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SUMMARY Graph dissimilarities provide a powerful and ubiquitous
approach for applying machine learning algorithms to edge-attributed
graphs. However, conventional optimal transport-based dissimilarities
cannot handle edge-attributes. In this paper, we propose an optimal
transport-based dissimilarity between graphs with edge-attributes. The
proposed method, multi-dimensional fused Gromov-Wasserstein discrep-
ancy (MFGW), naturally incorporates the mismatch of edge-attributes into
the optimal transport theory. Unlike conventional optimal transport-based
dissimilarities, MFGW can directly handle edge-attributes in addition to
structural information of graphs. Furthermore, we propose an iterative al-
gorithm, which can be computed on GPUs, to solve non-convex quadratic
programming problems involved in MFGW. Experimentally, we demon-
strate that MFGW outperforms the conventional optimal transport-based
dissimilarity in several machine learning applications including supervised
classification, subgraph matching, and graph barycenter calculation.
key words: attributed graph, fused Gromov-Wasserstein divergence, graph
barycenter, optimal transport

1. Introduction

The graph is a fundamental data structure that models real-
world entities and their relationships by nodes and edges, re-
spectively. To represent complex entities, edges are usually
annotated with a variety of information as edge-attributes.
For example, in a chemical compound graph, atoms are rep-
resented as nodes, while bonds are represented as edges;
additionally, various information such as bond types and in-
teratomic distances are represented as edge-attributes. Such
attributed graphs can be used to precisely model complex
structures. Hence, it is important to handle attributed graphs
for machine learning tasks such as chemical compound prop-
erty prediction and crystal structure similarity search.

To handle attributed graphs in machine learning meth-
ods, it is crucial to define an appropriate dissimilarity be-
tween graphs. Given two attributed graphs, dissimilarities
quantify the differences between them by considering their
structures and attributes. Designing dissimilarities allows
the application of machine learning methods such as ker-
nels [1] and t-distributed stochastic neighborhood embed-
ding (t-SNE) [2]. Fused Gromov-Wasserstein discrepancy
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Fig. 1 Examples of chemical compounds and their corresponding graphs:
In the graphs, nodes and edges are corresponding to atoms and chemical
bonds, respectively. Each node has a node-label, which represents atom
type (C). Each edge has an edge-label, which represents one of the bond
types among single bond (S), double bond (D), and aromatic bond (A). The
graph has a classification label 0 or 1, which represents the carcinogenicity
of the compound.

(FGW) has been proposed as one of the representative graph
dissimilarities [1], [3], [4]. FGW measures dissimilarity by
combining two optimal transport-based (OT) dissimilari-
ties [5], [6], considering differences in both structures and
node-attributes. To compute FGW, a quadratic program-
ming problem needs to be solved, and an iterative algo-
rithm has been proposed to obtain local stationary points in
a reasonable time [1], [7], [8]. As reported in the previous
studies [1], the kernels obtained by FGW have shown better
performance in machine learning tasks such as graph clas-
sification than conventional kernels including shortest path
kernel [9], random walk kernel [10], [11], and Wasserstein
Weisfeiler-Lehman kernel [12].

Although FGW is effective in many graph-based ap-
plications, it has two critical weaknesses. The first is that
FGW cannot handle edge-attributes such as bond types, inter-
atomic distances, etc. These attribute values must be cut off
before using FGW, resulting in a negative impact on the
performance of the downstream task. The second is that
the existing iterative algorithm for FGW [1], [3], [4] tends
to converge to a local optimum solution even though it is
significantly far from the global optimum. As a result, dis-
similarity accuracy is reduced, causing low performance of
subsequent machine learning tasks.

Figure 1 illustrates practical chemical compounds in-
cluded in PTC MR dataset [13] and their corresponding
graph representations. The compounds A and B have differ-
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ent substructures and classification labels. However, FGW
yields 0.0 between A and B, which means that FGW can-
not distinguish the compounds. This is because FGW needs
to cut off the edge-attributes. As shown in the figure, the
graphs A and B have the same structural information and
attributes except for edge-attributes. Thus, the kernels based
on FGW fail to disambiguate the graphs, resulting in poor
classification quality if we use such kernels†.

We propose multi-dimensional fused Gromov Wasser-
stein discrepancy (MFGW) for attributed-graphs. To over-
come the aforementioned limitations, we design a novel ob-
jective function by extending FGW so that MFGW can di-
rectly measure the difference between the edge-attributes.
Unlike the existing methods, MFGW can handle edge-
attributes, which are crucial for many machine learning
tasks. In addition, we propose an iterative optimization
method with heuristics to avoid the local optimum solution,
resulting in a higher performance in downstream tasks. Our
experiments show that MFGW outperforms FGW in several
graph machine learning tasks, including graph classification
over edge-attributed graphs. Our contributions can be sum-
marized as follows:

1. We propose an OT dissimilarity, namely MFGW, for
attributed graphs (Sect. 4). Unlike existing methods [1],
[3], MFGW can directly handle edge-attributes.

2. We propose a heuristic optimization method for the
quadratic programming involved in OT dissimilarities
(Sect. 4.2). By using our method, MFGW achieves
better performance than existing OT dissimilarities.

3. We theoretically clarify that MFGW is a pseudometric
(Sect. 4.3), which indicates that MFGW is applicable to
various machine learning algorithms.

