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Learning Fast Deployment for UAV-Assisted Disaster System

Na XING†, Lu LI†, Ye ZHANG†, and Shiyi YANG†, Nonmembers

SUMMARY Unmanned aerial vehicle (UAV)-assisted systems have at-
tracted a lot of attention due to its high probability of line-of-sight (LoS)
connections and flexible deployment. In this paper, we aim to minimize
the upload time required for the UAV to collect information from the sen-
sor nodes in disaster scenario, while optimizing the deployment position
of UAV. In order to get the deployment solution quickly, a data-driven ap-
proach is proposed in which an optimization strategy acts as the expert.
Considering that images could capture the spatial configurations well, we
use a convolutional neural network (CNN) to learn how to place the UAV.
In the end, the simulation results demonstrate the effectiveness and general-
ization of the proposed method. After training, our CNN can generate UAV
configuration faster than the general optimization-based algorithm.
key words: Unmanned aerial vehicle, Deployment, Convolutional neural
network, Data collection.

1. Introduction

With the rapid development of 6G and sensor technol-
ogy, many delay-sensitive and computation-expansive sen-
sor applications are emerging in our life, such as wearable
devices [1] etc. But the sensor nodes usually have limited
communication and energy resources, which makes it diffi-
cult to support long distance transmission [2]. Then, how to
collect information from sensor nodes becomes a problem,
especially in the dangerous and disaster situations where the
infrastructure has been damaged.

Fortunately, the UAV can be used to provide services as
an aerial base station or a fusion center. UAV has the advan-
tages of low cost, high flexibility, convenient deployment and
no casualties. Nowadays, the UAV is widely used in military
and civil fields [3]. It can flexibly navigate to the location
of sensors and collect or forward information. In addition,
the high probability of LoS transmission can also improve
the communication efficiency. Anyway, UAV-assisted sys-
tem is considered as an important technology in the disaster
scenario such as earthquake or forest fire.

Of course, an optimization problem is produced about
the UAV deployment position. Many works have investi-
gated this problem under different systems, including UAV-
aided mobile edge computing system, UAV-enabled flying
network, UAV-assisted relay communication and so on. In
these systems, the UAV acts as a base station, access point or
relay. Some optimization and learning methods are proposed
to optimize the deployment position or flight trajectory. A
common approach is to transform the UAV position opti-
mization into a convex problem using the successive convex
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approximation (SCA) [4, 5]. However, for each sensor node
configuration, the SCA-based method needs to be recalcu-
lated, which is time-consuming and unsuitable for online
applications. On the other hand, most of the learning meth-
ods are based on deep reinforcement learning [6, 7], which
requires high trial and error costs. Therefore, it is necessary
to develop a method with fast solving ability to get the UAV
deployment position to adapt to the urgency of disasters.

Inspired by the existing works, the main contributions
of this paper are summarized as follows:

• We consider a UAV-assisted disaster scenario where
some ground sensor nodes need to upload data to the
UAV. The Rician fading channel model is used to de-
scribe the fading property between the UAV and sensor
nodes. To minimize the upload time, the UAV deploy-
ment position is optimized.

• The formulated problem is non-convex that is difficult
to solve. Traditional methods is time-consuming and
become prohibitively slow for large systems. Images
could capture the spatial configuration well. To this
end, a supervised learning method based on the CNN
is proposed, which learns to deploy the UAV from an
expert. We use the optimization algorithm to generate
the dataset.

2. System Model and Problem Formulation

We consider a UAV-assisted disaster system, which con-
sists of 𝑀 sensor nodes and a UAV. These sensor nodes
are used for monitoring the information of environments,
buildings, etc. The set of those sensor nodes is denoted
as M = {1, 2, ..., 𝑀}. We assume that the deployment
locations of the sensor nodes are known. After the disas-
ter, a UAV is deployed to collect information from sensor
nodes. The flying altitude of the UAV is assumed to be
fixed and denoted as 𝑧. The location of sensor node 𝑚 ∈ M
and the horizontal coordinate of the UAV are denoted as
w𝑚 = [𝑥node

𝑚 , 𝑦node
𝑚 ]𝑇 and q = [𝑥uav, 𝑦uav]𝑇 . Hence, the

distance between the sensor node 𝑚 and the UAV can be
calculated by 𝑑𝑚 =

√︃
∥q − w𝑚∥2 + 𝑧2.

