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Artifact Removal Using Attention Guided Local-Global
Dual-Stream Network for Sparse-View CT Reconstruction

Chang SUN', Yitong LIU'®, and Hongwen YANG', Nonmembers

SUMMARY  Sparse-view CT reconstruction has gained significant at-
tention due to the growing concerns about radiation safety. Although recent
deep learning-based image domain reconstruction methods have achieved
encouraging performance over iterative methods, effectively capturing in-
tricate details and organ structures while suppressing noise remains chal-
lenging. This study presents a novel dual-stream encoder-decoder-based
reconstruction network that combines global path reconstruction from the
entire image with local path reconstruction from image patches. These
two branches interact through an attention module, which enhances visual
quality and preserves image details by learning correlations between image
features and patch features. Visual and numerical results show that the
proposed method has superior reconstruction capabilities to state-of-the-art
180-, 90-, and 45-view CT reconstruction methods.
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1. Introduction

Computed Tomography (CT) is a widely used medical imag-
ing modality for diagnosing various injuries, diseases, and
radiation therapy. However, concerns about the potentially
harmful effects of radiation and the need for radiation protec-
tion have become crucial issues in CT scans, as high radiation
doses can increase the risk of cellular DNA damage and can-
cer later in life. To address these concerns, the International
Commission on Radiologic Protection (ICRP) introduced
the “As Low As Reasonably Achievable” (ALARA) prin-
ciple in 1977, which aims to strike a balance between the
risks and benefits of radiation used for diagnostics. One
technique used to reduce CT radiation doses is sparse-view
CT scanning, which involves acquiring fewer measurements
of projection data. However, this approach often leads to
high levels of noise and streak artifacts in the reconstructed
images. Consequently, researchers have devoted their ef-
forts to developing advanced image reconstruction methods
to mitigate these challenges and enable the practical imple-
mentation of sparse-view CT scanners.

Recently, different kinds of deep learning (DL)-based
sparse view CT reconstruction algorithms have been pro-
posed, demonstrating superior reconstructed image quality
over traditional iterative methods. These DL methods can be
classified into four categories: post-processing in the image
domain [1]-[4], pre-processing in the projection domain [5],
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Fig.1  Overview of the proposed network.

joint processing in the projection and image domains [6],
and direct reconstruction in the projection domain[7]. In
this study, we focus on artifact removal and structure re-
finement of sparse-view CT images in the image domain.
The image-domain-based approach is not required for pro-
jection data, making it more advantageous in combination
with commercial CT reconstruction software.

Image-domain DL-based reconstruction methods usu-
ally utilize convolutional neural networks (CNN) to improve
initial reconstructions (often obtained from filtered back pro-
jection, FBP) by supervised learning. DD-Net[1], Improved
GoogLeNet [2] and Framing U-Net [3] are popular end-to-
end image-domain DL methods that improve image quality
using extensive training datasets and advanced DL networks.
Recently, influential ideas in deep learning, such as GAN [8],
attention mechanisms [9] have been applied in sparse-view
CT reconstruction, e.g., Lee et al. [4] designed a multi-level
wavelet convolutional neural network combining a wavelet
transform with modified U-Net, showing better streak artifact
suppression capability than the standard U-Net. However,
the previous methods did not consider the potential bene-
fits of utilizing local details from image patches and struc-
tural information derived from the entire image to achieve
a balance between noise reduction and the preservation of
structural details. Therefore, this study aims to address this
gap by proposing a solution that effectively combines ar-
tifact removal and structure refinement in sparse-view CT
reconstruction.

This study presents an end-to-end dual-stream, sparse-
view CT reconstruction network, as shown in Fig. 1. This
network comprises two components: global path reconstruc-
tion and local path reconstruction. Both paths utilize the
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encoder-decoder architecture, consisting of an encoder and a
decoder, to reconstruct the entire image and image patches,
respectively. The shared encoder ensures that image fea-
tures and patch features are embedded within the same fea-
ture context. However, different decoder facilities recon-
struct image features and patch features at different levels
of detail. Furthermore, the local path reconstruction incor-
porates an attention module designed to capture long-range
dependencies among deep features of patches and the entire
image. Unlike the attention modules used in FRD-Net[10],
our attention module focuses on exploiting the self-similarity
between patch-based and image-based features.

