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Improving Sliced Wasserstein Distance with Geometric Median for
Knowledge Distillation

Hongyun LU†a), Mengmeng ZHANG††b), Hongyuan JING††, Nonmembers, and Zhi LIU†, Member

SUMMARY Currently, the most advanced knowledge distillation mod-
els use a metric learning approach based on probability distributions. How-
ever, the correlation between supervised probability distributions is typi-
cally geometric and implicit, causing inefficiency and an inability to capture
structural feature representations among different tasks. To overcome this
problem, we propose a knowledge distillation loss using the robust sliced
Wasserstein distance with geometric median (GMSW) to estimate the differ-
ences between the teacher and student representations. Due to the intuitive
geometric properties of GMSW, the student model can effectively learn to
align its produced hidden states from the teacher model, thereby establish-
ing a robust correlation among implicit features. In experiment, our method
outperforms state-of-the-art models in both high-resource and low-resource
settings.
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1. Introduction

In recent years, due to the rapid development of artificial
intelligence, model compression has received a great deal of
attention from researchers, especially regarding deep neu-
ral networks [1]. Knowledge distillation is one of the most
commonly used methods in model compression, which is
to transfer the dark knowledge in the complex model to the
simple model. Hinton [2] introduced the idea of knowledge
distillation in neural networks, which involves using a teacher
model’s high-level features as supervision for a smaller, more
efficient student model. The teacher model is highly capable,
while the student model is designed to achieve comparable
prediction results with less complexity by metric learning,
ideally approaching or even surpassing the teacher’s perfor-
mance. In the context of knowledge distillation, the metric
learning is comprised of a linear combination of two distinct
losses: the cross-entropy (CE) loss with “hard” targets, and
the distillation loss with divergence of “soft” distributions. In
multi-task learning scenarios involving local features such as
image segmentation and object detection, the predicted prob-
ability distribution captures more informative and intricate
geometric features. As a result, the Kullback-Leibler diver-
gence and L2 loss as knowledge distillation loss [3] may not
effectively convey significant geometric information in such
contexts.
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The robust sliced Wasserstein distance [4], [5] with ge-
ometric median [6] projection (GMSW) for knowledge dis-
tillation is proposed in this paper, a new knowledge dis-
tillation loss that reduces the generalization gap between
teacher and student to approach better knowledge transfer.
Firstly, the sliced Wasserstein distance possesses a geomet-
ric interpretation, rendering it a suitable metric for compar-
ing distributions with structural properties. Secondly, the
sliced Wasserstein distance with geometric median exhibits
superior resistance to outliers and noise compared to al-
ternative distance metrics, including the Euclidean distance
and KL divergence. The GMSW maps geometric feature
in highly capable distribution of the teacher model to the
student model through robust geometric median projections,
which improves the performance of transfer learning. The
method is validated on multiple models, achieving good re-
sults.

The remainder of the paper is organized as follows. A
brief description of knowledge distillation and Wasserstein
distance in Sect. 2. In Sect. 3, we describe the proposed
method. The performance of the proposed method is pre-
sented in Sect. 4. Finally, Sect. 5 provides the conclusion.

2. Knowledge Distillation and Wasserstein Distance

2.1 Knowledge Distillation

Knowledge distillation is to transfer the dark knowledge in
the complex model to the simple model, a student network is
trained by leveraging additional supervision from a trained
teacher network. Given an input sample (x,y), where x is the
network input and y is the one-hot label.

Pt = softmax(Zt (x)), Ps = softmax(Zs(x)) (1)

Assume Zt and Zs are the logit representations (before the
SoftMax layer) of the teacher and student network and P is
the output distribution in Eq. (1), respectively. The distilla-
tion objective encourages the output probability distribution
over predictions from the student and teacher networks to be
similar by minimizing the cross-entropy loss and knowledge
distillation loss between predictions of teacher and student
as follows:

Loss = H(Ps, y) + λKD(Pτ
s ,P

τ
t ) (2)

Where τ is a relaxation hyperparameter (referred as Temper-
ature) for softening the output of teacher network, and λ is a
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hyper-parameter for balancing cross-entropy and knowledge
distillation loss Eq. (2). The idea of knowledge distillation
is to let the student mimic the teacher’s behavior by adding a
strong congruent constraint on predictions using knowledge
distillation loss.

2.2 Wasserstein Distance

In this section, we review the initial concepts and optimality
conditions for computing the p-Wasserstein distance between
two discrete probability measures in Monge and Kantorovich
formulation for Wasserstein distance [7]. Let P(Rd) be the
set of Borel probability measures in Rd , and let P2(Rd) be
the subset of P(Rd) consisting of probability measures that
have finite second moments. The p-Wasserstein distance
in Eq. (3), p ∈ [1,∞), between µ and ν is defined as the
solution of the optimal mass transportation problem. Let µ
and ν be two probability measures on measurable spaces Rd .
µ, ν ∈ P2(Rd) and Π(µ, ν) be the set of couplings between
µ, ν. For µ, ν ∈ P2(Rd), we write Π(µ, ν), that satisfies the
following.

