
DOI:10.1587/transinf.2023EDL8080

Publicized:2024/05/20

This advance publication article will be replaced by
the finalized version after proofreading.



IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
1

LETTER
EfficientNet Empowered by Dendritic Learning for Diabetic
Retinopathy

Zeyuan JU†, Zhipeng LIU†, Yu GAO†, Haotian LI†, Qianhang DU†, Kota YOSHIKAWA†, Nonmembers,
and Shangce GAO†a), Member

SUMMARY Medical imaging plays an indispensable role in precise
patient diagnosis. The integration of deep learning into medical diagnos-
tics is becoming increasingly common. However, existing deep learning
models face performance and efficiency challenges, especially in resource-
constrained scenarios. To overcome these challenges, we introduce a novel
dendritic neural efficientnet model called DEN, inspired by the function
of brain neurons, which efficiently extracts image features and enhances
image classification performance. Assessments on a diabetic retinopathy
fundus image dataset reveal DEN’s superior performance compared to Ef-
ficientNet and other classical neural network models.
key words: deep learning, convolutional neural network, diabetic
retinopathy, dendritic neuron model

1. Introduction

Diabetes is a metabolic disease characterized by elevated
levels of sugar in the blood and urine. Its onset mecha-
nism usually involves insufficient insulin secretion or insulin
resistance, leading to ineffective utilization of glucose, re-
sulting in high blood sugar levels. Meanwhile, diabetes not
only affects blood sugar levels but also gives rise to a range
of severe complications, one of which is diabetic retinopa-
thy (DR) [1]. This condition directly impacts a patient’s vi-
sion and eye health. Although it may be asymptomatic in its
early stages, it can lead to blindness without timely monitor-
ing and intervention. Therefore, eye examinations become
crucial for preventing complications.

In the medical domain, the conventional approaches to
diagnosing DR necessitate manual examinations. This pro-
cedure entails a meticulous evaluation of retinal images by a
seasoned and proficient specialist. These examinations ex-
hibit constraints and susceptibility to specific factors such
as noise, lighting disparities, and variations in photography
equipment. Therefore, effectively extracting features from
datasets under these circumstances can be rather demand-
ing [2].

Deep learning methods have been widely used in med-
ical diagnostic problems with great success. They are less
affected by environmental factors and can alleviate the dif-
ficulty of extracting effective features from large amounts
of data. However, existing deep learning models still face
some performance and efficiency challenges.

MobileNet [3] has lower accuracy and may perform
poor than ResNet50 [4] in tasks that require high accu-
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racy. ResNet50 and DenseNet161 usually achieve high ac-
curacy in image classification, object detection, and seman-
tic segmentation tasks, but they may not be suitable for small
datasets [5]. Consequently, researchers have been continu-
ously exploring methods to enhance model performance and
efficiency, with a focus on aspects like model size, structure,
and characteristics.

Many traditional models have sought to simplify the in-
tricate biological mechanisms at play, providing highly dis-
tilled, phenomenological representations of the input-output
characteristics of neurons [6]. The McCulloch-Pitts neu-
ron, initially proposed by McCulloch and Pitts, represents
a streamlined abstraction of a neuron [7]. A pivotal concept
in contemporary deep learning technology is the “percep-
tron” [8]. However, it is crucial to acknowledge that the
fundamental operation of the perceptron entails the linear
summation of inputs and the establishment of output thresh-
olds. This simplistic approach overlooks the temporal intri-
cacies inherent in non-linear synaptic integration processes
and the true nature of neuronal output.

