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Local Density Estimation Procedure for Autoregressive Modeling of
Point Process Data

Nat PAVASANT†a), Takashi MORITA††, Nonmembers, Masayuki NUMAO††, and Ken-ichi FUKUI††, Members

SUMMARY We proposed a procedure to pre-process data used in a
vector autoregressive (VAR) modeling of a temporal point process by using
kernel density estimation. Vector autoregressive modeling of point-process
data, for example, is being used for causality inference. The VAR model
discretizes the timeline into small windows, and creates a time series by
the presence of events in each window, and then models the presence of an
event at the next time step by its history. The problem is that to get a longer
history with high temporal resolution required a large number of windows,
and thus, model parameters. We proposed the local density estimation
procedure, which, instead of using the binary presence as the input to
the model, performed kernel density estimation of the event history, and
discretized the estimation to be used as the input. This allowed us to reduce
the number of model parameters, especially in sparse data. Our experiment
on a sparse Poisson process showed that this procedure vastly increases
model prediction performance.
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1. Introduction

A temporal point process is a series of discrete events in the
continuous time. For example, the timestamp of stock mar-
ket transactions [1], earthquakes [2], or neural activities [3].
Temporal point process can be modeled by its intensity func-
tion, which controls the rate of event occurrence at a specific
time. They can be modeled by their expected distribution
like Poisson or Hawkes process [4], and recent works have
even been modeling this intensity function using neural net-
work [1] or meta learning [5].

The vector autoregressive (VAR) model works by mod-
eling each variable by its own history and is normally used in
time series data. It can also be used to model a point process
data by dividing the entire temporal history of the temporal
point process into many windows with small lengths, which
can then be converted into a binary time series whose value
is based on the presence of data in each time window. The
graphical view of this model is shown in Fig. 1. This ap-
proach, while lacking in accuracy compared to advanced
models using neural network [1], has an advantage in that
the model is simple and is easily extensible to other appli-
cations that are based on vector autoregressive model such
as Granger causality [3], [6], which is a statistical process of
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Fig. 1 A counting-based VAR model.

Fig. 2 A model using local density estimation, as opposed to global
density.

inferring causality from the data based on the performance
of a predictive model [7].

However, one of the main problems of using vector
autoregressive to model the point process is the problem of
the history length. To allow the VAR model to cover longer
history length, either we must increase the number of history
windows, increasing the number of model parameters and
complexity, or we must increase the size of each window,
losing the time resolution in the process.

To solve this problem, we proposed a new procedure
called local density estimation, which is a pre-processing
step to modeling the VAR model. Specifically, instead of
modeling the history of temporal point process data just by
the presence of data, we instead perform a kernel density
estimation over a fixed size of the temporal history and then
apply auto-regression on the estimated density. This model
is shown in Fig. 2, which also shows why we called this a
local density estimation, as opposed to global density. The
procedure allowed the VAR model to better capture the pre-
cise location of each data in the point process, especially on
sparse data, as well as allow easy scaling to longer temporal
history length by having a few parameters covering a long
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time span, while keeping the number of inputs to the model
at a manageable level.

Note that, this work only uses a linear VAR model.
A simple extension to the non-linear model including non-
linear VAR (NVAR) [8] is possible, as the proposed method
can be used as a pro-processing step to transform discrete-
time point process model to a continuous-time point process
model. This is similar to how a transfer-entropy, a model-
free method of estimating causality, can also be extended
from discrete-time entropy to continuous-time entropy when
applying on point process [9].

Using tophat kernel, which is similar to nearest neigh-
bor density, in addition to a linear and a Gaussian kernel
density model, we performed experiments with synthetic
data generated with the Poisson model, which showed that
our kernel-density pre-processing step improved the accu-
racy of prediction while still maintaining the same number
of inputs.

2. Methodology

2.1 VAR Modeling of Point Process

Vector autoregressive (VAR) is a model where a variable
at the current time step is predicted by the past value of
itself. For a general VAR model, consider a time-series
A = {a0,a1, . . . ,an},ai ∈ R, we can model a value of ai by:

ai = β0 +
k∑
j=1
βjai−j + εi, (1)

where k is the number of lagged variables, β is the model
parameter, and εi is the error term.

A cumulative incidence function (CIF) is a core process
of modeling a point process. The function indicates the rate
of event occurrence at the specific time t parameterized by
the history of event occurrence:

λ(t |H(t)) = lim
∆→0

Pr[(N(t + ∆) − N(t)) = 1]
∆

, (2)

where N(t) is a counting measure of the event within the
time of (0, t], and H(t) is an occurrence history of all event
occurrences up to time t. The probability of the event oc-
curring in a small time window [t, t + ∆) can be written as
λ(t |H(t))∆.

To use VAR to model a point process CIF, we divided
the timeline into small slices of window. We then take a
number of events that occur in each slice of the window to be
the value at each time step of the VAR model. More formally,
consider a point process X = {x1, x2, · · · , xn} where xi is a
timestamp of each event in the point process. Let T0 = x1
and T1 = xn be the minimum and maximum timestamp of the
event, we divided the whole timeline into K = (T1 − T0)/W
slices of the window where W is the window size. Let
Ri denote the number of occurrence of events in the time
window [T0 + iW,T0 + (i + 1)W), and R(t) denote the Ri that
is correspondent to the time t.

