
DOI:10.1587/transinf.2023EDL8064

Publicized:2024/07/22

This advance publication article will be replaced by
the finalized version after proofreading.

IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

LETTER
Loss Function for Deep Learning to Model Dynamical Systems

Takahito YOSHIDA†a), Takaharu YAGUCHI††b), Nonmembers, and Takashi MATSUBARA†††c), Member

SUMMARY Accurately simulating physical systems is essential in var-
ious fields. In recent years, deep learning has been used to automatically
build models of such systems by learning from data. One such method is the
neural ordinary differential equation (neural ODE), which treats the output
of a neural network as the time derivative of the system states. However,
while this and related methods have shown promise, their training strategies
still require further development. Inspired by error analysis techniques in
numerical analysis while replacing numerical errors with modeling errors,
we propose the error-analytic strategy to address this issue. Therefore, our
strategy can capture long-term errors and thus improve the accuracy of
long-term predictions.
key words: Deep learning, physical system, partial differential equation,
numerical error analysis

1. Introduction
Neural networks have been used to automatically model var-
ious real-world systems, including natural phenomena, hu-
man interactions, and industrial machinery. In particular,
continuous-time dynamical systems are often described us-
ing ordinary differential equations (ODEs) d

dtu = f(t,u)
that specify the time t and system state u. Recently, a model
called n eural ODE has gained popularity among researchers
in this field [1], as it combines neural networks to model the
time-derivative f with advanced numerical integrators and
adjoint methods. In the field of signal processing, several
studies have extensively investigated the errors that occur in
neural networks for ODEs [2]–[4], albeit they do not apply
these insights to learning algorithms.

If pairs of states u and the corresponding time-
derivatives f(t,u) are given, one can train a neural network
fNN such that its output fNN (t,u) approaches the time-
derivative f(t,u) [5]; this is essentially a regression prob-
lem. If only initial condition u(0) and terminal condition
u(T) are given, one can solve ODE d

dtu = fNN (t,u) de-
fined using neural network fNN from initial condition u(0),
obtain the terminal value uNN (T), and then update the pa-
rameters such that the terminal value uNN (T) approaches
the given terminal condition u(T) [1]. When one consid-
ers the whole process to obtain a terminal value uNN using
a neural network fNN as a single model, this problem is

†Graduate School of Engineering Science, Osaka University
††Graduate School of System Informatics, Kobe University

†††Graduate School of Information Science and Technology,
Hokkaido University

a) E-mail: yoshida@hopf.sys.es.osaka-u.ac.jp
b) E-mail: yaguchi@pearl.kobe-u.ac.jp
c) E-mail: matsubara@ist.hokudai.ac.jp

also a regression problem. Practically, many observations
{u(tk)} for t0 < t1 < · · · < tK are available per a time-
series. The same strategy applies to every pair of successive
observations u(tk) and u(tk+1) [6], [7]. Another possible
strategy is to adjust the parameters such that the predicted
states uNN (tk) at corresponding time points in the initial
value problem match observations u(tk) [8]. It is worth
noting that the thorough experiments in reference [8] have
verified that the multi step strategy, which captures long-
term errors, improves the accuracy of long-term predictions,
which led many subsequent studies to employ the same or
similar strategies (e.g., [7]). However, the multi-step strat-
egy (as well as the long-term strategy) requires a memory
footprint and computational cost proportional to the length
of the error calculation. Consequently, when memory usage
and computational resources are balanced, a model can learn
only a limited number of time series at once, increasing er-
ror variance and reducing learning efficiency. Additionally,
while the multi-step strategy attempts to minimize errors at
each point in time, errors accumulate over time, making it
meaningless to reduce them only after they have become
large.

In this study, we propose an error-analytic strategy as a
new strategy for training neural ODEs to be more accurate in
long-term predictions when many observations are given per
a time series. The proposed strategy only performs long-term
predictions virtually, allowing it to reduce variance while
considering long-term errors. Additionally, our proposed
method is more logical, aiming to minimize errors that could
cause significant future discrepancies as soon as they occur.