Π(µ, ν) =
{
π(A × Rd) = µ(A) any Borel A ⊆ Rd

π(Rd × B) = ν(B) any Borel B ⊆ Rd

(3)
In model compression applications one often deals with
compact d-dimensional Euclidean spaces, hence X = Y =
[0,1]d . The p-Wasserstein distance int Eq. (4) for p ∈ [1,∞)
is defined as

W(µ, ν) B
(

inf
π∈Π(µ,ν)

∫
X×Y

(x − y)pdπ(x, y)
) 1

p

(4)

Because we only consider low level costs in the rest of this
paper, we will only use W2 to denote the 2-Wasserstein dis-
tance. For X, Y ⊆ Rd and T: X → Y, the push-forward
of µ ∈ P(X) by T is defined by T#µ → p(Y ). In other
words, T#µ is the measure satisfying T#µ(A) = µ(T−1(A))
for any Borel set in Y. The 2-Wasserstein distance in Eq. (5)
is defined by

W2(µ, ν) B
(

inf
π∈Π(µ,ν)

∫
| |x − y | |2dπ(x, y)

) 1
2

(5)

3. The GMSW Loss

The sliced Wasserstein distance with geometric median pro-
jection is designed as knowledge distillation loss. The sliced
Wasserstein distance is calculated via linear slicing of the
probability distributions. In order to ensure an efficient eval-
uation of the sliced Wasserstein distance, a more informative
projection is extracted by selectively linearizing these pro-
jections through geometric median. The geometric median
is a statistical measure of central tendency that is determined
by calculating the point that minimizes the sum of distances
to all other points. It is also referred to as the geometric cen-
ter or the median of a geometric distribution. The geometric

Fig. 1 The overview of the proposed GMSW knowledge distillation. Two
backbone features of the teacher (purple) and the student (green). After
inference, obtained features are projected onto the spherical plane in a.
Samples in each projection are sorted and the distance is calculated between
the sorted samples in b. The best projection distance from {d1, d2, d3, . . .}
as knowledge distillation loss is selected by the Geometric Median in c.

median is less influenced by outliers or extreme values than
the arithmetic or other means. Figure 1 pictorially illus-
trates our overall knowledge distillation loss in the sliced
Wasserstein distance with geometric median.

3.1 Sliced Wasserstein Distance for Knowledge Distillation

The sliced Wasserstein distance maps a high-dimensional
probability distribution into a one-dimensional representa-
tion through projections, and then calculates the distance
between two prediction distributions of teacher model and
students’ model as a functional on the p-Wasserstein distance
of their one-dimensional presentation. The p-Wasserstein
distance has a closed-form solution for the case of one-
dimensional continuous probability measures. The slice
process is related to the field of Integral Geometry and
specifically the Radon transform. The relevant result to
our discussion is that a d-dimensional probability density
can be uniquely represented as the set of its one-dimensional
marginal distributions following the Radon transform and
the Fourier slice theorem. δ(µ) denotes the one dimensional
Dirac delta function, and ( · , · ) denotes the Euclidean inner-
product.
Definition 1 For any µ, ν ∈ P2(Rd), the SW distance of
order 1 between them is defined as

SW1(µ, ν) B
∫
Sd−1

W1(µ∗#µ, µ∗#ν)dδ(µ) (6)

For any µ ∈ Sd−1, let µ∗ be the linear form with respect to
u under the projection on θ, such that for θ ∈ Rd , µ∗(θ) =
<µ, θ>, δ represents the uniform distribution on Sd−1. In
the knowledge distillation application, the sliced Wasserstein
distance need to be used for discrete measures. Since the
expectation in Definition 1 is intractable, the Monte Carlo
estimation is used projecting directions of length L.

µ∗
l
(θ) = (θ1, θ2, θl, . . . , θL)

ŜW1(µ, ν) ≈ 1
L

∑L

l=1
W1(µ∗l µ, µ

∗
l ν)

(7)
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W1(µ∗l µ, µ
∗
l ν) in Eq. (7) indicates that the empirical

Wasserstein distance between µ∗l µ and µ∗l ν can be simply
calculated by first sorting both samples and then culating the
distance between the sorted samples.