Our experiments show that MFGW is applicable to funda-
mental machine learning tasks, graph classification, sub-
graph matching, and gradient-based optimization. For ex-
ample, in the classification, MFGW outperformed the other
graph kernel methods on the datasets containing edge-
attributed graphs. Furthermore, our experimental results
demonstrated that the proposed iterative optimization suc-
cessfully mitigates the local optimum solution problem.

The remainder of this paper is as follows. Section 2 pro-
vides a literature review of related work. Section 3 introduces
the optimal transport on graphs. In Sect. 4, MFGW and the
optimization method are proposed. Section 5 presents ex-
perimental results, and Sect. 7 concludes the paper.

2. Related Work

In Sect. 2.1, we first discuss general OT dissimilarities such
as Wasserstein distance, that is followed by OT dissimilarities
for graphs in Sect. 2.2. After that, we discuss about graph
kernels and subgraph matching in Sect. 2.3.
†With FGW between the line graphs, the distance between

graphs can be obtained by considering edge-attributes instead of
node-attributes. However, FGW cannot consider both node- and
edge-attributes simultaneously.

2.1 OT Dissimilarities for Distributions

OT dissimilarities are one of the popular metrics that
quantify the difference between variable-length and order-
invariant data such as data distributions [5], [14]. To measure
the difference between two data distributions, OT dissimilar-
ity finds the optimal transport from the first distribution to the
second one; the optimal transport is the lowest cost way of
moving data points between the distributions. In the machine
learning community, Wasserstein distance [5] and Gromov-
Wasserstein discrepancy (GW) [15] are the most prevalent
OT dissimilarities. Wasserstein distance finds the optimal
transport with pairwise distances between data points in the
two distributions within the same metric space. In contrast,
GW first calculates the distances between pairs of data points
within each distribution. Then, it calculates the pairwise dis-
tances between the calculated distances. Finally, GW finds
the optimal transport using these pairwise distances. These
OT dissimilarities formulate a linear programming problem
and a quadratic programming problem, respectively.

2.2 OT Dissimilarities for Graphs

In recent years, the above OT dissimilarities are regarded
as an essential tool to compare the differences between
graphs [1], [3], [4], [16]. Unlike the data distribution han-
dled in the above OT dissimilarities, a graph has two types
of information: structural information of nodes and edges,
and attribute information included in the graph. However,
the above OT dissimilarities do not handle the structural
and attribute information. Thus, several extensions of the
OT dissimilarities have been proposed so as to effectively
quantify the difference between graphs.

One promising approach is the Wasserstein Weisfeiler-
Lehman kernel (WWL) [16]. WWL first transforms the
structural information of a graph into WL features [12]. It
then quantifies dissimilarity between two WL features by
using Wasserstein distance. Similarly, Wasserstein embed-
ding for graph learning extends WWL by using the message
passing scheme to generate the WL features [17].

Although WWL and its extensions are applicable for
graphs, they cannot distinguish the differences among sev-
eral classes of graphs [18]. This is because that the structural
information represented by WL feature is incomplete. To
overcome this limitation, fused Gromov Wasserstein discrep-
ancy (FGW) has recently been proposed [1], [3], [4]. FGW
integrates GW and Wasserstein distance to measure the dif-
ferences in both structural information and node-attributes; it
uses GW and Wasserstein distances to measure the structural
information and the node-attributes, respectively. However,
as discussed in Sect. 1, FGW still has a critical weakness:
FGW cannot measure the differences in the edge-attributes
even though real-world graphs typically have edge-attributes
such as bond types (Fig. 1). Several extensions of FGW have
been proposed [3], [19], but there is still an open problem in
handling edge-attributes.
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To overcome the above limitations, we propose a novel
OT dissimilarity, namely MFGW, for edge-attributed graphs.
Recall that the aforementioned OT dissimilarities cannot
handle edge-attributes to quantify the difference between
two graphs. By contrast, MFGW is designed to integrate
the structural information and the edge-attributes. Thus,
MFGW can use full information on graphs, which is crucial
for various machine learning tasks using attributed graphs.

2.3 Graph Kernels and Subgraph Matching

To evaluate similarities among graphs, graph kernels and
subgraph matching are ones of the most traditional ap-
proaches. Herein, we discuss relationships between MFGW
and such traditional approaches. A graph kernel is a ker-
nel function that measures the similarity of pairs of graphs,
which is mainly used for graph classification tasks. Given a
pair of graphs, a graph kernel measures the similarity based
on features extracted from the graphs such as WL graph
kernel [12], FGW kernel [1], and the shortest path distance
kernel [9]. For example, in the shortest path distance kernel,
a graph kernel measures the similarity by comparing the dis-
tributions of shortest path distances and node attributes in
two graphs. However, unlike MFGW, these kernel functions
cannot handle attributes associated with nodes and edges in
graphs. To overcome this limitation, the deep divergence
graph kernel (DDGK) [20] has recently proposed. To cope
with the attributes, DDGK builds neural network based auto-
encoders by using a training graph dataset. However, as we
will show in Sect. 5.1, DDGK degrades its accuracy if the
database is small since it is difficult for DDGK to tune its hy-
perparameters on small datasets. By contrast, MFGW shows
better performance even if the training data is small because
MFGW contains only a small amount of parameters (α and
β). In Sect. 5.1, we will experimentally discuss how MFGW
works well compared to DDGK on real-world datasets.