Particularly, our study makes the following contribu-
tions. (1) The proposed error-analytic strategy is inspired
by error analysis techniques in numerical analysis and is
derived by replacing numerical errors with modeling er-
rors. Therefore, it is reasonable to train neural networks
that model ODEs than the previous strategies based on a
regression problem [1], [6], [7] or RNN [8]. (2) The pro-
posed error-analytic strategy can capture a long-term error
(e.g., an error at time tk+M for M > 1) and, hence, im-
prove the long-term prediction performance. Hence, it can
learn a higher-performing model than strategies that only
consider local errors [1], [6], [7]. (3) The proposed error-
analytic strategy is applied to a numerical integration only
between two observations u(tk) and u(tk+1). Hence, it is
more memory and computationally-efficient than strategies
that require long numerical integrations [8].

Copyright © 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

2. Background

2.1 Ordinary Differential Equation

Our target is systems described by ODEs d
dtu = f(t,u)

for time t and system state u [9]. The function f defines
the time derivative d

dtu of state u. We assume the state
u is fully observable. We can discretize systems described
by partial differential equations (PDEs) in space, obtaining
systems of ODEs. If f is Lipschitz continuous, there exists
a unique solution u(t) given an initial condition u(0) = u0;
u(t) = u0+

∫ t

0
f(τ,u(τ))dτ . Obtaining solutionu(t) from

the initial condition u0 is called an initial value problem.
However, it is often difficult to be solved analytically; instead,
it is solved numerically. Given a set of time points t0 <
t1 < · · · < tK , a numerical solution is typically obtained as
ũk+1 = ũk + Φ̃(f, tk, ũk,∆tk), where ũk is a numerical
approximation to state u(tk) at time tk, ∆tk = tk+1 −
tk is the time step size, and Φ̃ is an increment function
defined using a numerical solver. The Euler and Runge-
Kutta methods are widely used numerical solvers.

Let us consider a case where a set ofK+1 observations
{uk}Kk=0 = {u(tk)}Kk=0 at time point tk is given, but the
underlying ODE is unknown. Learning f from data is re-
ferred to as system identification in the context of dynamical
systems theory [10]. However, it is not easy when f is non-
linear; instead, many previous studies have approximated Φ̃
using a discrete-time map [10].

2.2 Comparison Training Strategies

Following [8], we define a single-step strategy. Given a set
of observations {uk}Kk=0, the cost function to be minimized
C is given as

C(u) = 1
K

K−1∑
k=0

L(uk+1, ũk+1)
∣∣∣
ũk=uk

, (1)

where L denotes a loss function such as the mean squared
error (MSE). In hindsight, previous studies employed a
single-step strategy. However, as HNNs have shown, the
performance of time-derivative approximations and short-
term predictions does not often match the performance of
long-term predictions owing to the accumulation of model-
ing errors.

To learn long-term dynamics, we considered a base-
line called long-step strategy. From an initial condition uk,
neural ODE solves an initial value problem for M steps and
obtains state ũk+M . Then, the cost function C is given as

C(u) = 1
K−M+1

K−M∑
k=0

L(uk+M , ũk+M)
∣∣∣
ũk=uk

. (2)

However, a long-term prediction is inherently difficult. Let
us consider the predicted results obtained through the single-
step strategy and the long-step strategy in the convergence
system shown in Figure 1. Although the m-th step prediction
result obtained using the long-step strategy may be better

Fig. 1 Conceptual diagram of predicted results using the single-step strat-
egy (left) and long-step strategy (right) in a convergence system. Consid-
ering the case where m = 4 for the long-step strategy, the results obtained
using the strategy may deviate from the ground truth in the preceding steps,
even if the predicted result at the m-th step is accurate.

than that obtained using the single-step strategy, there is
a possibility that the preceding process deviates from the
ground truth. Therefore, it is conceivable that the results
obtained using the long-step strategy may deteriorate.