3.2 Sliced Wasserstein Loss with Geometric Median

In this section, we discuss our approach that uses the Sliced
Wasserstein Distance with Geometric Median (GMSW) to
train a knowledge distillation model. In knowledge distilla-
tion, the role of distillation loss is to aggregate information
about soft features, and its main contribution is to obtain
important sources of geometric knowledge projection. we
can capture the major discrepancy between two measures by
considering a relatively small number of “important” slices.
This problem can be alleviated by using Geometric Median,
which considers as most representative projection in L pro-
jection directions. In the GMSW, the calculation can be
simplified to pick the “best direction” along the projected
distance which is the geometric median instead of using
mean of the random projection directions generated from d
dimensions for knowledge distillation. Based on this, the
Sliced Wasserstein Distance with Geometric Median can be
used as a more robust distance metric by replacing the Sliced
Wasserstein Distance in its calculation.
Definition 2 Given a set of n positive real numbers
{x1, x2, xi, . . . , xn}, the geometric median defined as

Geometric Median = argmin
x

n∑
i=1

| |x − xi | |2 (8)

Here, argmin means the value of the argument x which mini-
mizes the sum. In this case, it is the point x in n dimensional
Euclidean space from where the sum of all Euclidean dis-
tances to the xi’ is minimum. In GMSW, the distribution X
in the Wasserstein distance with geometric median can be as
the union vectors of all projected distances. the geometric
median of all slices is the projection distance that minimizes
the sum of its Euclidean distances to the other projection
distance. More formally, following the notations in Eq. (9),
the GMSW distance of order 1 is defined as

�GMSW(µ, ν) ≈ argmin
µ∗∈Rd

=

L∑
l=1

W1(µ∗l µ, µ
∗
l ν) (9)

The typical approach for computing geometric median is the
Weiszfeld algorithm. The Weiszfeld algorithm is an iterative
algorithm used to solve the geometric median problem. Its
fundamental idea is to iteratively calculate the distance of
each point to the mean point in order to approximate the
geometric median value. The pseudo code of GMSW Loss
is shown in Algorithm 1.

4. Experiments Results

We performed experiments on large-scale datasets: namely
the CityScapes dataset [8]. We select three types of targets

Table 1 Experimental results of our proposed method.

with thousands of images per class, which are pedestrians,
vehicles, and motorbikes, and use the bounding rectangle of
instance annotation as the bounding box of the target. In
experiments, the performance of the GMSW loss with KL
divergence and L2 loss are evaluated comparatively in object
detection.

Common Settings. The backbone network for teacher
model in all experiments is ResNet-50. For the student struc-
ture, we use more compact ResNet18 amd MobileNet as well
as its variants with different FLOPs, since ResNet18 and
MobileNet have been proved to be highly effective in keep-
ing high accuracy while maintaining low FLOPs in many
tasks. We conduct all the experiments on a computer with
1 NVIDIA V100 GPUs, and the object detection framework
is based on CenterNet in our experiments. The same num-
ber of slices (L = 100) is set for all comparable scores in
GMSW loss. In Table 1, the term “Type” denotes the train-
ing approach, where “Normal” indicates the model achieved
through standard training, “Distillation” refers to the stu-
dent model trained with ResNet50 as the teacher model,
and “Loss” specifically denotes the method of supervision in
knowledge distillation. In our study, we adopt the evaluation
metric of Average Precision, which is commonly referred to
as mAP.



LETTER
893

Fig. 2 Visualization of output features. The second row and the third row
show the feature come from KL loss and GMSW loss, respectively. The
heatmaps are highlighted, proving that GMSW loss distillation can make
the detector focus on the geometric feature.

Fig. 3 Robust estimation and training time for the projections L.

Our results show that the GMSW Loss outperformed
the L2 and KL divergence in terms of accuracy. Specifically,
the GMSW loss achieved an average mAP of 27.2%, which
significantly surpassed the L2 loss’s 3.1% and the KL loss’s
1.8% for the student model of ResNet18. Figure 2 shows
the visualization results obtained from the student model
of ResNet18. Our observations indicate that the geometric
attributes of the foreground features in third row is more
align closely with the object regions in the first row than
KL loss. Furthermore, the GMSW mechanism facilitates
the detector to emphasize the geometric properties of the
interested objects, such as angle, scale, and size.

To achieve the better robustness performance, we ana-
lyzed the impact of the number of projections by adjusting
L. As shown in Fig. 3, increasing the number of projections
L did not significantly improve mAP and led to training in-
stability and longer training time. This is due to the fact that,
in the context of object detection distillation, the foreground

typically constitutes a relatively small proportion in compar-
ison to the background. It is necessary to limit the number of
projections to avoid noise interference and improve robust-
ness.

5. Conclusions

We study the focus on key learning aspect of the Geomet-
ric Median Sliced Wasserstein (GMSW) loss for knowledge
distillation in this paper. Our work provides an enhanced un-
derstanding of sliced Wasserstein distances with geometric
median and the associated minimal distance estimators un-
der knowledge distillation. Our results suggest that GMSW
loss can significantly improve the robustness and accuracy
for knowledge distillation. Further research is needed to in-
vestigate the applicability of SW to high dimensional data
and to explore the optimal parameters for SW.
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