to keep some frequently accessed files in the page
cache instead of managing the cached block based on LRU.
We then showed that the method could improve the through-
put of Cassandra transactions. However, the authors of these
papers did not propose a method to improve performance in
one aspect of network packet analysis.

2.5 Caching in Network Elements

In this subsection, we refer to work on caching in network
elements. Barish et al. kindly reviewed the web caching
technologies [18]. They introduced several proxy-based

caching systems. Unlike our work, these are not transpar-
ent. Thus, they require manual or automatic configuration
of the web browser. They also referred to and explained
transparent caching methods. These methods do not re-
quire web browser configuration. Transparent caches work
by intercepting HTTP requests in a network element, such
as switches and routers, and redirecting them to web cache
servers. For example, the Web Cache Communications Pro-
tocol (WCCP) [19] supports this transparent caching func-
tion based on packet analysis like our work. However, these
transparent caching functions also have room for improve-
ment. A program cannot be executed inside a network el-
ement. These methods only redirect requests to a cache
server. As a result, unlike our approach, data cannot be
cached in a switch at the center of a network. In other words,
these methods do not exploit the potential of programmable
switches. In addition, these methods are less advanced than
our method. These methods do not analyze the response
packets and do not extract data based on protocol analysis.
Therefore, they cannot cache only data, such as key-value
pairs, namely these methods process data in a unit of a file.
We think this is mainly because these methods do not have
enough programmability in a switch. This also causes the
fact that these transparent caching functions cannot handle
a write operation properly. There is another small disadvan-
tage compared to our method. They are for web caching only.
That is, many of these systems store the data based on the
relationship between URL and data. These do not work well
in many of personalized web site through cookies. We think
one of the solutions for this problem is to handle data in finer
grain size like our method. Liang et al. proposed a method
for transparent distributed web caching [20]. This method
also intercepts HTTP request in a network element and redi-
rects the request to a web caching server. In the paper, the
authors discuss in detail a load balancing method. However,
similar to the work mentioned above like WCCP, the method
also only redirects the request in a network element and a
functional program cannot be executed in an element. Nira-
sawa et al. proposed a method for improving a testbed DBMS
application by selecting the server to connect to based on the
extraction of requested data from a packet [21]. This method
slightly exploited the programmability of the switch, but did
not fully exploit it. Their method does not create a reply
packet or cache data in a switch. Therefore, data cannot be
cached in a switch at the center of the network. Thus, we
argue that a challenge and discussion on utilizing the pro-
grammability of switch such as our work is important over
these existing works.

3. Application Switch

This section proposes an application switch.

3.1 Concept and Assumption

An application switch is a switch in which functions of a
data center application, such as KVS, can be implemented
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Fig. 3 Example of usage scenarios of normal and application switches

to improve its performance by flexibly controlling and opti-
mizing the DPN [5] switch. The administrator can execute
programs that can be implemented in Click or C++. Thus, a
file in the file system in a switch can be easily read and writ-
ten by the program. Figure 3 shows an example of assumed
usage scenarios. In the case of a normal switch, a user places
the user’s application software on client and server comput-
ers. No application software is running on the switch. In
the case of an application switch, a user places application
software not only on these computers, but also on an ap-
plication switch that is like a computer. In this scenario,
the client computers, server computers, and an application
switch are owned and managed by a single group. Then, the
administrators of that group have administrative permissions
to all of those computers, switches, and networks. They can
place their application on them. The administrator lets the
application on the switch inspect the packet payload. For ex-
ample, a private cloud system in an enterprise and dedicated
machines in a rack in a data center fit this situation.

Typically, a switch is placed at the center of a data
center network, and many devices in the data center are di-
rectly connected to the switch. Therefore, we can expect
that placing some important functions there can effectively
improve application performance. However, this cannot be
achieved with a traditional network switch, which only for-
wards frames according to the destination addresses in their
frame headers. Programs run only on server and client com-
puters. In the case of a DPN switch, a user-defined program
can be placed and executed in a switch. For example, a de-
veloper of an application in a data center can implement a
caching function in a switch that is in the data path of the
application.

Based on these discussions, we propose an application
switch that is not only a data forwarding plane, but also a
platform for running a program. A developer can implement
some functions of a data center application in an application
switch in a programming language, mainly C++, using a
DPN switch. As we described in Sect. 2.1, a program can
read and write all the data in a packet (frame), which is a
simple array in the C++ program. Thus, a program can
analyze the packet payload and create a new packet in a
switch.