Gao et al. proposed a dendritic neural model (DNM)
which inspired in biological neurons to solve nonlinear
problems [9]. This in-depth research has led to its in-
creased utilization for enhancing the performance of med-
ical image classification and segmentation networks [10]
[11]. Moreover, its application has expanded from the real-
valued domain to the complex-valued domain, with supe-
rior performance in various tasks compared to other mod-
els [12]. We introduced a novel dendritic efficient neu-
ral model called DEN, which incorporates dendritic neural
model (DNM) into EfficientNet [13]. This model draws in-
spiration from the workings of brain neurons, combining ef-
ficient image feature extraction with non-linear information
processing to enhance performance in image classification
tasks. The experimental results suggest that the utilization
of the DEN model for DR classification in medical eye im-
ages has yielded promising results. Compared to five classi-
cal models, the DEN model has performs a notable perfor-
mance enhancement, with an increase in accuracy by 1.8%.
This outcome underscores the potential and superiority of
the DEN model in addressing challenges related to medical
image classification, providing novel solutions for support-
ing diagnostics in the medical domain. The main contribu-
tions of this paper are as follows:

1) We introduce a novel DEN model, which amalgamates
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Fig. 1: The DEN structured diagram. (a) represents a baseline network example. (b)-(d) are indicative of traditional scaling
techniques, individually boosting a specific aspect of network width, depth, and resolution. (e) exemplifies the compound
scaling approach, scaling all three dimensions with a fixed ratio uniformly. (f) illustrates the structured diagram of DNM.

the non-linear attributes of dendritic neurons with the
robust feature extraction capabilities of deep learning,
offering a fresh perspective for medical image classifi-
cation and various application domains.

2) Experimental results validate the superior performance
of the proposed DEN model compared to other baseline
models, particularly in the classification of medical di-
abetic retinopathy.

2. Dendritic neural efficient model

In this study, we propose DEN, aimed at enhancing the
performance and efficiency in medical image classification
tasks. The network structure of DEN consists of two main
components: the image feature extraction component and
feature classification component. The former is capable
of efficiently extracts valuable features from input images.
The latter is designed to handle complex non-linear relation-
ships, enabling more flexible feature transformations and
weightings, allowing it to adapt to various data types. The
overall framework of DEN is depicted in Fig. 1.

Initially, the input data is standardized to enhance the
training efficiency. Next, the data is fed into the Efficient-
Net network for feature extraction of diabetic eye corneal
disease. Furthermore, a feature mapping module, in order
to enhance the mapping of feature vectors to prediction out-
comes within the DNM, we opted for a more suitable in-
put channel number, set at 128. This feature map encom-
passes edge details, textures, as well as higher-level seman-
tic information from the images. Subsequently, these in-
sightful features are relayed to the dendritic network, which
comprises four biomimetic layers (synapse layer, dendritic
layer, membrane layer, and soma layer). These layers en-
gage in in-depth analysis and classification of the extracted
features, effectively simulating the information processing

mechanisms found within neurons at each level.

2.1 Image Feature Extraction

This section emphasizes abstract feature extraction with Ef-
ficientNet, prioritizing highly informative features from in-
put images. The key advantage of EfficientNet’s network
scaling strategy is that it uses a compound coefficient ϕ to
uniformly scale network width, depth, and resolution in a
principled way. The approach enhances computational and
parameter efficiency, enabling the extraction of high-quality
features with reduced computational demands.

depth : d = αϕ

width : ω = βϕ

resolution : r = γϕ
(1)

where α, β, and γ can be determined through a small-scale
search. ϕ governs the allocation of additional resources for
model expansion, while α, β, and γ dictate how these sup-
plementary resources are distributed across network width,
depth, and resolution. We have established the following
constraints:

s.t. α · β2 · γ2 ≈ 2
α ≥ 1, β ≥ 1, γ ≥ 1

(2)

By increasing the model’s depth, it becomes proficient
at capturing more abstract features. Increasing the model’s
width helps in create diverse feature sets. Raising the input
image’s resolution aids in capturing finer details. The bal-
ance among these three aspects is crucial because it enables
the model to utilize image features more effectively without
compromising performance, thereby enriching the informa-
tion extracted from images.