A subgraph matching is a traditional graph search ap-
proach that extracts subgraphs which are isomorphic or
quasi-isomorphic to a query graph from a database. Re-
cently, several algorithms have been proposed to handle
node- and edge-attributed graphs [21], [22]. For instance,
Du et al. [22] proposed an interactive subgraph matching
algorithm for attributed graphs. However, existing algo-
rithms considers only discrete labels for the attributes, and
they thus cannot handle attributes composed of continuous
values. One way to overcome this limitation is threshold-
ing of the difference between continuous edge-attributes.
Cordella et al. proposed VF2 [23] that finds matched edge
pairs by thresholding the difference between continuous
edge-attributes, and then finds subgraph matching based on
the matched edges. However, the search quality of VF2 is a
quite sensitive to the thresholds, and it is difficult to specify
an effective thresholds if graphs have diverse attribute values.
By contrast, MFGW can handle not only discrete labels but
also continuous values as for the node- and edge-attributes
without using user-specified thresholds. As a result, as we
will show in Sect. 5.2, MFGW can yield more flexible and

reasonable searches compared to VF2.

3. Preliminary

First, the basic notations are defined, followed by a brief
overview of OT dissimilarities on graphs [1], [3], [4], [16].

3.1 Notations

A vector and a matrix are denoted in bold style (e.g., x and
A), and xi and Ai j represent the i-th and (i, j)-th elements,
respectively. 1N ∈ RN denotes an N-dimensional vector
with all elements as ones. An undirected graph is denoted
by G = (V,E, w, f , g), where V and E are the sets of nodes
and edges, respectively. w : E 7→ R is a function that maps
edges to their corresponding weights. f : V 7→ Rd f and
g : E 7→ Rdg are functions that respectively map nodes and
edges to their corresponding attributes, where df and dg are
the dimensions of the attributes. For convenience, we denote
N = |V | and xi = f (i) ∈ Rd f .

3.2 FGW

The OT dissimilarities are defined as the minimum cost of
transporting masses virtually assigned to the nodes. Given
two graphs G and G̃, FGW [1], [3], [4] is defined as

FGW(G, G̃) = ©«min
P∈P

∑
i, j ,k ,l

(
Li jkl

)p PikPjl
ª®¬

1
p

, (1)

Li jkl = α ∥xi − x̃k ∥qq + (1 − α)
���Ci j − C̃kl

���q, (2)

where P ∈ [0,1]N×Ñ is a correspondence matrix whose ele-
ment Pik ∈ [0,1] represents a mass transported from node i in
G to node k in G̃. Recall that xi and x̃k are the node-attribute
vectors of node i in G and node k in G̃, respectively. In the
literature [1], [16], node-labels and WL features are used to
build the node-attribute vectors. Ci j and C̃kl ∈ R represent
intra-graph similarities that evaluate how two adjacent nodes
are strongly related. Specifically, Ci j denotes the similarity
between nodes i and j in G, where the similarity is mea-
sured by using the edge-weight w(i, j) or the shortest path
distance from node i to j [1]. α ∈ [0,1] is a parameter to
balance the importance of the node-attributes and the intra-
graph similarities and p,q ≥ 1. WWL [16] can be regarded
as a special case of FGW, where α = 1. In Eq. (1), P is a
set of the valid correspondence matrices satisfying the fol-
lowing constraints: (C1) P1Ñ ≤ a, (C2) P⊤1N ≤ ã, and
(C3) 1⊤NP1Ñ = min(a⊤1N , ã⊤1Ñ ), where a ∈ [0,1]N and
ã ∈ [0,1]Ñ are the masses virtually assigned to the nodes
in G and G̃, respectively. (C1) and (C2) respectively indi-
cate that the transported mass should be no more than a and
ã. (C3) indicates that the total amount of transported mass
needs to be equivalent to the smaller one of the total masses.

As shown in Eq. (1), FGW is regarded as a non-convex
optimization problem [1], which can be solved by using a
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quadratic programming (QP) solver. However, the QP solver
incurs considerable computational costs if the matrix P is
large. To reduce this cost, Vayer et al., proposed an iter-
ative method based on conditional gradients to guarantee
convergence to a local solution [1]. The algorithm repeat-
edly computes the gradient of Li jkl with respect to P, and it
updates P by performing the network flow algorithm [14].

4. Proposed Method

In this section, we propose the multi-dimensional fused Gro-
mov Wasserstein discrepancy (MFGW), an OT dissimilarity
between edge-attributed graphs. We first formulate MFGW
as a quadratic programming problem in Sect. 4.1, followed
by the heuristic optimization algorithm to solve the problem
in Sect. 4.2. We then theoretically demonstrate that MFGW
is a pseudometric in Sect. 4.3, and we finally discuss the
applications of MFGW in Sect. 4.4.

4.1 MFGW

Similar to FGW, MFGW is the OT dissimilarity, which
is regarded as the minimum cost of transporting masses.
Given two attributed graphs G = (V,E, w, f , g) and G̃ =
(Ṽ, Ẽ, w̃, f̃ , g̃), MFGW is formally defined as follows:

MFGW(G, G̃) = ©«min
P∈P

∑
i, j ,k ,l

L(MFGW)
i jkl

PikPjl
ª®¬

1
p

, (3)

L(MFGW)
i jkl

= α∥xi − x̃k ∥pp + (1 − α)∥ei j − ẽkl ∥pp,β, (4)

where p ≥ 1 and α ∈ [0,1]. Unlike FGW, MFGW measures
the difference between ei j and ẽkl ∈ Rdg+1 instead of Ci j

and C̃kl , where ei j and ẽkl are the edge-embedding vectors.
Formally, each element of ei j is defined as

(
ei j

)
m =

{
Ci j (m = 1),
(g(i, j))m−1 (m > 1).