Fig. 4 The Overview of Application Switch

3.2 Application Switch for TCP-Based Application

This subsection proposes an application switch that supports
TCP state tradition. This application switch migrates a TCP
connection to improve TCP-based network applications.

Figure 4 shows the TCP connection migration and its re-
turn migration for server application performance improve-
ment. In the case of a usual TCP and a switch that does not
support TCP migration, a connection is established between
client and server computers, and the peers of the connec-
tion do not change. A request from the client is always sent
to the server and handled by the server. In the case of an
application switch that supports TCP migration, the upper
connection peer in the figure migrates from the server to the
switch and migrates back to the server. In this paper, we
refer to the former and latter cases as migration and return
migration, respectively. To perform a migration, the applica-
tion switch takes over the connection and receives the packet
to the server instead of the server without forwarding it, as
shown in the lower part of the figure. After migration, com-
munication takes place between the client and the switch. To
take over the connection, the switch must manage the TCP
connection sequence number and Ack number. When a re-
quest from the client is replied by the switch, the request and
reply are recognized only by the client and the switch, and
not by the server. In other words, the sequence number and
the Ack number in the connection increase from the client’s
and the switch’s point of view, but they do not increase from
the server’s point of view. This makes a difference between
the numbers managed by the client and the server. If the
switch does not respond to a request in a packet, the switch
forwards the packet as shown in the upper part of the figure.
The migration from the lower situation to the upper situa-
tion is called return migration. After a return migration,
the switch must modify the sequence number and the Ack
number according to the difference between these numbers
recognized by the client and the server. This modification is
explained in detail in Sect. 4.2.

The application switch always inspects the payload of
each packet. If it detects a request in the payload that the
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switch can reply, the switch does not forward it, but replies
it. This causes migration. If it does not detect it, the switch
forwards it to the server. This causes return migration.

4. Dynamic Caching by Application Switch

4.1 Caching Switch

In this section, we propose a caching system that is placed in
an application switch in a network. It is for Cassandra. The
cache in the application switch is initially empty. The switch
continues to monitor packets and extracts the data access
requests and their responses including the data. When it
detects a request for non-cached data, it adds the data to its
cache. If the cache is full, the newly accessed data replaces
the least recently used (LRU) [22] data in the cache.

Figure 5 illustrates the behavior of the application
switch with caching. If the target key-value pair of a query
is not stored in the cache in the application switch (cache
miss), the application switch simply forwards the query to
the server. The server then returns the value to the client
through the application switch. During forwarding, the ap-
plication switch inspects the response packet, retrieves the
value from the payload, and stores the key-value pair in its
cache. If the target key-value pair is in the cache (cache hit),
the switch does not forward the query, but creates the re-
sponse and sends it to the client. Naturally, the cache results
in a cache miss for almost all accesses immediately after
starting with an empty cache, which is called a cold cache.
After the cache space is filled with data, called the hot cache,
accesses often result in cache hits and the system improves
query processing performance.

There are two main ways to handle a write request in a
caching environment, write-back and write-through. Cached
data are stored redundantly in both the cache and the original
memory. With write-through, the write request updates both
the cached data and the original data. This is a pessimistic
way. In the case of write-back, only the data in the cache
are updated. This is an optimistic way. Our implementation
currently supports only write-through for KVS. Thus, if the
proposed caching system finds a write request, the system

Fig. 5 Dynamic caching

forwards the write request to the server, which is the original
space, and updates the data in the cache. If write-back is
supported, the caching system only updates the data in the
cache when it finds a write request, and the original data
in the server are not updated. This situation is called dirty,
and the clients get the updated data from the cache. In
many cases, the data in the original space, i.e. the server,
are updated by multiple triggers. When the cached data is
discarded from the cache, the updated data must be written
back to the original space. In some implementations, such
as the Linux kernel, the dirty cache is updated when the ratio
of dirty data exceeds the threshold, when it has been dirty for
longer than the threshold, and when a periodic flush event
occurs. In some cases, cached data are purged when it has
been cached for longer than the threshold.

4.2 Cassandra Query Analysis

In this subsection, we describe the analysis method, includ-
ing the lexical analysis, of Cassandra queries in the proposed
method. In a Cassandra query packet, the start of a field, such
as the Key or Value field, stores its length, and the end of
the field stores a vertical tab (0b in hexadecimal) or null
character (00 in hexadecimal). Based on this protocol for-
mat, the proposed method analyzes the packet payload and
retrieves the data between the start and end points to obtain
the values in the Key and Value fields. By implementing
such a lexical analysis function, the values in these fields can
be retrieved at the application switch even if the protocol
contains variable-length fields.