Chen et al. (2018) proposed a multi-step strategy in-
spired by the typical training strategy of RNN. UsingM -step
predictions, the parameters are updated by minimizing the
error at each step, that is, by minimizing

C(u) = 1
K−M+1

K−M∑
k=0

(
1
M

M∑
m=1

L(uk+m, ũk+m)
∣∣∣
ũk=uk

)
.

(3)

However, an M -step prediction requires M times the com-
putation time and memory of a 1-step prediction. Although
the adjoint method reduces memory consumption, it further
increases computation time, and the final performance may
decrease because of numerical errors during learning. More-
over, it is unclear whether the strategy for RNN is suited for
neural ODE.

Contrary to these strategies, our proposed error-analytic
strategy solves an initial value problem only for a single-step
and dynamically weights samples based on the estimated
long-term error.

3. Method

3.1 Modeling Error Analysis

In this section, we introduce the proposed error-analytic
strategy for training neural ODEs. First, we analyzed the
modeling error of neural ODEs. We suppose a target sys-
tem to be described by an ODE d

dtu = f(t,u), but we can
observe only snapshots of states uk at time points tk for
k = 0, . . . ,K . For simplicity, the time-derivative f is in-
dependent of time t, and the step size ∆tk = tk+1 − tk
is constant ∆t. Then, we define a discrete-time map
Φ(uk) = uk+1 − uk.

Let fNN denote a model to be trained, which can be
neural ODE, HNN, and others. Combined with a numerical
solver, a discrete-time map Φ̃(fNN , t,u,∆t) is defined. For
simplicity, we refer to the discrete-time map as neural ODE
and denote it by Φ̃NN (u). Because the neural ODE Φ̃NN

is not identical to the true discrete-time map Φ, we define a
remainder function R(u) := Φ̃NN (u) − Φ(u), which cor-
responds to a single-step (i.e., local) modeling error of the

LETTER
3

neural ODE Φ̃NN . The single-step strategy aims to minimize
the remainder function R.

Our final goal is to minimize a long-term (i.e., global)
modeling error. Inspired by the forward error analysis, we
use the Taylor expansion to express the long-term modeling
error. The states are updated by the true and modeled dynam-
ics asuk+1 = (Φ+I)(uk), ũk+1 = (Φ+R+I)(ũk), where
I denotes the identity map. In the same manner, the states af-
term steps are obtained asuk+m = (Φ+I)m(uk), ũk+m =
(Φ +R+ I)m(uk). We assumed that an observation uk at
time tk is given and set ũk = uk. Let en,n+m denote the
m-step error from the n-th step. By definition, ek,k = 0 and
ek,k+1 = (Φ + R + I)(uk)− (Φ + I)(uk) = R(uk). The
m-step error ek,k+m is

ek,k+m = ũk+m − uk+m

= (Φ +R+ I)(ũk+m−1)− uk+m

= (Φ +R+ I)(uk+m−1)

+ ∂(Φ+R+I)
∂uk+m−1

(ũk+m−1 − uk+m−1)

− uk+m + o(|ũk+m−1 − uk+m−1|)
= uk+m +R(uk+m−1)

+ ∂(Φ+R+I)
∂uk+m−1

(ek,k+m−1)

− uk+m + o(|ek,k+m−1|),

= ek+m−1,k+m + ∂(Φ+R+I)
∂uk+m−1

(ek,k+m−1)

+ o(|ek,k+m−1|).

(4)

At (k+m)-th step, a local error ek+m−1,k+m is added in, and
the accumulated error ek,k+m−1 is enlarged (or shrunken)
by factor ∂(Φ+R+I)

∂uk+m−1
. By applying the above equation recur-

sively from the zero-step error ek,k, the m-step error ek,k+m

can be obtained. However, the above equation requires solv-
ing an initial value problem for m steps to obtain the m-step
error. Moreover, obtaining the Jacobian matrix ∂(Φ+R+I)

∂uk+m−1

is computationally expensive, although recent automatic dif-
ferentiation libraries make it possible [11].