The proposed method has two advantages: Firstly, it
learns from multiple spatial scale inputs, including image-
scale and patch-scale, enabling the exploration of global and
local features. Secondly, the model fully exploits long-range
correlations between patch features and image features by
the attention mechanisms, resulting in better performance on
local details preservation and global structure reconstruction.

2. Proposed Method
2.1 Global Branch

The encoder extract the deep features of the image f, €
R*"9X®y from the input image X € R¥*W  and then the
decoder predicts the denoised image Y, from f;. In this
study, we designed two specific instantiations for the encoder
(Table 1) and decoder (Table 2). It should be mentioned that
each convolutional layer and transposed convolutional layer
is followed by a BatchNormalization and a ReLu function.
Besides, a sigmoid function is implied at the end of the
decoder to scale the output into [0, 1].

2.2 Local Branch

The input image is first divided into m un-overlapping
patches, and then the encoder extracts the deep patch fea-
tures f,, € R™»Xwp  After that, each patch feature f, goes

Table 1  Our encoder with ResNet-34[11] backbone. The input dimen-
sions for an image and a patch are 1 x 512 x 512 and 1 x 256 x 256,
respectively. Residual blocks are shown in brackets

Output Size Output Size
Block  Layer (image) (patch)
conuv 7x7,64,s2,p32 64 x256%x256 64 x 128 x 128
pooly 3x3,s2,pl 64 x 128 x 128 64 x 64 x 64
resp 3% 3,64 %3 128 x 64 x 64 128 x 32 x 32
3% 3,64
resy P33P0 6 256x32x32 256 x 16 % 16
3% 3,256
ress 273126 si2x16x16 512x8x8
3x3,512

42D kernels in 7 x 7, stride=2, padding=3.
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through an attention module to capture global contextual
information from the image feature f;.

As shown in Fig. 2, a multi-head self-attention mech-
anism [9] is adopted in the transformer block. The patch
feature f,, is transformed into the query matrices Q. The
image feature f; is transformed into the key matrice K and
the value matrice V. Then the scaled dot-product atten-
tion [9] Fyeap() is performed on the Q, K, V, followed
by a linear transform Fpjnygpag(). After that, the output
feature is reshaped and concatenated with f, and fed into
the feed-forward layer Frorw arp(). Finally, the weighted
patch feature is calculated by adding the f,, and the output
of Frorw arp (). After going through n stacked transformer
blocks, the decoder block reconstructs the patch features.

In this study, we divided the input image into m = 4
patches, set the number of transformer blocks n = 8, and
the number of attention heads N, = 8. The dimensions of
queries, keys and values vectors are 64. The feed-forward
block contains two convolutional layers with kernel size 1.
Each convolutional layer is followed by batch normalization
and the ReLu function.

2.3 Loss Function
Denote the ground-truth image, the output of the global

branch and the output of the local branch as Y, ¥, and ¥,,,
respectively. The training loss is defined as the sum of the

Table 2  Network architecture of the decoder module.
Output Size Output Size
Block  Layer (image) (patch)
conv(2048,k3,s1,p1)*
conuv up(512,k352p])b 512 x 32 x 32 512x 16 X 16
conv C"E;gg?ég’;gl")’ D osexeaxes  256x32x32
conv(512,k3,s1,pl)
conuvs up(128,k352p1) 128 x 128 x 128 128 x 64 x 64
conug C"Egiéiﬁgi’;gf;l) 64 x 256 x 256 64 x 128 x 128
conv(256,k3,s1,pl)
conus up(64,k3s2p1) 64 x 512 x 512 64 x 256 x 256

32 x 256 x 256
1 x 256 x 256

convg  conv(32k3,s1,pl) 32 x 512 %512
convy  conv(1l,k3,s1,p0) 1x512x512
42D kernels in 3 X 3, stride=1, padding=1.
btransposed convolution operator(kernel size 3 x 3, stride=2, padding=1).
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Fig.2  Architecture of the attention module. The attention module is
composed of a stack of n transformer blocks Frr an (). Frr AN () contains
an attention layer Fao77 £ n () and a feed-forward block Frorw ARD ()-
F a1t E N () consists of Ny, parallelly calculated attention heads Fg g A p ()
and a linear block F1.i NEAR().
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mean square error (MSE) between Y and Y, and the MSE
between Y and Y),.