4.3 Sequence Number and Ack Number Management

The reply by a switch causes a sequence number mismatch
between the client and the server. After a switch replies to a
request, the request and its reply are known only to the client
and the switch. That is, the server does not know them.
Therefore, the sequence numbers managed by the client and
the server will be different. The application switch must
manage this difference after the return migration and correct
the sequence number and Ack number.

First, for comparison, we illustrate the operation of a
normal switch in Fig. 6. In this case, the packet arriving at
this switch from the left, packet 0, is simply forwarded to the
destination, and then packet 1 goes to the right. Each packet
has a TCP header, and the header describes the sequence

Fig. 6 Seq and Ack in normal switch
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Fig. 7 Management of difference of Seq and Ack in application

Fig. 8 Seq and Ack in application switch

number and the ack number. Incoming and outgoing packets
have the same sequence number. That is, Seqin = Seqout .

Second, we illustrate the operation of the application
switch in Fig. 7. When a request packet arrives at the switch
and the request results in a cache hit, the request packet is
not forwarded to the server. The application switch creates
a reply packet and sends it to the client as shown. In the
figure, the sizes of the incoming and outgoing packets are x
bytes and y bytes, respectively. The client’s TCP observes
the incoming packet, but the server’s TCP does not. There-
fore, the sequence numbers recognized by the client and the
server differ by x bytes. The proposed switch manages this
difference by α, in which case α is incremented by x. That
is, α = α + x. Similarly, a reply packet whose size is y bytes
is not observed by the server. The difference between the
server and the client is maintained by β and it increases by
y, so β = β + y.

An application switch modifies the sequence number
and Ack number of a packet to be forwarded after these
cache hits as shown in Fig. 8. For example, since the se-
quence number recognized by the server is smaller than the
sequence number recognized by the client, an application
switch reduces the sequence number and forwards this mod-
ified packet.

Here, we describe the problem caused by duplicate
Acks [23] and the ack management policy of the proposed

Fig. 9 Flowchart of application switch (packet from the client)

Fig. 10 Flowchart of application switch (packet from the server)

method. In Figs. 6, 7, and 8, a client sends a packet from left
to right, and a server sends a packet from right to left. When
a large number of cache hits occur consecutively, the same
Ack packets with no payload and no window update are sent
to the server many times, as shown in Fig. 5. These Ack
packets are called dubious in the TCP implementation, and
duplicated Ack indicates packet loss detection notification
as a request for retransmission [24]. From the client side, if
there are multiple of the same Ack, it looks like a duplicated
Ack. To avoid this, in the proposed method, the same Ack
number is transmitted only once. That is, if the Ack number
has already been transmitted and the packet has no payload
and no window update, the packet is not transmitted from the
switch to the server. We explain how duplicate Acks occurs

4.4 Implementation

In this subsection, we explain the implementation of our ap-
plication switch. It consisted of the Click source files and
third-party click elements that we implemented. A Click
source file is called a Click config file. It defines the flow
and processing of incoming and outgoing packets by spec-
ifying the sequence of Click elements. The config files for
processing packets from the client and server are shown in
Figs. 9 and 10, respectively.
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Next, we explain the elements within them. The If SE-
LECT element analyzes the payload of each incoming packet
and checks if it contains a data retrieval query (SELECT
query). If it does, the element forwards it to the Strip(14)
element. If it does not, the element forwards it to the next
If element. The If INSERT and If UPDATE elements work
similarly. Strip(14) is based on an existing Click element
and strips the first 14 bytes from the packet (Ethernet frame)
to remove the Ethernet header. In contrast, EtherEncap is an
element to add an Ethernet header.

Custom elements in the figures are third-party elements
that we have implemented. Custom element 1 creates replay
packets and is the most important element in our system.
This element extracts the key specified in the payload and
checks whether the key-value pair is stored in its cache. If
the pair is in the cache, i.e. cache hit, this element generates
a reply packet taking into account α and β. This element
then sends this generated packet to the client via EtherEncap
as shown in the path to below. If the pair does not exist, i.e.
a cache miss, this packet is forwarded to the next element as
shown in the path to the right.