(5)

In Eq. (5), g(i, j) is the edge-attribute vector on edge (i, j),
e.g., one-hot vectors of edge-labels, and Ci j denotes the
intra-graph similarities. ∥ei j − ẽkl ∥pp,β = β|Ci j − C̃kl |p + (1−
β)∥g(i, j) − g̃(k, l)∥pp is a weighted p-norm, where β ∈ [0,1]
is a parameter to balance the importance of the intra-graph
similarities and edge-attribute vectors. If we set β = 1,
the objective function of MFGW is equivalent to that of
FGW. As shown in Eq. (2), FGW considers only the intra-
graph similarity Ci j . By contrast, MFGW handles not only
the structural similarity but also the edge-attributes g(i, j).
This extension allows edge-attributes to be processed in the
OT dissimilarities without dropping off all attribute values
included in real-world graphs.

Figure 2 illustrates how to concretely compute MFGW.
For simplicity, we assume all masses for the constraints (C1)-
(C3) are the same, i.e., ai = ãk = 1

4 for all i, k ∈ {1,2,3,4}.
Also, all nodes have the same node-attribute “0” in order to

focus only on the differences in the structural information
and edge-attributes. As shown in the figure, the edges are
labeled with either “1” or “2”, which correspond to the line
style. If the shortest path distances are employed to measure
the structural information, the intra-graph similarities are
computed as follows, where [[Ci j]] denotes the matrix with
Ci j as the (i, j)-th element.

[[Ci j]] =
©«
0 1 1 2
1 0 1 1
1 1 0 2
2 1 2 0

ª®®®¬ , [[C̃kl]] =
©«
0 1 1 2
1 0 1 2
1 1 0 1
2 2 1 0

ª®®®¬ . (6)

g(i, j) is corresponding to the edge-label. By letting g(i, j) =
0 be the absence of an edge between nodes i and j, we
have the following matrices for the edge-attributes. For the
simplicity, we denote [[gi j]] = [[g(i, j)]].

[[gi j]] =
©«
0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

ª®®®¬ , [[g̃kl]] =
©«
0 1 1 0
1 0 1 1
1 1 0 2
0 1 2 0

ª®®®¬ . (7)

As shown above, Eqs. (6) and (7) encode the structural infor-
mation and the edge-attributes, respectively. MFGW finds
the optimal transport using the edge-embeddings described
in Eq. (5), which contain both types of information. For
example, we have e2,4 = [1,1]⊤ and ẽ3,4 = [1,2]⊤, where
the values in the first dimension are C2,4 and C̃3,4, while the
values in the second dimension are g2,4 and g̃3,4.

By solving the optimization problem in Eq. (3), we can
obtain the MFGW value and the correspondence matrix. For
example, if α = 0, we can derive MFGW(G, G̃) = 0.125, and
its correspondence matrix is

P =
©«

1
4 0 0 0
0 0 1

4 0
0 1

4 0 0
0 0 0 1

4

ª®®®¬ , (8)

which represents the transported masses from the nodes in
G to the nodes in G̃.

The transported mass can be regarded as the align-
ment between the nodes. MFGW aligns the nodes in the
graphs, and it quantifies the dissimilarity by considering the
differences in both the structural information and the edge-
attributes. For instance, Fig. 2, the nodes 2 and 4 in G are
respectively aligned to the nodes 3 and 4 in G̃ by following
P shown in Eq. (8). As shown in Eq. (3), MFGW quanti-
fies the difference between g(2,4) and g̃(3,4). In contrast,
FGW is unable to handle edge-attributes based on Eq. (4).
Thus, FGW(G, G̃) should be 0.0 even though G and G̃ have
different edge-labels in edges (2,4) and (3,4), respectively.

Furthermore, it is important to note that FGW(G,G′) =
FGW(G̃,G′) holds for any graphs G′ if we have structurally
similar graphs G and G̃ like the ones shown in Fig. 2. This
implies that it is difficult for FGW to discriminate two differ-
ent graphs G and G̃ by using FGW kernel [1]. By contrast,
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Fig. 2 Example of edge-attributed graphs. The numbers in nodes rep-
resent node-attributes. The numbers on edges and line styles represent
edge-labels. The remaining numbers represent indices of the nodes. The
graphs are isomorphic except for the edge-labels between nodes, g(2, 4) and
g̃(3, 4).

MFGW(G,G′) , MFGW(G̃,G′) holds for any G′ except for
the special graphs (i.e., midpoints between G and G̃) since
MFGW can evaluate the differences between G and G̃ by
handling the edge-attributes. Hence, unlike the FGW ker-
nel, the kernel based on MFGW does not fail to discriminate
the two different graphs G and G̃.

4.2 Optimization for MFGW

Similar to FGW, MFGW defined in Eq. (3) is clearly a
quadratic programming problem. We propose an iterative al-
gorithm to solve the problem by using the Bregman proximal
gradient descent [24]. We designed the algorithm as a par-
allel computation manner. Algorithm 1 shows the overview
of the iterative algorithm, which is inspired by [25] and [3].
At the beginning of the optimization, the correspondence
matrix is uniformly initialized i.e., P(0) = aã⊤ (line 1). In
step t + 1, the correspondence matrix P(t+1) is updated as
follows (lines 2-7):

P(t+1) = argmin
P∈P

1
ϵ

⟨
D(t),P

⟩
+ dKL(P∥P(t)), (9)

D(t) = ∇

∑
i, j ,k ,l

L(MFGW)
i jkl

PikPjl


�����
P=P(t )