We assume the sensor nodes upload their data using
time-division multiple access (TDMA) approach to prevent
co-channel interference. 𝐹 (in bits) denote the amount of
data that each sensor node needs to upload. The fixed trans-
mission rate from the sensor node 𝑚 to the UAV is repre-
sented by 𝑅𝑚. Therefore, the expected time to upload data
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can be expressed by 𝑡𝑚 = 𝐹/𝑅𝑚.
The conventional simplified LoS model is idealized and

quite different from the practical channel. In comparison, the
Rician angle-dependent fading channel model [8] provides
a description that is more consistent with realistic scenarios.
In this model, the received signal includes not only the direct
transmission from the transmitter to the receiver, but also the
signal transmission via reflection, refraction and scattering
paths. The channel between node 𝑚 and the UAV can be
modelled as

ℎ𝑚 =
√︁
𝛽𝑚𝑔𝑚 =

√︁
𝛽0𝑑

−𝛼
𝑚 𝑔𝑚, (1)

where 𝛽𝑚 is the large-scale average channel power gain and
𝑔𝑚 is the small-scale fading coefficient, 𝛽0 is the average
channel power gain at a reference distance 𝑑0 = 1m, 𝛼 is the
path loss exponent. The small-scale fading can be expressed
by

𝑔𝑚 =

√︂
𝑘𝑚

𝑘𝑚 + 1
𝑔 +

√︂
1

𝑘𝑚 + 1
𝑔, (2)

where 𝑔 is the LoS component with |𝑔 | = 1, 𝑔 is the random
scattered component which is a zero-mean unit-variance cir-
cularly symmetric complex Gaussian random variable, 𝑘𝑚
denotes the Rician factor which can be given by

𝑘𝑚 = 𝐾1 exp (𝐾2𝜃𝑚) , (3)

where 𝐾1 and 𝐾2 are constants determined by the spe-
cific environment, 𝜃𝑚 = arcsin (𝑧/𝑑𝑚) is the elevation angle
between the sensor node 𝑚 and the UAV.

Therefore, the maximum achievable rate at the UAV
from node 𝑚 can be expressed as

𝐶𝑚 = 𝐵log2

(
1 + |ℎ𝑚 |2𝑝𝑚

𝜎2Γ

)
, (4)

where 𝐵 denotes the bandwidth, 𝑝𝑚 is the transmission
power of node 𝑚, 𝜎2 is the noise power and Γ > 1 is the
signal-to-noise ratio (SNR) gap.

The outage probability that the UAV cannot successfully
receive data from node 𝑚 can be given by

𝑃𝑚 = P (𝐶𝑚 < 𝑅𝑚)

= P
(
|𝑔𝑚 |2 <

𝜎2Γ(2𝑅𝑚/𝐵 − 1)
𝛽0𝑑

−𝛼
𝑚 𝑝𝑚

)
= 𝐹𝑚

(
𝜎2Γ(2𝑅𝑚/𝐵 − 1)

𝛽0𝑑
−𝛼
𝑚 𝑝𝑚

)
, (5)

where 𝐹𝑚 is the cumulative distribution function of
|𝑔𝑚 |2 which is a non-decreasing function w.r.t. 𝑅𝑚.