In the case of a cache miss, Custom element 2 receives
the packet. This element maintains the Ack number in one
direction for the server. This element does not send Ack
packets with the same Ack number multiple times without a
payload or window update to avoid unintentional duplicate
Acks as described in Sect. 4.3.

Custom element 3 controls the difference in sequence
numbers and Ack numbers caused by cache hits, and adjusts
these numbers in packets in the direction from the client to
the server based on the α and β of Custom element 1.

Custom elements 4 support Cassandra’s Insert queries.
This element parses incoming packets and extract the Key
and Value described in the packets. They then update the
cached data in the switch.

Custom element 5 is for processing reply packets from
the server to the client. This element extracts the Value data
from a packet and stores the data in the cache. If the key-
value pair is in the cache, this updates the data. If not, it
inserts the key-value pair.

Custom element 6 works similarly to Custom element
3. This element adjusts the sequence and Ack numbers in
packets from the server to the client based on the α and β of
Custom element 1.

We have not implemented an element to parse the UP-
DATE query. The INSERT query supports both adding a
new key-value pair to a database and overwriting values in
an existing key-value pair. Support for the UPDATE query is
achieved by implementing an element to parse the UPDATE
query according to its query format.

5. Evaluation

In this section, we evaluate the proposed method using a KVS
system and a caching feature in an application switch. We
have built a KVS system using Cassandra and the proposed
application switch. The experimental network is shown in

Fig. 11 Experimental Network

Table 1 Computer of server and server1

Table 2 Computer of application switch

Table 3 Computer of client1 and client

Table 4 Computer of client2 and server2

Table 5 Computer of application switch2 and switch2

Fig. 11. The two clients and the server are directly connected
to the application switch. The KVS implementation used is
Cassandra 3.10. The specifications of the computers used in
this experiment are described in Tables 1, 2, 3, 4, and 5.

5.1 Query Processing Time

In this subsection, we compare the average turnaround times
of reading queries with and without caching in the applica-
tion switch.

We issued read queries to the KVS and measured
turnaround times under the following conditions. We created
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Fig. 12 Turnaround time of the normal and proposed methods

Fig. 13 Packet transmission over time (cache miss)

16 tables in Cassandra. The length of each table name was
different, ranging from 1 to 16 characters. Each table has
256 key-value pairs, and all tables have total of 4096 entries.
The length of a key is equal to the length of the table name,
the content of a value is a random alphabetic string, and the
length of a value is between 1 and 4N , where N is the length
of the table name. The turnaround time was measured by
issuing 1024 read requests from the client to the server on a
randomly selected key based on the Zipf distribution. The
application switch cache size of the proposed method was
64.

The experimental results are shown in Fig. 12. “Pro-
posed (all)” in the figure represents the average response time
for all 1024 queries by the proposed method, i.e. with cache.
“Proposed (cache hit)” and “Proposed (cache miss)” show
the average response times for only the cache hit and cache
miss queries, respectively. The cache hit ratio in this case
was 33%. “Normal” shows the average response time using
the normal method, i.e. without cache. The figure shows that
the average response time of the proposed method is 34%
shorter than that of the normal method. The main reasons
for this performance improvement are that the switch, which
was closer to the client, replied to the requests, thus elimi-
nating the time to forward requests to the server in case of
cache hits in the proposed method, and that it took less time
for a lightweight switch process to replied to queries than it
did for a huge Cassandra process holding a large amount of
data.

Figures 13 and 14 illustrate packet transmission over
time for cache miss and cache hit cases, respectively. These

Fig. 14 Packet transmission over time (cache hit)

figures were generated by recording packet transmission and
reception times on all network interfaces of the client ma-
chines, the application switch, and the server machine. The
times obtained on these machines are not completely syn-
chronized. We then adjusted the recorded time information
to minimize the difference between the clock information of
these machines. “A” in the figure is the time when Client1
transmitted the packet to the network. “B” is the time when
Application Switch received (input) the packet from the net-
work. “C” is the time when Application Switch transmitted
the packet to the network. The time between “A” and “B” is
the time spent to transfer the packet from Client1 to Applica-
tion Switch, which is a propagation time between them. The
time between “B” and “C” is the time spent for forwarding
the packet by Application Switch. These figures indicate that
the time taken by the application switch (from B to C) was
less than the time taken by the server (from D to E). They
also indicate that not sending packets to the server reduced
the turnaround time.