, (10)

where ⟨·, ·⟩ is inner-product of matrix, dKL(P∥P(t)) =∑
j ,l Pjl log Pj l

P
(t )
j l

− Pjl + P(t)
jl

is the KL-divergence, and ϵ > 0

is the inverse step size. Consequently, Eqs. (9) and (10) can
be reformulated as follows:

P(t+1) = argmin
P∈P

∑
i,k

(D(t)
ik
− ϵ log P(t)

ik
+ ϵ)Pik − ϵH(P), (11)

D(t)
ik
= α∥xi − x̃k ∥pp + 2(1 − α)

∑
j ,l

∥ei j − ẽkl ∥pp,βP(t)
jl
, (12)

where H(P) is an entropy of P. The optimization prob-
lem shown in Eq. (11) is known as an entropy-regularized
optimal transport problem, which can be solved by the gen-
eralized Sinkhorn iteration [5] on GPUs. The computational
complexity for each step (Eqs. (11) and (12)) is O(N2Ñ2)
time, where N and Ñ are the number of nodes in G and G̃,
respectively. This is the same complexity as FGW [1]. If
p = 2, the computational complexity of MFGW becomes

O(N2Ñ +NÑ2) time, which is the same cost as [1] and [26].
Similar to FGW, Eqs. (11) and (12) may lead to con-

verged matrix P(T ) that is a local minimum solution. This
is because that the iterative algorithm starts from an ini-
tial matrix that is far from the optimal solution even though
MFGW is non-convex. To alleviate this problem, we propose
a deterministic annealing approach. At the beginning of the
iterations (t = 0), ϵ is set to a sufficiently large value ϵinit, and
as the iteration proceeds, ϵ is gradually reduced to the target
value ϵtarget. Intuitively, at the initial iteration, the objective
function is convex. Its optimal solution is the correspon-
dence matrix with the maximum entropy, i.e., P(0) = aã⊤.
As the iteration progresses, the objective function gradually
transforms back to its original non-convex form by reducing
ϵ . As the objective function changes, the optimal solution
also gradually changes from P(0) to the original one. By
updating the correspondence matrix along with the changes,
we can start the optimization from the close point to the opti-
mal solution in each step. Thus, the deterministic annealing
alleviates the problem of the local optimal solutions.

Besides the above approach, we further extend Eq. (12)
so as to avoid the saddle point of the objective function in
Eq. (3). Specifically, as shown in line 4 in Algorithm 1, we
add a small amount of noises ∆Dik

into Eq. (12) as follows:

D(t)
ik
← ReLU(D(t)

ik
+ ∆Dik

), ∆Dik
∼ N(0,σ), (13)

whereN is the Gauss distribution and σ > 0 is a small vari-
ance. Eq. (13) employs ReLU function in order to maintain
D(t)
ik
≥ 0. The saddle points are caused by equivalent solu-

tions in the optimal transport problem. For example, Fig. 2
has two equivalent solutions; the nodes 1,2,3, and 4 in G
can be respectively corresponding to both the nodes 1,3,2,
and 4 and the nodes 2,3,1, and 4 in G̃. By adding noise, it
is possible to choose one of these solutions in order to avoid
convergence to the saddle point.

4.3 A Pseudometric Property of MFGW

MFGW is a pseudometric, which is an important property to
use MFGW in various machine learning methods. To prove
this property, we first theoretically verify that MFGW always
satisfies the following properties:

Proposition 1. MFGW satisfies the following properties for
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any graph pairs (G, G̃).

1. MFGW(G, G̃) ≥ 0
2. MFGW(G,G) = 0
3. MFGW(G, G̃) = MFGW(G̃,G)

Proof. For a pair of the graphs, G and G̃, P∗(G, G̃) denotes
the optimal correspondence matrix obtained from Eq. (3).
By using this matrix, we can prove the properties as follows:

1. From the definition, P∗(G, G̃) ∈ [0,1]N×Ñ holds, where
N and Ñ are the number of nodes in G and G̃, respec-
tively. p-norm is always greater than or equal 0. Thus,
MFGW(G, G̃) ≥ 0 from Eq. (3).

2. We assume a correspondence matrix P̂ = [[δi jai]] ∈
[0,1]N×N , where ai is the mass on the i-th node and
δi j is the Krocker delta. Since ∥xi − xi ∥pp = 0 and
∥ei j−ei j ∥pp,β = 0 hold for any i, j, the objective function
in Eq. (3) become 0 at P = P̂. Since MFGW is non-
negative, P∗(G,G) = P̂ and MFGW(G,G) = 0 hold.

3. Since p-norm is symmetric, P∗(G, G̃) =
(
P∗(G, G̃)

)⊤
hold from Eqs. (3) and (4). Thus, MFGW(G, G̃) =
MFGW(G̃,G) holds from Eq. (3). □

In addition to Proposition 1, MFGW satisfies the following
triangle inequality if total masses are the same:

Proposition 2. Let {G, G̃, Ĝ} be a graph set and a, ã, â be the
masses of the nodes in graphs, respectively. For any graph set
{G, G̃, Ĝ}, MFGW(G, G̃) ≤ MFGW(G, Ĝ) + MFGW(Ĝ, G̃)
holds, if a1N = ã1Ñ = â1N̂ = 1, where N, Ñ, N̂ are the
number of nodes in G, G̃, Ĝ, respectively.