3.2 Error Approximations

To reduce the computation time, we employed the fol-
lowing approximations. We assumed that the remainder
function R is less significant compared to main dynam-
ics Φ + I . Because of the linearity of differentiation,
∂(Φ+R+I)
∂uk+m−1

= ∂(Φ+I)
∂uk+m−1

+ ∂R
∂uk+m−1

≃ ∂(Φ+I)
∂uk+m−1

. More-
over, the denominator and numerator are approximated as
finite differences in the observations. That is, ∂(Φ+I)

∂uk+m−1
=

diag(uk+m+1−uk+m−1

uk+m−uk+m−1
) + I . Let Jm denote the Jacobian

matrix. Then, Jm is obtained as

Jm−1 =
∂(Φ + I)

∂uk+m−1
≃ uk+m+1 − uk+m

uk+m − uk+m−1
(5)

Assuming that o(|ek,k+m−1|) in Equation (4) is less signif-
icant and ek+m−1,k+m ≃ ek+m−2,k+m−1, the m-step error

Table 1 Results on the CH and the KdV equations.

Model CH equation KdV equation

single-step 9.66×10−3 3.74×10−1

long-step 5.38×10−2 (m = 13) 3.73×10−1 (m = 6)
multi-step 4.29×10−2 (m = 14) 3.59×10−1 (m = 8)

proposed 3.68×10−3 (m = 15) 3.05×10−1 (m = 6)

Fig. 2 Mean absolute errors of states for the CH equation (left) and KdV
equation (right). The results of both the CH and KdV equation are shown
for the best m values.

ek,k+m is rewritten as

ek,k+m ≃ ek+m−1,k+m + Jm(ek,k+m−1)

= ek+m−1,k+m + Jm−1ek+m−2,k+m−1

+ Jm−1Jm−2ek,k+m−2

≃ (I + Jm−1 + · · ·+ Jm−1 · · · J1)ek,k+1

= (

m−1∑
i=1

i∏
j=1

Jm−j + I)ek,k+1 (m > 1) (6)

Our proposed strategy uses the cost function C of the
following form with the m-step error ek,k+m:

C =
1

KM

K∑
k=0

(

m−1∑
i=1

i∏
j=1

Jm−j + I)ek,k+1

 . (7)

With m = 1, the cost function has the same form as the
single-step strategy.

4. Experiments and Results

We evaluated our strategy on the PDE systems, namely
the Cahn-Hilliard (CH) and KdV equations. We used the
HNN++ for the CH system and neural ODE for the KdV sys-
tem. The neural ODE treats the output of a neural network
as the time derivative of the input [1]. The HNN++ takes the
gradient of a neural network for obtaining the time deriva-
tive, guaranteeing the underlying geometric properties. To
emphasize the effectiveness of the error-analytic strategy, we
employed a simpler integration method, namely the explicit
midpoint method (RK2) for the CH and KdV equation. For
comparison, we also trained these models using the single-
step, long-step, and multi-step strategies.

After training, we solved the initial value problems and
obtained the MSE between the ground truth and states pre-
dicted by trained models. Table 1 summarizes the results,
providing a median of ten trials. For the PDE systems, the
error-analytic strategy improved the prediction accuracy. For
the CH equation, the prediction of the long-step and multi-
step strategies exhibited large errors, indicating that learning

4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Fig. 3 CH equation predicted by the HNN++ with the RK2 method. (left)
Ground truth uk and predicted state ũk . (right) The squared error between
the ground truth and predicted state. The results of the long-step, multi-
step, and proposed strategies are with m = 13, m = 14, and m = 15,
respectively.

Fig. 4 MSE of (left) the CH equation predicted by the HNN++ with the
RK2 and (right) the KdV equation predicted by the NODE with the RK2
method by the varying prediction step size m. The vertical axis is on a
logarithmic scale.

by long-term prediction is unsuitable for the CH equation.
However, for the KdV equation, the accuracy improved when
the multi-step strategy was used.