Figure 12 shows that the average response time for a
cache hit is much shorter (by about 84%) than for the normal
method. On the other hand, the average response time for
a cache miss is slightly longer (by about 6%) than that of
the normal method. This is because the proposed method
takes cache processing overhead and a miss penalty (e.g., the
switch analyzes the response packet, extracts the value, and
stores it in the cache) when a cache miss occurs, while the
normal method only performs the frame forwarding function.

5.2 Cache Size and Performance

The relationship between cache size and response time was
investigated. We varied the cache size from 4 to 1024 and
measured the response time 1000 times under the same con-
ditions as in Sect. 5.1. The experimental results are shown in
Fig. 15. The bar and line graphs show the average response
time and cache hit ratio, respectively. The figure shows that
as the cache size increases, the cache hit ratio improves and
the average response time decreases.

These results are supported by the results in Sect. 5.1.
Namely, the proposed method decreases and increases the
response time for cache hits and cache misses, respectively.
Therefore, the higher the cache hit ratio, the better the per-
formance.
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Fig. 15 Turnaround time and cache sizes

Fig. 16 Turnaround time with accesses obeying the Zipf’s law

5.3 Skew Strength and Performance

We then examine the relationship between the strength of the
bias in the choice of query target and performance. Zipf’s
law can model many patterns of occurrence in practical ap-
plications. The model assumes that the probability of the
n-th element is proportional to 1/nk . K is the parameter for
controlling its bias. The larger k is, the stronger the bias. In
many cases, k is one.

We varied k from 0.5 to 1.5 and evaluated the perfor-
mance under the same conditions as in Sect. 5.1. Figure 16
shows the results. These show that the performance of the
proposed method improved as the skewness of the access
target distribution increased. Even in the case of the weakest
skew with k = 0.5, the average response time of the proposed
method was better than that of the normal method. In the
case of the strongest skew with k = 1.5, the response time of
the proposed method was 47% less than that of the normal
method.

5.4 Performance and Number of Connections

In our method, all queries are routed through the application
switch; if the application switch is overloaded, the switch
may become a bottleneck and the performance of the net-
work application (KVS in the case of this experiment) may
be degraded. In this subsection, we examine the relationship
between the load on the application switch and the response
performance by varying the number of connections. Under
the same conditions as in Sect. 6.1, the number of connec-
tions per client machine was changed to 1, 2, 4, 8, 16, 32,

Fig. 17 Turnaround time, number of clients, and number of connections
with accesses obeying the Zipf’s law

Fig. 18 Turnaround time and read/write ratio

and 64, and the number of client machines was changed to 1
or 2, and the performance in each situation was evaluated.

The experimental results are shown in Fig. 17. The fig-
ure shows that there is no significant increase in the average
response time as the number of connections and load on the
application switch increases. This indicates that the applica-
tion switch does not become a bottleneck and does not cause
significant performance degradation in the load range of this
experiment.

5.5 Read/Write Ratio and Performance

We investigate the relationship between the read/write ratio
of queries and performance by varying the read/write ratio
in 10:0 (read-only), 9:1 (read-heavy), 5:5 (even), 1:9 (write-
heavy), and 0:10 (write-only). We conducted experiments
under the same conditions as in Sect. 5.1. The SELECT and
INSERT queries correspond to the read and write queries,
respectively.

Figure 18 shows the performance. The red and blue
bars represent the average response time of the proposed
and normal methods, respectively. The figure shows that
the proposed method improves the performance for read-
intensive queries largely, but degrades the performance for
write-intensive queries slightly. Compared to the advantage
of the proposed method when the read ratio is high, the size
of performance degradation of the proposed method when
the read ratio is low is small. We then can expect caching by
the proposed method to be effective in many situations.

5.6 Overhead of Lexical Analysis

Unlike programmable switches such as the P4 switch, the
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Fig. 19 Turnaround time of the proposed methods with and without lex-
ical analysis

Fig. 20 Experimental Network II

proposed method performs lexical analysis in DPI and sup-
ports variable-length fields. In this subsection, we investi-
gate the overhead of lexical analysis by comparing the per-
formance of methods with and without lexical analysis. The
experiments were performed with and without lexical anal-
ysis under the same conditions as in Sect. 5.1. The method
without lexical analysis assumes that the field length is fixed
and reads only the fixed address. The client then only sent
queues that met the assumption.

Figure 19 shows the experimental results. The method
with lexical analysis took a longer average response time
than the method without analysis, but the difference is very
small (about a 3% increase). The advantage of the caching
function over the normal method is significant, and we argue
that performing lexical analysis on Cassandra queries is well
justified.