Lipss = @ ||Y - Y‘]”i + ||Y - Yf’“; @)

a is a tradeoft parameter.
3. Experiments and Results
3.1 Experiment Datasets

An open clinical dataset LungCT-Diagnosis [12], [13] is
adopted in this study. 60 lung CT scans acquired between
the years 2006 and 2009 are selected, including 4609 images
with pixel size 512 x 512. The CT scans are divided into
three datasets: 43 scans for training (3198 images), 5 scans
(408 images) for validation and 12 scans (1003 images) for
testing.

To model degradation in a real CT scanner, the CT im-
age pixel in terms of a Hounsfield Units (HU) value is first
converted to an attenuation coefficient value of u. After that,
given a number of projection views, the Operator Discretiza-
tion Library (ODL) [14] is used to generate tomographic pro-
jection data S in a commonly used fan beam geometry: the
radius of the source and detector are 346 and 261, respec-
tively. Then we simulated Poisson noise and Gaussian noise
to the final intensities of the X-ray and recalculated S using
the Beer-Lambert Law [15].

3.2 Experiment Setup

All the models are implemented by PyTorch and trained on
a single GPU (NVIDIA GeForce RTX 2080 Ti) using the
Adam optimizer (8; = 0.9 and B, = 0.999). We trained the
models in 65 epochs (batch size = 2), starting with a learning
rate of 1 x 107 and reducing it by half at the 50th epoch. We
test the performance of the model per epoch on the validation
dataset and select the best model with the lowest MSE.

PSNR and SSIM are used for quantitative evaluation.
For calculation, we used a [-1000, 1500] HU window for all
images and normalized the CT values to [0,255].

3.3 Ablation Study of Training Loss

An ablation study was conducted to analyze the effect of @ on
the reconstruction performance. The results are summarized
in Fig. 3 (a). It can be seen that @ = 0.25 has the worst PSNR
on the validation dataset, @ = 0.5 has a slight improvement,
and @ = 1 achieves the best reconstruction performance in
terms of PSNR. Hence, @ = 1 is chosen for the rest of the
experiments.

3.4 Ablation Study of Number of Transformer Blocks
We performed an ablation study to compare the performance

of models with different numbers of transformer blocks . In
this experiment, we tested n = 5,6,7, 8 as shown in Fig. 3 (b).

1107

Ao RATAN
PN

n
n
n
n
n

I
[
2
8

&

8

a=025]
— a=05 |
a1

2NN W ow
S &
PSNR on validation dataset
N
&

PSNR on validation dataset

o)

S

\ , | , ! . ! | , | , .
10 20 30 40 50 60 10 20 30 40 50 60
epoch epoch

(@) (b)

3 4 —A— PSNR
£ 1 39.5F -o.
Ae—
15 7T o
1 39.0 e y

m=64 ]
— m=16]
— m-a4

s

8
s
8
°
o

&
S
@

8

NN oW ow
5

S

PSNR on validation dataset
running time (s) per image

¥

PSNR on validation dataset

G

~@- running time(s)

m=16 m=6d"C

5
3
s
IS

10 20 30 40 50 60
epoch

(©) (d)

Fig.3  Results of ablation study. (a) Comparison of PSNR of models
trained with different @ parameters on the validation dataset. (b) Com-
parison of PSNR of models trained with different number of transformer
blocks n on the validation dataset. (c) Comparison of PSNR of models
trained with different number of local patches m on the validation dataset.
(d) Comparison of running time of models trained with different number of
local patches m.

It can be noticed that the PSNR shows a slight improvement
as n increases from 5 to 7, while n = 8 shows a relatively
more considerable improvement compared to n = 7. How-
ever, as n increases to 9, the performance of the reconstructed
model decreases severely, suggesting that a large number of
transformer blocks may lead to overfitting the model to the
training dataset. Hence, n = 8 is chosen for the rest of the
experiments.