EfficientNet also employs a multi-scale feature extrac-
tion strategy by stacking convolutional layers with different
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resolutions, effectively capturing both fine-grained details
and abstract features within images. When dealing with
images of varying resolutions, it excels at feature extrac-
tion. The choice of EfficientNet-B0 over other versions (B1-
B7) is typically driven by a consideration of balancing per-
formance and computational cost. B0 represents the most
lightweight model within the EfficientNet series, making it
suitable for executing image feature extraction tasks in sce-
narios with limited computational resources [13].

2.2 Feature Classification

This section is responsible for the analysis and categoriza-
tion of the extracted features. High-dimensional feature
maps are reduced to suitable low-dimensional representa-
tions through the utilization of connectivity blocks. The
following are the specific functions of the internal levels of
DNM [14]. It includes synapse, dendritic, menbrance, and
soma layers.

Synapse layer: In the forward propagation phase, the
input data initially passes through the synapse layer, where it
undergoes operations including weight multiplication, bias
subtraction, and ReLU activation. This layer simulates the
synaptic functions of neurons, involving information trans-
mission and nonlinear information processing. The output
of the j-th dendritic branch for the i-th element of the input
xi can be defined as: Ai j = ReLU(k · (wi j · xi − pi j)). This
operation includes multiplication between the weights wi j
and the input xi, followed by the subtraction of the thresh-
old pi j. Subsequently, the ReLU activation function is ap-
plied, which restricts negative values to zero, introducing
non-linearity and aiding in the preservation of relevant sig-
nals while suppressing noise and irrelevant information. The
learnable parameters, wi j, and pi j, are randomly initialized
within the range of (0, 1). The amplification of the resulting
signal is regulated by k, which is initialized to 0.5.

Dendritic layer: It receives the output from the preced-
ing synaptic layer and calculates the cumulative results for
individual dendritic branches. This function replicates the
behavior of neuronal dendrites, consolidating information
from multiple synapses. The j-th dendritic branch combines
N input signals Ai j, S j is the output of dendritic layer, and
the output can be expressed as S j =

∑N
i=1 Ai j.

Membrane layer: It accumulates signals from all den-
dritic branches through a summation operation. It consoli-
dates the outputs of M dendritic branches to produce a com-
prehensive representation denoted as V =

∑M
j=1 S j. The

variable V signifies the overall input integration from the
dendritic layer.

Soma layer: It applies the ReLU activation function to
the output of the membrane layer. The final output can be
written as O = ReLU(ks · (V − ts)). ks and ts are learnable
parameters initializing in the range of (0, 1).

These two components collaborate seamlessly, fully
harnessing the feature extraction capacity of EfficientNet-
B0 and the nonlinear information processing capabilities of
DNM to bolster task performance such as image classifica-

Table 1: The experimental results of DEN and its peers.
Model Accuracy(%) Precision(%) Recall(%) F1(%)
MobileNet 84.4 89.1 81.8 85.0
Resnet50 82.6 81.1 84.4 82.1
Wideresnet50 83.9 91.1 87.4 88.7
Resnet152 79.1 82.4 77.8 79.5
Densenet161 84.1 89.0 87.6 88.8
DEN 90.4 93.5 88.0 90.5

Table 2: Parameter sensitivity analysis of DEN.
M Accuracy(%) Precision(%) Recall(%) F1(%)
2 88.7 90.8 87.6 88.9
4 89.7 90.5 89.6 89.8
6 90.4 93.5 88.0 90.5
8 88.6 86.7 90.8 88.3
10 89.1 87.7 91.9 89.5

tion. DEN effectively emulates the neural information pro-
cessing mechanism, with the potential to enhance the preci-
sion in capturing and representing intricate image features.

3. Experiments and Results

The DR database from Kaggle was used, which includes
1020 diabetic retinopathy cases and 993 normal cases. The
dataset was divided into a training set (70%) and a testing set
(30%). We resize the DR dataset to a 512x512 resolution,
which served as inputs for the DEN model. All experiments
are conducted on a system running Ubuntu 18.04, equipped
with an Nvidia RTX 3090 24GB GPU. Our implementation
utilizes PyTorch 1.11 and Python 3.8, encompassing vari-
ous neural networks, including DEN, MobileNet, ResNet50,
DenseNet161, Wide-ResNet50, and ResNet152. Network
parameters are optimized using the Adam optimizer with a
learning rate of 0.001, and training is carried out for 100
epochs with a batch size of 32 for all experiments.