Figure 2 shows the relative error along long test trajec-
tories. Using the error-analytic strategy, we observed that
the errors were relatively less extensive in the last steps than
in the other strategies for both the CH and KdV equations.
We also visualized the prediction results of the CH equation,
which is depicted in Figure 3. Without the error-analytic
strategy, the prediction exhibited large errors and awkward
noises for the CH equation. Figure 4 shows the results when
varying the prediction step size m. For the CH equation, the
proposed method suggests that the prediction accuracy im-
proved even when exceeding 15, by setting an upper limit of
m. As for the long-step and multi-step methods, a significant
decrease in prediction accuracy was observed for m = 2.
Concerning the KdV equation, the proposed method showed
the best results for m = 6, with a tendency for the predic-
tion accuracy to deteriorate when m is increased beyond the
value.

Furthermore, we evaluated our strategy on noisy data.
Table 2 summarizes the results obtained for the CH and
KdV equations with noise. Based on the obtained results,
it is evident that when noise is introduced in both datasets,
the prediction accuracy of our proposed method noticeably

Table 2 Results on CH and KdV equations with noise.

Model CH equation KdV equation

single-step 4.08×10−2 3.82×100

long-step 5.35×10−3 (m = 15) 2.00×100 (m = 8)
multi-step 1.77×10−3 (m = 15) 1.92×100 (m = 8)

proposed 4.56×10−2 (m = 15) 7.88×100 (m = 8)

decreases. However, when applied to the CH equation, the
long-step and multi-step methods exhibit improved perfor-
mance when dealing with noisy data compared to noise-free
scenarios. This indicates the usefulness of these methods for
noisy data.

5. Conclusion
We introduced an error-analytic approach as a novel method
to enhance the accuracy of long-term predictions when train-
ing time series datasets. We evaluated the error-analytic
strategy on the PDEs and demonstrated that a model trained
using the proposed strategy outperformed the state-of-the-art
baselines. The theoretical analysis of the improved perfor-
mance of our proposed strategy remains a topic for future re-
search. Since it handles sampled data (i.e., time series that is
discretized in time), methods designed for continuous-time
dynamics, such as the Hamilton-Jacobi-Bellman equation,
cannot be directly applied. In addition, it may be possible to
integrate the error analysis in previous studies [2]–[4] with
our proposed strategy, achieving a refined performance.

Acknowledgment
This study was partially supported by JST PRESTO (JP-
MJPR21C7), JST CREST (JPMJCR1914), JST ASPIRE (JP-
MJAP2329),and JSPS KAKENHI (19H04172, 19K20344,
24K15105), Japan.
References

[1] T.Q. Chen et al., “Neural Ordinary Differential Equations,” NeurIPS,
pp.1–19, 2018.

[2] H. Nam et al., “Error estimation using neural network technique for
solving ordinary differential equations,” Advances in Continuous and
Discrete Models, vol.2022, 2022.

[3] C. Filici, “Error estimation in the neural network solution of ordinary
differential equations,” Neural networks : the official journal of the
International Neural Network Society, pp.614–7, 2010.

[4] A.S. Dogra, “Error estimation and correction from within neural
network differential equation solvers,” 2020.

[5] S. Greydanus et al., “Hamiltonian Neural Networks,” NeurIPS, pp.1–
16, 2019.

[6] T. Matsubara et al., “Deep Energy-Based Modeling of Discrete-Time
Physics,” NeurIPS, 2020.

[7] S. Liang et al., “Stiffness-aware neural network for learning Hamil-
tonian systems,” ICLR, pp.1–16, 2022.

[8] Z. Chen et al., “Symplectic Recurrent Neural Networks,” ICLR,
pp.1–23, 2020.

[9] E. Hairer et al., Geometric Numerical Integration: Structure-
Preserving Algorithms for Ordinary Differential Equations, Springer
Series in Computational Mathematics, vol.31, Springer-Verlag,
Berlin/Heidelberg, 2006.

[10] O. Nelles, Nonlinear System Identification, Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2001.

[11] A. Paszke et al., “Automatic differentiation in PyTorch,” Autodiff
Workshop on Advances in NIPS, pp.1–4, 2017.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