5.7 Performance with Multiple Servers

Here, we evaluated the proposed method with two server
nodes. We have constructed an experimental network as
shown in Fig. 20 and Tables 1, 2, 4, and 5 and evaluated the
performance. The replication factor is one and the consis-
tency level is ONE. In this environment, the existing method
proposed by Vakili et al. described in Sect. 2.4 [15] can be
applied. Therefore, we compare the performance of our pro-
posed method and the existing method. The existing method
is not explained in detail to be implemented, we have esti-
mated the performance of the existing method as follows.

Client connects to Server1 and Server1 has a coordina-

Fig. 21 Coordinator and Coordinator cache

tor cache. First, we explain the cases of coordinator cache
misses. In the cases, the data are replied by Server1 or
Server2. If the requested data are stored in Server1, the data
are replied by Server 1 like (b) in Fig. 21. Otherwise, the
data are replied by the Server1 like (a) in Fig. 21. Second,
we explain the cases of coordinator cache hit. In the cases,
the coordinator cache in Server1 replies like (c) in Fig. 21.
The behaviors of (b) and (c) are quite similar. Therefore, we
estimate the performance of the existing method in the case
of coordinator cache hit, i.e. (c), by the performance of co-
ordinator cache misses and the data being stored in Server1,
i.e. (a). Since the replication factor is 1 and the number of
nodes is two, the data are stored in Server1 and Server2 with
a probability of 50%.

Figure 22 depicts the measured experimental results and
the estimated performances. The performances of the exist-
ing methods are estimated ones. The values of “Proposed”
and “estimated Existing” are the average turnaround times
of 100 queries of the proposed and existing methods, respec-
tively. Those labeled “(cache hit)” and “(cache miss)” are
the average turnaround times in cases of cache hit and cache
miss in all queries, respectively. Those labeled “(Server1)”
and “(Server2)” are those in cases where data are stored in
Server1 and Server2, respectively. In these experiments, the
cache hit ratio of the proposed method was 34%. Namely,
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Fig. 22 Turnaround time with multiple servers

the performance of the “proposed” is 0.34*“proposed (cache
hit)” + 0.66*“proposed (cache miss).” The performance
of “proposed (cache miss)” is 0.5*“proposed (cache miss,
Server1)” + 0.5*“proposed (cache miss, Server2).” We es-
timated the performance of the existing method with the
same cache hit ratio. Namely, the performance of “esti-
mated Existing” is 0.34*“estimated Existing (cache hit)” +
0.66*“estimated Existing (cache miss).” “Estimated Exist-
ing (cache miss)” is 0.5*“estimated Existing (cache miss,
Server1)” + 0.5*“estimated Existing (cache miss, Server2).”
In this estimation, we do not include the overhead of caching
process of the existing method. In practical implementation,
the performance of the existing method may be slightly less
than those performances. From these results, we can see that
the turnaround time of our method in the cases of cache hit
are remarkably less than those of the existing method. This
is mainly because a query has to be transmitted to Server1
even if the cache hits in the existing method, the query is
processed in the switch without forwarding in our method.

5.8 Estimated Performance Limitations

In this subsection, we estimate the performance limitation
caused by an application switch. In the evaluation with the
practical load in Sect. 5.4, we did not find performance lim-
itation from the application switch. In this subsection, we
highlight the performance limitation caused by an applica-
tion. For this purpose, we evaluated the application switch
throughput, i.e. number of processed packets per second,
by inputting packets from a dump file to the application
switch. In this case, packets can be provided to the appli-
cation switch process within a quite short time. Namely,
packets are provided with nearly infinite speed and only the
processing performance of the application switch can be sep-
arately evaluated without many physical server computers.
The specifications of the used computer is written in Table 5.

The experimental results are shown in Fig. 23. The ap-
plication switches processed 10,000 packets in 52.5 ms in the
case of cache hit. Namely, the application switch can pro-
cess around 190,000 packets per second. It processed 10,000

Fig. 23 Throughput (packets from a dumpfile)

packets in 56.2 ms in the case of cache miss, i.e. 178,000
packets per second. We can expect that the performances of
an application switch will be limited by these values with a
huge scale system.

6. Discussion

First, we discuss the future style of networking from the
perspective of a programmable switch, DPI, and SDN.