3.5 Ablation Study of Patch Size

In the local branch of the proposed network, we first di-
vided the input image into m patches. We performed an
ablation study to compare the performance of models with
m =4, m = 16 and m = 32. The results are summarized
in Fig.3(c). It can be seen that the PSNR on the valida-
tion dataset of m = 4 and m = 16 are larger than that of
m = 32. Besides, we compared the running time (s) per im-
age of these three models. Specifically, we run each model
ten times each (reconstructing one image each time) and cal-
culate the running time for each run. Finally, the average of
the ten running times is used as the metric. The results are
shown in Fig.3 (d). The running time for m = 4, m = 16
and m = 32 are 0.109s, 0.207s and 0.718s per image. Con-
sidering the computation load and the reconstruction image
quality, m = 4 is chosen for the rest of the experiments.

3.6 Ablation Study of Attention Module

To understand the contribution of the attention module to
the proposed network, we designed two additional baseline
models, Image_model and Patch_model for evaluation. Im-
age_model retains only the global branches of the proposed
architecture, while Patch_model includes local branches
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without attention modules. The numerical results summa-
rized in Table 3 show that our model produces the high-
est PSNR and SSIM for all 180 views, 90 views, and 45
views-reconstruction, which validates the effectiveness of
the attention module and dual-stream learning strategy. Fig-

Table 3  Comparison of average PSNR/SSIM in ablation study of atten-
tion module.
Method 180 views 90 views 45 views
FBP 26.2113/0.7598  19.7327/0.5917  15.0599/0.4597
Image_model ~ 39.2138/0.9681  34.7704/0.9301  30.3258/0.8806
Patch_model ~ 38.9136/0.9654  34.6407/0.9263  30.2567/0.8802
ours 39.3790/0.9681  34.9991/0.9314  30.4982/0.8902

90 views 180 views

45 views

Image model

Patch_model

struction algorithms on the test dataset.

Ours

Ground truth

o I
o ol

Fig.4  Visual results of zoomed-images in the ablation study of attention
modules.
Table 4  Comparison of average PSNR/RMSE between different recon-
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ure 4 compares the de-artifacting performance of different
methods visually, where our method better preserves delicate
structures and removes streaking artifacts.

3.7 Comparison with Existing Methods

We compared the performance of the proposed method
with the state-of-the-art image-domain-based DL methods
Zhang [1], Xie [2], Han [3] and Lee [4]. Table 4 shows that
our method performs best regarding PSNR and SSIM. We
also compared the running speed of these methods. FBP,
Zhang [1], Xie [2], Han [3], Lee [4] and the proposed method
take about 0.038s, 0.045s, 0.042s, 0.142s, 0.077s and 0.109s
to reconstruct a CT image on GPU. It shows that our model
achieves comparable reconstruction speed. The zoomed vi-
sual results are shown in Fig. 5. It can be seen that the pro-
posed method eliminates most of the artifacts and suppresses
the noise compared to other state-of-the-art methods.

4. Conclusion

In this study, we propose an attention-guided local-global
dual-stream encoder-decoder network to improve the im-
age quality of sparse-view CT reconstruction. By exploit-
ing the correlation between the patch features in the local
path and the image features in the global path, the proposed
method combines detailed information from the patches and
the global structure of the whole image. The experimen-
tal results validate the effectiveness of the proposed model
and show its potential to suppress streak artifacts and pre-
serve detail structure, which is expected to provide practical
guidance for improving the de-artifacting ability of image-

Method 180 views 90 views 45 views
FBP 26.2113/0.7598  19.7327/0.5917  15.0599/0.4597 domain methods in sparse-view CT reconstruction tasks.
Zhang [1]  37.8333/0.9428  33.1354/0.8922  28.9530/0.8177

Xie [2] 38.4415/0.9582  34.0091/0.8892  29.5440/0.8282

Han [3] 38.4478/0.9598  34.0644/0.8891  29.7970/0.8379 ACkHOWIedgments

Lee [4] 38.9174/0.9636  34.1834/0.8902  30.0450/0.8414 .

ours 39.3790/0.9681  34.9991/0.9314  30.4982/0.8902 C. Sun s supported by BUPT Excellent Ph.D. Students Foun-
FBP Zhang [1] Xie [2] Han [3] Lee [4] Ours Ground truth
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Comparison of different reconstruction algorithms. Visual results of zoomed-in images.
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dation (CX2022203).
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