Proof. For a pair of the graphs (G, G̃), P(G,G̃) denotes the
optimal correspondence matrix obtained from Eq. (3). Let
S = P(G,Ĝ)diag(1/a′)P(Ĝ,G̃) be a feasible correspondence
matrix between G and G̃. diag(x) denotes a diagonal matrix,
where the diagonal elements are x. Each element of a′ is
defined as a′i = âi if âi , 0; otherwise, a′i = 1. We also
denote the costs in Eq. (4) for between G and G̃ as L(G,G̃)

i jkl
.

Since S is a feasible solution but not necessarily an optimal
solution, the following inequality hold.

MFGW(G, G̃) ≤ ©«
∑
i jkl

L(G,G̃)
i jkl

SikSjl
ª®¬

1
p

(14)

=
©«
∑

i jklmn

L(G,G̃)
i jkl

P(G,Ĝ)
im P(Ĝ,G̃)

mk
P(G,Ĝ)
jn P(Ĝ,G̃)

nl

a′ma′n
ª®¬

1
p

. (15)

Since we can regard L(G,G̃)
i jkl

as weighted p-norm between the

vectors,
[
α

1
p x⊤i , (1 − α)

1
p e⊤i j

]⊤
and

[
α

1
p x̃⊤

k
, (1 − α)

1
p ẽ⊤

kl

]⊤
,

we have the following from Minkowski’s inequality [27].

MFGW(G, G̃)

≤ ©«
∑

i jklmn

L(G,Ĝ)
i jmn

P(G,Ĝ)
im P(Ĝ,G̃)

mk
P(G,Ĝ)
jn P(Ĝ,G̃)

nl

a′ma′n
ª®¬

1
p

+
©«
∑

i jklmn

L(Ĝ,G̃)
mnkl

P(G,Ĝ)
im P(Ĝ,G̃)

mk
P(G,Ĝ)
jn P(Ĝ,G̃)

nl

a′ma′n
ª®¬

1
p

. (16)

Since a⊤1N = ã⊤1Ñ = â⊤1N̂ = 1 and the constraints
(C1), (C2), and (C3), we have

∑
i P(G,Ĝ)

im =
∑

k P(Ĝ,G̃)
mk

=

a′m and
∑

j P(G,Ĝ)
jn =

∑
l P(Ĝ,G̃)

nl
= a′n. Thus, we have

MFGW(G, G̃) ≤ MFGW(G, Ĝ) + MFGW(Ĝ, G̃). Hence,
from the above inequalities, Proposition 2 holds. □

Propositions 1 and 2 indicate that MFGW is a pseudo-
metric only if the condition of Proposition 2 holds. The con-
dition means a “non-partial” setting such that all the masses
should be transported, which is a commonly used setting in
the Wasserstein distance and FGW [1]. Thus, as well as the
existing studies [1], [12], [16], MFGW is applicable to var-
ious existing machine learning techniques such as k nearest
neighbor classifications [28] and t-SNE [2].

4.4 Applications

Finally, we discuss how MFGW is applicable for machine
learning tasks. In addition to directly measuring the dissimi-
larities, we can utilize MFGW in the following applications:

(1) Indefinite Kernel

MFGW can be used for classification tasks [28] by construct-
ing the indefinite kernel as k(G, G̃) = exp(−λMFGW(G, G̃)),
where λ denotes the parameter such that λ > 0. By construct-
ing the kernel function, it is possible to incorporate MFGW
into classification methods.

(2) Subgraph Matching

Given a query graph Gq and a target graph Gt , the task of
finding a subgraph included in Gt that matches Gq is called
subgraph matching [23]. If the masses on the nodes are the
same for all nodes (i.e., ai = ãj), MFGW can be regarded
as a continuous relaxation of subgraph matching. Once the
MFGW between the query and the target graph is calcu-
lated, the correspondence matrix P∗, which is the solution of
the optimization problem in Eq. (3), can be obtained. This
correspondence matrix can be used as the solution of sub-
graph matching because P∗ represents the nodes in the target
graph that match the nodes in the query. Unlike FGW [1],
[3], [29], MFGW performs subgraph matching by consider-
ing edge-attributes. Note that MFGW does not require any
additional parameters (e.g., thresholds for node and edge
matching) even if attributes do not strictly match, because
MFGW finds the subgraph by minimizing the sum of the
transportation costs.

(3) Gradient of MFGW

Some machine learning applications require gradients with
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respect to the inputs. The gradient of MFGW with respect
to node-attributes or edge-embeddings can be obtained in
two ways. The first way is the algorithmic gradient with the
autograd technique [30], because the iterations in Eqs. (11)
and (12) and the generalized Sinkhorn iteration are algorith-
mically differentiable. Although algorithmic gradients can
be used even if iterations do not converge sufficiently [14],
[31], it is necessary to store the correspondence matrices in
each iteration, which requires a large memory footprint. The
second way is an approximation using the correspondence
matrix in the last step P(T ). Given an optimal solution P∗,
the gradient of MFGW with respect to the edge-embedding
ei j can be obtained as follows:

∂MFGW(G, G̃)
∂ei j

p

=
∑
k ,l

(1 − α)P∗ikP∗jl
∂∥ei j − ẽkl ∥pp,β

∂ei j
. (17)

The gradient of MFGW can be estimated using P(T ) instead
of P∗. The gradient with respect to the node-attributes xi
can be obtained in the same manner. In our experiments, we
employ Eq. (17) for the gradient to reduce memory usage.