TCP has mainly been used as a layer four protocol and
will be widely used in the future, with a few exceptions
such as QUIC [25]. These protocols, TCP and QUIC, as-
sume that the connection is managed and recognized by both
endpoints. Traditionally, with this assumption, network ele-
ments between these endpoints typically do not provide any
information to the endpoints, even though these network el-
ements have important information about the state of the
network. In addition, a network element typically does not
actively contribute to connections. As a result, TCP and
QUIC implementations in endpoints must estimate network
conditions based on some limited information, such as packet
loss or network delay. There are a few exceptions, such as
ECN and RED. A router with ECN enabled provides in-
formation. It sets the ECN bit in a packet and forwards it
when the router is congested. The endpoints can read this bit
for network status information. A router with RED enabled
controls its queue with its predefined policy. The router will
drop packets randomly in a situation where its queue length
is large. However, the behavior of a router with these features
is remarkably moderate, and the performance impact is very
limited compared to DPN switches, SDN switches, and DPI
switches.

Here we discuss two important networking styles in the
future, the transparent style and the non-transparent style.
The transparent style maintains compatibility with existing
elements (hardware) and software. A traditional network
switch is not intelligent, but only for forwarding frames to the
destination described in the header. An application switch
also should be compatible with existing elements and soft-
ware, such as TCP. Namely, the switch is transparent and
avoids errors in the TCP implementation by considering the
state transition of TCP. In our research, the problems caused
by TCP timeout [9] and duplicate acks [23] were pointed out,
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and we solved these problems by modifying the sequence
numbers and ack numbers in the TCP headers. This trans-
parent style will continue to play the most important role
in the near future. However, the non-transparent style with
highly functional switches, such as programmable switches,
may change this situation. The latter style allows network
elements to behave in complex and opaque ways. We believe
that some small changes to the process of TCP will effectively
improve this style of future network infrastructure supported
by these technologies, i.e. SDN and programmable network.
The problems caused by duplicate acks and sequence num-
bers will be easily solved by supporting a sequence number
offset in the TCP option. When an application switch re-
sponds to a request with a cache hit, the application switch
simply notifies this hit, i.e., an increase in the difference
between the sequence numbers in the client and the server.
After this notification, the client describes this difference in
the offset field in the TCP option field. A server simply
recalculates the sequence number and the ack number ac-
cording to the offset written in the option. In this case, the
difference is managed not by the switch in a network, but
by the endpoints, i.e. the client and the server. This change
drastically affects the concept of TCP. TCP guarantees that
all bytes in the stream are transmitted correctly, but this op-
tion allows a server to skip some bytes of data. Although
the impact on policy is not small, this option will help some
functional behaviors in a switch with the reliability of TCP,
such as retransmission and congestion control.

Next, we compare the consistency models of our pro-
posed caching and the original Cassandra. We argue that our
model is not far from the original Cassandra policy. Cas-
sandra allows several consistency control policies, such as
write-all+ read-one, write-one+ read-all, and write-quorum
+ read-quorum. For each policy, R +W > N must be satis-
fied. R and W are the number of replicas covered by read and
write operations, respectively. N is the number of replicas.
Satisfying R+W > N guarantees that a read operation after a
write operation always accesses updated data. After updating
W data, there are N-W unupdated data. Reading only these
N-W unupdated data cannot satisfy R+W > N . Focusing on
the key point that a read operation can access the latest data,
we can consider that the proposed caching function satisfies
this point. Fortunately, this caching assumes that all data
access queries, including read and write, pass through the
application switch. Therefore, the most recent data is always
stored in the switch, and all read requests can get the most
recent data. The coexistence of multiple caching functions
on a network raises the issue of consistency between caches.
In this paper, we have focused on the situation with a single
caching function. Supporting multiple caching functions is
an important future work.

Next, we discuss the pros and cons of parallelizing
servers and using application switches to improve perfor-
mance. Both are complementary. In other words, both can
be used at the same time. The former is a conventional
method that is effective at a cost. The latter is a method that
has not been used before and is therefore expected to provide

significant improvement, especially in environments with
large network latencies. The former is a method that has
been used and is expected to work without problems. The
latter is a new method and may take some time to work prop-
erly. The latter is especially beneficial in a situation where it
will not become a bottleneck. The former is very scalable.