Let 𝜀 be the maximum tolerable outage probability with
0 < 𝜀 ≤ 0.1. To minimize the upload time and ensure the
data received by the UAV, 𝑅𝑚 is chosen such that 𝑃𝑚 =

𝜀,∀𝑚. Therefore,

𝑅𝑚 = 𝐵log2

(
1 + 𝑓𝑚𝑝𝑚𝛽0

𝜎2Γ𝑑𝛼𝑚

)
, (6)

where 𝑓𝑚 denotes the solution to 𝑃𝑚 = 𝜀 which can be
approximated by the logistic model [8]

𝑓𝑚 ≈ 𝐴1 +
𝐴2

1 + exp(−(𝐴3 + 𝐴4𝑣𝑚))
, (7)

where 𝑣𝑚 = 𝑧/𝑑𝑚, 𝐴1 > 0 and 𝐴2 > 0 with 𝐴1+𝐴2 = 1,
𝐴3 < 0 reflects the positive logistic mid-point, 𝐴4 > 0 is the
logistic growth rate.

Based on the discussion above, the upload time is min-
imized by solving the following problem

(P1) min
q

𝑀∑︁
𝑚=1

𝐹

𝑅𝑚

s.t. 𝑥min ≤ 𝑥uav ≤ 𝑥max, (8a)

𝑦min ≤ 𝑦uav ≤ 𝑦max, (8b)

𝑣𝑚 =
𝑧√︃

∥q − w𝑚∥2 + 𝑧2
,∀𝑚 ∈ M . (8c)

Problem P1 adjusts the deployment position of UAV q
in order to minimize the upload time. Here (8a) and (8b) are
the allowed coordinates of the UAV. Note that the objective
function is a non-convex function w.r.t. q and 𝑣𝑚, which
makes the Problem P1 difficult to solve.

3. Problem Solution

Problem P1 is usually converted into a convex problem
and solved by an optimization approach. However, these
optimization algorithms require long solution time and not
suitable for online applications, especially in disaster scenar-
ios. In addition, it’s inexpensive to perform inference on a
trained neural networks. Furthermore, images have the abil-
ity to encode the spatial information of nodes [9]. Therefore,
we propose a data-driven approach that uses a CNN to learn
UAV’s position from an expert.

3.1 Dataset Generation

In our scheme, an optimization approach is used as
the expert to minimize the upload time. First, the original
problem is converted into a convex optimization problem,
and then the CVX solver is used to solve it. Its detailed
process is as follows.

By relaxing the constraint (8c) and defining a slack
variable 𝜇𝑚, Problem P1 can be rewritten as

(P2) min
q,𝑣𝑚 ,𝜇𝑚

𝑀∑︁
𝑚=1

𝐹

𝜇𝑚

s.t. (8a), (8b), (9a)

𝑣𝑚 ≤ 𝑧√︃
∥q − w𝑚∥2 + 𝑧2

,∀𝑚 ∈ M, (9b)
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𝜇𝑚 ≤ 𝑅𝑚,∀𝑚 ∈ M . (9c)

Lemma 1: The solution of Problem P2 is equivalent to
the solution of Problem P1.

Proof: Please refer to [2].
To our knowledge, the above Problem P2 is often con-

verted to a convex optimization problem by the SCA ap-
proach.

Lemma 2: According to the SCA approach, we get

𝑅𝑚 ≥ 𝑅𝑟
𝑚 − 𝜆𝑟𝑚,1

(
𝑒−(𝐴3+𝐴4𝑣𝑚 ) − 𝑒−(𝐴3+𝐴4𝑣

𝑟
𝑚 )
)

− 𝜆𝑟𝑚,2

(
∥q − w𝑚∥2 − ∥q𝑟 − w𝑚∥2

)
= 𝑅𝑙𝑏,𝑟

𝑚 (10)

where

𝜆𝑟𝑚,1 =
𝐴2𝐵𝛾

𝜂𝑟𝑚 (𝜂𝑟𝑚 (𝑑𝑟𝑚)𝛼 + 𝛾 (𝐴1𝜂
𝑟
𝑚 + 𝐴2)) ln 2

,

𝜆𝑟𝑚,2 =
𝛼𝐵𝛾

(
𝐴1𝜂

𝑟
𝑚 + 𝐴2

)
(𝑑𝑟𝑚)2 (𝜂𝑟𝑚 (𝑑𝑟𝑚)𝛼 + 𝛾𝐴1𝜂

𝑟
𝑚 + 𝛾𝐴2) ln 4

,

𝜂𝑟𝑚 = 1 + 𝑒−(𝐴3+𝐴4𝑣
𝑟
𝑚 ) and 𝛾 =

𝑝𝑚𝛽0
𝜎2Γ

. 𝑟 represents the rth
iteration.