(4) Barycenter of Multiple Graphs

Given graphs {G(m) | m = 1, . . . ,M}, the graph that min-
imizes the sum of dissimilarities between them is called
the barycenter. If MFGW is employed as a dissimilar-
ity measure, the barycenter graph Ḡ can be defined as
Ḡ = argmin

G

∑M
m=1 MFGW(G,G(m)). Given the number of

nodes in G, the node-attributes, edge-attributes, and edge
weights can be optimized via the gradient descent methods
using the gradient of MFGW. We can reveal common struc-
tures inherent in multiple graphs using the barycenter.

5. Experiments

In this section, we experimentally discuss the effectiveness
of MFGW on representative applications. The graphs are
assigned the one-hot vectors of discrete labels or normalized
continuous values as the node- and edge-attributes. If both
discrete labels and continuous values are available, the con-
tinuous values are used for the attributes. We have employed
edge weight values for the first dimension of edge-embedding
and β = 0.5 unless otherwise stated.

In all experiments, we set α = 0.1, ϵtarget = 0.01,
ϵinit = 1000 and p,q = 2. The amount of noise used in
the optimization varied depending on the costs as σ(t) =
0.00001 ∗maxik D(t)

ik
. The number of updates T is set to 20,

and the number of the generalized Sinkhorn iterations is set
to 5,000. In the subgraph matching task, the masses are set
to ai = aj = 1/max(N, Ñ) for all i, j. For the other tasks,
the masses are set to ai = 1

N and ãj =
1
Ñ

for all i, j. MFGW
was implemented using PyTorch [30].

5.1 Supervised Classification

We compare MFGW kernel with the representative graph

kernel methods; FGW kernel (FGW) [1], shortest path ker-
nel (SP) [9], Weisfeiler-Lehman Subtree Kernel (WL) [12],
Wasserstein Weisfeiler-Lehman Kernel (WWL) [16], and
Deep Divergence Graph Kernels (DDGK) [20] in the perfor-
mance of graph classification†. We implemented SP and WL
with GraKeL [32], while FGW, WWL and DDGK imple-
mentations were beased on the official releases [1], [16], [20].
Their performance was evaluated by training SVMs [33], em-
ploying six datasets with edge-attributes, AIDS (2000) [34],
Cuneiform (267) [35], MUTAG (188) [36], [37], PTC MR
(344) [13], BZR MD (306), and COX2 MD (303) [37], [38],
where the numbers in the parentheses indicates the numbers
of graphs in the datasets, respectively. All datasets were ob-
tained from [39]. The parameter of SVM (C) was optimized
in the range {10−7,10−6, . . . ,107} and the kernel parameter
λ is optimized in the range {2−7,2−6, . . . ,27} using 10-fold
nested cross-validation (CV) [40] as in [1]. To mitigate the
impact of dataset splitting during the CV, the same splitting
was used for all methods. For the intra-graph similarities
in MFGW and FGW, two settings were employed: one uses
the edge weight values and the other uses the shortest path
distances. Note that all edge weight values are binaries in all
the datasets. Since both BZR MD and COX2 MD contain
only complete graphs, we evaluated only the setting using
the edge weight values. The SVMs were implemented using
the scikit-learn [33]. The classification accuracy is shown in
Table 1. MFGW achieved the best performance in three out
of six datasets. Furthermore, MFGW outperformed FGW in
nine of the ten settings.

By optimizing β for each dataset, MFGW can improve
the accuracy, while MFGW with β = 0.5 already has a higher
performance than existing methods as shown in Table 1. We
can estimate the optimal β using the nested cross-validation
as well as the other parameters if the number of graphs in
the dataset is sufficient. Table 1 shows the accuracy obtained
from MFGW with tuned β in range {0.0,0.1, . . . ,1.0}. As
shown in the table, the performance of MFGW with tuned
β is not better than that of MFGW with β = 0.5, except for
PTC MR dataset. This is because the datasets used in this
experiment had small numbers of graphs for tuning β. If
the dataset contains a sufficient number of graphs, β can be
tuned appropriately with the validation set similar to PTC
MR dataset.

The prediction accuracy was also evaluated for datasets
with no edge-attributes (BZR, COX2 [38], ENZYMES [41],
[42], Synthetic [43], IMDB-B, and IMDB-M [44]). The ac-
curacy is shown in Table 2. Even for graphs without edge-
attributes, MFGW showed competitive performance with
the existing graph kernels. Compared with FGW, MFGW
achieved higher classification accuracy in nine of the twelve
settings. These results indicate that our heuristics lead to
better performance in the downstream task.

†For SP, WL, and DDGK, discrete node-labels are used for the
node-attributes if both discrete labels and continuous values are
available because these methods handle only discrete labels. We
employed RBF kernel for DDGK.
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Table 1 Classification accuracy in nested 10-fold CV

Table 2 Classification accuracy in nested 10-fold CV (No edge-attributes)

5.2 Subgraph Matching

We demonstrate the effectiveness of our optimization heuris-
tics in subgraph matching tasks. Since the solution of Eq. (3)
corresponds subgraph matching if all masses are the same,
we evaluate the solutions obtained by MFGW with the errors
in the subgraph matching task. We evaluate MFGW, MFGW
without heuristics, and FGW by using the six graph datasets
having edge-attributes. All graphs in the datasets were used
as targets, and a query is generated for each target. The query
is a subgraph containing nodes within a 2-hop distance from
a randomly selected node in the target.

The errors were evaluated by averaging the Frobenius
norm of the difference between the ground truth (i.e., the
optimal solution of Eq. (3)) and the correspondence matri-
ces obtained by using MFGW and FGW. We calculated
the ground truth using VF2 algorithm [23] implemented in
NetworkX [45]. If multiple subgraphs in the target matched
the query, the one having the smallest Frobenius norm with
the correspondence matrix was taken as the ground truth for
each method.