Here, we discuss benefits of cache functionality imple-
mented on the level of application switch by comparing to
the implementation on server side. Server node usually has
a caching function at DBMS level or operating system level.
This caching function also improves the DBMS performance
by avoiding access to its storage device such as HDD (hard
disk drive) or SSD (solid state drive). However, a query
needs to be transmitted to a server node as (a) and (b) in
Fig. 21. Therefore, the size of its performance improvement
is smaller than that of our proposed method where a query
is transmitted only to the switch. In addition, the DBMS
server process, which is large in many cases, must be ac-
cessed even if the cache is hit. This also implies that the size
of the improvement of our method, which does not access a
server process, is larger. We can find an advantage of our
method also in focusing on the switch load. In the case of
Cassandra, a query is often forwarded to the server node that
has the data via a switch, as in (a) in Fig. 21. This requires
the switch to forward the packet twice. The switch must also
forward the response packet. On the contrary, in the case
of our proposed method, the switch is only required to reply
once. Of course, caching in the switch increases the load
on the switch. Thus, caching in a switch has both positive
and negative effects on the load of the switch. As described
above, the cache in the switch is located at the center of the
network. Therefore, important data are stored in the server
cache. We think that even more important data should be
stored in the switch cache.

We compare the performance of functional application
switches and hardware switches. For the highest throughput,
hardware switches may be appropriate. In this case, intelli-
gent functionality is not available from such switches. On
the other hand, in many cases, such as data center networks,
common and commodity network elements are often used.
Application switches and other software-based switches are
sufficient to achieve this commodity-based performance. As
a result, in these many cases, software-based switches can
provide equivalent performance to a hardware-implemented
switch. We think that comparing the performance of an ap-
plication switch by enabling and disabling the caching fea-
ture is a valid way to evaluate the application switch when
considering using an application switch for such situations.

Finally, we discuss Cassandra’s consistency model and
our caching implementation. Cassandra uses the eventual
consistency model [26], [27], also called optimistic repli-
cation. If no new update requests are made to the data,
all accesses to the data will eventually get the most recent
value with this consistency. In the case of our implemen-
tation in this paper, which uses a single caching function,
we can easily avoid violating this consistency model with
common cache behaviors, including both write-through and
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write-back. Even with a write-back policy, the data in the
switch should be updated first, and all clients should have
access to the most recent data. With a write-through policy,
the original data in the server is updated immediately. Both
policies can maintain consistency.

7. Conclusion

In this paper, we focused on programmable switches and
proposed the concept of an application switch. With this
concept, developers can implement and execute some func-
tions of a data center application in a deeply programmable
network switch. We then proposed to implement a caching
function of a Cassandra KVS in an application switch. The
switch supported TCP connection migration by changing the
sequence number and ack number. Our evaluation, including
a single caching function, showed that the caching function
reduced the average response time of the Cassandra KVS by
up to 47%.

For future work, we plan to evaluate our method with
a larger experiment with more client machines, implement a
write-back policy, and discuss supporting multiple caching
functions.
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Appendix: Duplicate Acks

Here, we explain how duplicate Acks problem occurs when
a large number of cache hits occur consecutively.

When a cache hit occurs, the sequence number recog-
nized by the client is updated, while the number recognized
by the server is not updated. When the client receives data
from the switch, the client sends an acknowledge packet to
the server. The acknowledge number is updated from the
client’s point of view and it sends the updated number. On
the other hand, the number is not updated from the server’s
point of view, and the server receives an acknowledge for the
non-updated number. If a cache hit occurs multiple times,
the client sends an Ack packet for every reply packet by the
switch, and every Ack packet is transmitted to the server
(without solving the duplicate Acks problem). From the
client’s point of view, every Ack packet has different Ack
number. However, from the server’s point of view, every
Ack packet has the same Ack number. These Ack packets
with the same Ack number look duplicate Acks from server’s
point of view.

Fig. A· 1 Duplicate Ack and Solution for it

Figure A· 1 illustrates this behavior. The top half and
bottom half represent behavior without and with resolution
of the duplicate ack problem. In top upper half, the client
sends three Ack packets. Each Ack packet has a different Ack
number, namely Ack 100, 200, and 300. On the other hand,
the server receives three Ack packets. All these packets have
the same Ack number, which is Ack 100. The Ack packets
by the clinet with 100, 200, and 300 are converted by the
application switch into Ack packets for the server with 100,
100, and 100. In this case, the server receives the same
number of Ack packets multiple times. As a result, the
TCP implementation in the server detects duplicate Ack. As
shown in the figure, each cache hit results in an Ack with the
same number.

To solve this problem, the application switch does not
forward an Ack packet with the same Ack number and no
window update or payload.
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