Proof: Please refer to [2].
Similarly, for a given q𝑟 , there exists a lower bound 𝑣𝑙𝑏,𝑟𝑚

for 𝑣𝑚
𝑧√︃

∥q − w𝑚∥2 + 𝑧2
≥ 𝑣𝑟𝑚 − 𝑧

2
(
∥q𝑟 − w𝑚∥2 + 𝑧2

)3/2

×
(
∥q − w𝑚∥2 − ∥q𝑟 − w𝑚∥2

)
= 𝑣𝑙𝑏,𝑟𝑚 (11)

Using Lemma 1 and Lemma 2, Problem P2 can be
translated into the following convex problem.

(P3) min
q,𝑣𝑚 ,𝜇𝑚

𝑀∑︁
𝑚=1

𝐹

𝜇𝑚

s.t. (8a), (8b), (12a)
𝑣𝑚 ≤ 𝑣𝑙𝑏,𝑟𝑚 ,∀𝑚 ∈ M, (12b)
𝜇𝑚 ≤ 𝑅𝑙𝑏,𝑟

𝑚 ,∀𝑚 ∈ M . (12c)

This problem can be solved using the CVX solver.
We use the above optimization method as the expert

to generate training samples consisting of pairs of images
that capture the given sensor nodes and UAV configurations.
Each image pixel represents a fixed metric distance 𝑑. Fig.1
illustrates an example to show the entire sample generation
process. Firstly, we sample the configurations of sensor
nodes in a random distribution (Fig.1(a)). Next, Problem P3
can be iteratively solved to obtain the optimal UAV configu-
ration (Fig.1(c)). Then, in order to avoid sparsity issues, we

use a Gaussian kernel to mark the configurations of sensor
nodes and UAV separately (Fig.1(b) and Fig.1(d)), which
constitute the input and output images of the CNN. By the
above steps, we can obtain the dataset. Note that the samples
are randomly generated to ensure the richness and diversity
of our dataset.

(a) (b)

(c) (d)

Fig. 1 Training sample generation process.

3.2 Learning Architecture

Choosing an appropriate model is important to mini-
mize the upload time. It may be surprising that we choose
the CNN. The main reasons are as follows: Firstly, our prob-
lem depends on the relative positions between the sensor
nodes and the UAV, rather than the absolute positions. A
CNN captures this feature very well, which makes it more
applicable to our problem. Secondly, images can represent
spatial information and its’s performance will not degrade as
the number of sensor nodes grows. For CNNs, its processing
is the same, which makes no difference between 5 nodes or
10 nodes. However, traditional optimization methods need
longer time for large-scale sensor nodes. Therefore, we don’t
use a learning model that inputs the position of sensor nodes
and outputs the UAV position.

Considering that the input and output of our network
are both an image, we adopt a learning model based on an
autoencoder [9]. The learning model only consists of con-
volutional layers and convolutional transpose layers, which
constitute the encoder and decoder, respectively, as shown in
Fig.2. The encoder processes the 768 × 768 image with the
8× 8 kernel, the 4× 4 kernel and the 2× 2 kernel. Then, the
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Fig. 2 Our CNN architecture.

image is transformed into a volume with dimension 3×3×𝐹,
where 𝐹 is the number of filters. The decoder performs con-
volutional transpose. We do not use the fully connected
layers because the convolutional layers can achieve better
generalization performance. On the other hand, the au-
toencoder with convolutional layers can handle images of
arbitrary size. Our model is compatible with image resolu-
tion 64𝑁 + 768, where 𝑁 is an integer with 𝑁 ≥ 0. The
deepest convolutional layer can extract the most salient spa-
tial features from the input image, which inform the optimal
position of the UAV in the output image.