Table 1 summarizes the experiment results of all mod-
els. In the case of the DR problem, it is evident that DEN
outperforms ResNet50 by 7.8% in Accuracy, 12.4% in Pre-
cision, 3.6% in Recall, and 8.4% in F1 score. It also outper-
forms Wide-ResNet50 by 6.5% in Accuracy, 2.4% in Preci-
sion, 0.6% in Recall, and 1.8% in F1 score. Furthermore,
DEN surpasses ResNet152 by 11.3% in Accuracy, 11.1% in
Precision, 10.2% in Recall, and 11% in F1 score.

ResNet50 typically exhibits better resistance to overfit-
ting on small datasets. In contrast, Wide-ResNet50 benefits
from its wider network structure, encompassing more con-
volutional layers and channels, thus enhancing the model’s
representational capacity. On the other hand, ResNet152,
being deeper and more complex, is more susceptible to over-
fitting when dealing with smaller datasets. However, our
employed DEN model effectively addresses this issue. It not
only achieves a balanced arrangement in terms of network
width, depth, and image resolution.
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Table 3: Ablation Study on Diabetic Retinopathy.
Model Accuracy(%) Precision(%) Recall(%) F1(%)
Efficientnet-B2 87.2 85.1 89.8 87.1
Efficientnet-B2+DNM 89.2 88.8 90.1 89.3
Efficientnet-B0 88.4 88.8 88.4 88.3
DEN 90.4 93.5 88.0 90.5

3.1 The analysis of M

The specific hyper-parameter we primarily focus for DEN is
the number of dendrites. The configuration of M parameter
is essential to ensure the optimal performance of the DNM
model in medical image tasks. The choice of the value for M
is based on the task’s characteristics. In scenarios character-
ized by limited data and relatively straightforward problems,
a lower M value typically yields superior performance. Con-
versely, in the context of larger and more intricate tasks, a
higher M value becomes a more suitable choice. Acquiring
data for medical image problems is frequently challenging,
resulting in a limited dataset, such as the DR fundus images
in our study. Therefore, we conduct parameter discussion
experiments on a smaller number of dendrites. Table 2 re-
veals that as M increased (M=2, 4, 6, 8, 10), each indicator
exhibited a clear linear trend. Notably, we observe that the
peak performance is achieved when M is set to 6.

3.2 Ablation Study

Table 3 presents the results of a series of ablation experi-
ments performed to rigorously evaluate the effectiveness of
our proposed methodology. The primary objective of these
experiments is to comprehensively assess the impact of inte-
grating the Efficientnet-B0, Efficientnet-B2, and DEN mod-
els on the classification performance of DR. The evalua-
tion metrics employed include accuracy, precision, F1 score,
and recall, which serve as quantitative measures for discern-
ing the enhancements achieved through the incorporation of
these components.

The performance improvement of the network is evi-
dent when comparing B0 with DEN, demonstrating the en-
hanced nonlinear capabilities of the DNM module. The
comparison of EfficientNet-B0 and EfficientNet-B2 shows
that a lightweight network is enough to solve the DR prob-
lem. Therefore, we chose EfficientNet-B0.

4. Conclusions

In our study, the proposed DEN model has demonstrated
that when combining image feature extraction with non-
linear information processing, it achieved excellent results
in the DR medical classification problem. It significantly
enhances the performance of deep learning models. We
evaluated models with varying numbers of dendrites on a
dataset and compared them with other traditional classifica-
tion network models. Our research results indicate that the
DEN model outperforms the baseline model (EfficientNet-
B0) and EfficientNet-B2 in terms of performance. Further-

more, compared to other network models, the DEN model
exhibits stronger classification abilities on the DR dataset.
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