The errors are shown in Table 3. The table shows that
our heuristics effectively reduce the errors. Since the errors
correspond to the difference between the optimal solution
of Eq. (3) and the obtained solution, this indicates that our
heuristics are effective in obtaining solutions close to the
optimal solution. In addition, FGW yields a larger error than
MFGW including the “MFGW w/o edge-attributes” setting.
This indicates that our heuristics are effective even if the
edge-attributes are not available.

We then demonstrate the effectiveness of MFGW on
the similar subgraph search task. We tested similar sub-

graph searches on BZR MD dataset by using MFGW and
the state-of-the-art subgraph matching method, VF2 [23]. In
the dataset, the graphs have continuous edge-attributes and
discrete node-labels. Three subgraphs in the dataset was
used as the queries. The subgraph similarity search can be
performed by computing the MFGW between the query and
each graph in the dataset. The queries and the obtained
graphs (top-5) are shown in Fig. 3. For clarity, only edges
corresponding to chemical bonds are shown in the figure,
although BZR MD contains edge information regardless of
the presense of chemical bonds. In Fig. 3, the values on
the edges represent the edge-attributes and the node colors
represent the node-labels. For simplicity, edge-attributes are
shown only on the subgraphs that match the query. The red
lines denotes queries and matched subgraphs. As shown
in the figures, MFGW successfully retrieved the subgraph
that exactly matches the query in addition to subgraphs with
slightly different edge-attributes. The graphs obtained by
VF2 (threshold=0) [23], which are the subgraphs that exactly
match to the query, are also shown in Fig. 3. It is difficult
to set an appropriate threshold for continuous attributes. If
the threshold is too small, similar subgraphs cannot be ob-
tained as shown in Fig. 3. Conversely, if the threshold is
too large, too many subgraphs will be outputted. Unlike
First [22] and VF2 [23], MFGW is effective to find similar
subgraph matchings with continuous edge-attributes. This
is because MFGW can directly evaluate the similarity with-
out specifying any thresholds even if graphs have continuous
edge-attributes.

5.3 Barycenter Graph

Finally, barycenters were obtained to demonstrate the effec-
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Table 3 Subgraph matching error (×10)

Fig. 3 Subgraph similarity search with MFGW (Top-5).

Fig. 4 Barycenter graph obtained by MFGW

tiveness of MFGW. Figure 4 (a) illustrates the input graphs
generated by randomly adding edges to circle graphs with
noisy edge-attributes. With the gradient descent, we op-
timized the edge-attributes and edge weight values of the
randomly initialized barycenter graph having ten nodes; em-
ploying Adam (the learning rate is 0.1) [46]. The number
of iterations in the gradient descent was set to 200. The
graph having the lowest cost during the optimization was
chosen for the barycenter. The obtained graph is displayed in
Fig. 4 (b). As shown in Fig. 4 (b), the barycenter graph could
be a denoised graph. Note that only the node-attributes and
edge weights can be optimized with FGW, while the edge-
attributes can also be optimized with MFGW.

6. Discussion

(1) Importance of Edge-Attribute

MFGW balances intra-graph similarity and edge-attributes
with the parameter β. The importance of edge-attributes and
intra-graph similarity (i.e., the optimal β) varies depending
on the dataset. For example, in Sect. 5.1, the accuracy of
BZR MD dropped from 72.26 to 66.45 (−5.81 points) by
varying β from 0.5 to 1.0 in MFGW (W). This indicates
that edge-attributes are more important for the BZR MD

dataset than intra-graph similarity. Conversely, for MUTAG
dataset, the accuracy increased from 88.95 to 90.00 (+1.05
points) by varying β from 0.5 to 1.0. This indicates that
intra-graph similarity is more important than edge-attributes
for the MUTAG dataset. If the dataset has enough data, the
parameter β can be tuned with the validation set. Even if the
tuning is difficult, for example due to a small number of data
in the dataset, MFGW with β = 0.5 performs better than the
existing kernels, as shown in Sect. 5.1.

(2) Distance between Edge-Labels

In the experiments in Sect. 5, the distance between one-hot
encoded vectors of the labels are used for the distance be-
tween edge-labels. If some domain knowledge is available
(e.g., similarity between interatomic bonds), it can be used
to improve the quality of distances between edge-labels re-
sulting in high performance of subsequent tasks. This is
especially effective for datasets with large variations in the
distances between edge-labels. Furthermore, embeddings of
edge-labels can be optimized using a loss function of the
subsequent task (e.g., classification) using the gradient of
the MFGW, similar to Sect. 5.3. However, this paper focuses
on MFGW, which is the distance between edge-attributed
graphs, and the customization of the distance between edge-
labels is our future work.

7. Conclusion

In this paper, we proposed MFGW that is an OT dissimilarity
between graphs with edge-attributes. MFGW is an exten-
sion of FGW, and can directly handle edge-attributes. We
also proved that MFGW is pseudometric on edge-attributed
graphs, allowing the use of existing machine learning meth-
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ods. Heuristic techniques were also proposed for the non-
convex quadratic optimization required for MFGW. We
experimentally demonstrated that MFGW outperforms the
existing methods. An issue with MFGW is that the pa-
rameter α and the attributes, xi and ei j , should be properly
designed by the users. Optimizing these values for each task
such as classification, is the continuation of our work in this
domain.
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