4. Simulation Results

In this section, we verify the effectiveness and general-
ization of the proposed method. We consider the height of
the UAV is set to be 𝑧 = 100 m. The bandwidth is 𝐵 = 10
MHz. The channel power gain at the reference distance
𝑑0 = 1 m is 𝛽0 = −30 dB. The transmit power of each sensor
node is set to be 0.1 W and the noise power is 𝜎2 = 10−9 W.
The SNR gap is Γ = 8.2 dB. The parameters of the logistic
model are set as 𝐴1 = 0.01, 𝐴2 = 0.99, 𝐴3 = −4.7 and
𝐴4 = 8.9 [2]. We train our CNN network model with 2-10
sensor nodes. Each image pixel represents 1.3 m. The Adam
optimizer is used with a learning rate of 10−4, a batch size
of 8. The training processes are executed on GPU, NVIDIA
GeForce RTX 1080. We compare our learning approach
with the method of solving Problem P3 by CVX solver.

To verify the effectiveness of the optimization method,
we randomly generate 20 sensor nodes and the initial posi-
tions of the UAV while keeping the parameters unchanged,
and use our optimization method to iteratively find the final
optimal position of the UAV. From Fig.3 (a), we can see
that the UAV is gradually optimized from the initial position
to the final optimal position through step-by-step iterations,
demonstrating the effectiveness of the entire optimization
process. Fig.3 (b) shows that, the upload time decreases
with each iteration. This demonstrate the effectiveness of
the our method.

To evaluate the performance of the proposed method,
we applied it to a test dataset with 2-10 sensor agents with
10000 samples. Our method performs well. For an intuitive
representation, we take examples in which 5 and 8 sensor
nodes are randomly configured, respectively. In addition to
comparing with optimization algorithms, we consider the
method with the sensor’s center of gravity as UAV’s position
in Fig.4. We can see that the UAV configuration produced
by our proposed method is very similar to the optimization
method. This is not surprising as we provide ample oppor-
tunity for the model to learn the UAV configuration. What’s
more, the UAV’s position by our proposed method is dif-
ferent from the position of the sensor’s center of gravity.

(a) (b)

Fig. 3 (a) The UAV position obtained by our method. (b) Upload time
convergence curve.

Furthermore, it is very time consuming to generate data
and retrain the network for every size. We expect our network
has learned something that would be applied to a larger scale.
Therefore, we apply our trained network with 2-10 sensor
nodes to test examples with 20 and 40 sensor nodes. The
result is shown in Fig.4. It can be seen that our model
generalizes well.
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(a) (b)

(c) (d)

Fig. 4 Results for test samples with (a) 5 sensor nodes and (b) 8 sensor
nodes and (c) 20 sensor nodes and (d) 40 sensor nodes.

The traditional optimization method becomes slow as
the number of sensor nodes increases and are not suitable for
real-time scenarios. However, the proposed method is excep-
tionally scalable. Fig.5(a) and Fig.5(b) show the comparison
of optimization time and upload time, which are based on
Monte Carlo simulation. For the optimization time, we can
see that the advantage of our method is clear. For 10 sensor
nodes, our proposed method is nearly 40 times faster than
the traditional method. This is not a trivial result. For the
upload time, our proposed method is better than the position
of sensor’s center of gravity.

(a) (b)

Fig. 5 (a) The optimization time required to obtain the UAV configuration
result. (b) The upload time required for the UAV configuration.

5. Conclusions

This paper aimed to minimize the upload time of the
UAV-assisted disaster system. We proposed a supervised
learning approach based on a convolutional neural network
that learned how to deploy UAV. It took advantage of the fact
that images can capture spatial configurations well. While
general optimization-based algorithms become slow as the
scale of system increases, our approach runs faster and can
quickly give the same results. The simulation results verified
the effectiveness of the proposed method. For the vertical
position optimization of UAV, or the association optimization
brought by multiple UAVs, we could use a 3D CNN, which
will be our future research work.
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