To model the incidence function, a generalized linear
model (GLM) framework was used to model the CIF. In
GLM, the logarithm of the CIF was modeled using a linear
combination of the occurrence history:

log λ(t |θ,H(t)) = θ0 +
k∑

m=1
θmR(t − mW), (3)

where θ0 is a background activity, and θm is the effect of
R(t). A point process likelihood function [10] was used to
fit the GLM model.

2.2 Local Density Estimation

In order for the standard VAR model to capture longer his-
tory, we need to either 1) increase the number of history
slices, or 2) increase the windows size W . Both are not
ideal: increasing the number of history slices results in an
increased number of model parameters, which affect the run-
time performance of the process; while increasing the size of
the windows W results in reduced temporal accuracy. This
can be problematic, especially in sparse data where a longer
history length may be required.

To fix the aforementioned problems, we introduced
1-dimensional kernel density pre-processing to the VAR
model. Instead of using the lagged variable directly, we sam-
pled from a kernel density estimation trained on the event
occurrence history of each prediction. Note that we only use
event occurrence history relevant to each prediction for esti-
mation to save on computational cost and avoid information
leakage from the predictor target. This allowed us to increase
the history length of the model while keeping the number of
model parameters low and still keeping some accuracy. We
called this procedure local density estimation.

Formally, given kernel K , bandwidth b, history length
h, and number of parameter p, to model CIF at the time
window [t, t + ∆), we first created a list of events during the
time [t − h, t), X̂ = {xi; t − h ≤ xi < t}. Then, we can
discretize the estimated density D = {d1, . . . , dp} from the
event list X̂ using kernel density estimation. The density at
di can be calculated using the following formula:

di =
1
n̂

n̂∑
j=1

K((t − ih
p − 1

) − x̂j, b), (4)

where n̂ = ∥X̂∥. The discretized D is used instead of R(t −
mW) in Eq. (3) for modeling a point process:

log λ(t |θ,H(t)) = θ0 +
p∑
i=1
θidi, (5)

with p being the number of parameters, and can also be less
than k used in the regular VAR model.

In this work, we used three types of kernels K: a tophat
(TOP), a linear (LIN) and a Gaussian (GAU) kernel:

KTOP(x, b) ∝ 1 if |x | < b, (6)
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KLIN (x, b) ∝ 1 − |x |/n if |x | < b, (7)

KGAU (x, b) ∝ exp
(
− x2

2b2

)
. (8)

3. Experiments

We tested our proposed kernel-density pre-processing using
tophat, linear, and Gaussian kernel against a regular vector
autoregressive model using synthetic sparse Poisson pro-
cess data. We then measured the mean-squared error of the
prediction result, the log-likelihood of the GLM model in
Eq. (3), and F1 score of each model for comparison.

Our synthetic data is regular Poisson process data have
the interval between each event occurrence followed an ex-
ponential distribution:

L = {li ∼ Exp(λ)}, (9)

X = {xi =
i∑

j=0
lj}, (10)

where λ is the exponential distribution mean. We added
sparsity to this point process by randomly replacing s number
of li with gi ∼ Uniform[10,1000]. This created a random
large gap within the timeline of the point process. We called
this parameter s a sparsity count. In this work, we used λ = 1
for the Poisson process, which has an average interval of 1
and 90% of the intervals are less than 3. Sparsity count s of
0.01%, 0.02%. 0.05%, 0.1%, 0.2%, 0.5%, 1%, 2%, 5%, and
110% of all data were used. The histograms of the interval
between events are shown in Fig. 3.

We generated a 100,000-points point process for the
experiments, with 80% of the points being used for training
and another 20% of the points for evaluation. We tested the
regular VAR model (denoted as CNT), our proposed model
with tophat kernel, linear (triangle) kernel, and Gaussian ker-
nel (denoted as LIN and GAU). The details were described
in Table 1. The history length was the overall length of the
history being used in each prediction, and the number of pa-
rameters described the number of inputs to the model. This
is also shown in Fig. 4. All VAR models have a window size
of 1. All models have a target window size of 1.

We performed each experiment 10 times and took the
average of the results. The MSE, the log-likelihood of the

Fig. 3 Histogram of interval between events at different sparsity from the
100,000 points dataset

predictor, and the F1-score, calculated by thresholding the
predictor output at 0.5, are shown in Fig. 5. In almost every
case, the GAU5 model performed the best, followed closely
by TOP5 and LIN5. The VAR model CNT5 and CNT20
performed worse in almost every case. Figure 5 (c) also
shows that TOP5, LIN5, and GAU5 were also less affected
by the sparsity. GAU5 outperformed CNT20 with signifi-
cantly fewer model parameters; GAU5 had only 5 parame-
ters, whereas CNT20 utilized 20. Note that as sparsity in-
creased, the data can get extremely imbalanced so the MSEs
were lower with higher sparsity.

We have also generated a smaller point process with
1,000 points and 10,000 points, and performed the same
experiment with CNT20 (regular VAR with 20 parameters)
and GAU5 (Gaussian kernel with 5 parameters). The F1-
score is shown in Fig. 6. The result shows that the proposed
method improved the result even with low number of points,
especially at higher sparsity ratio.

3.1 Complexity Analysis

Preparing a temporal point process data, specifically for
sparse data, for VAR modeling has the complexity of
O(LN + N log N) where L is the number of windows, W
is the window size, and N is the number of data. This came
from the following steps:

1. For each data point N:

a. Find the points that are in the history length
(O(log N) using binary search)

b. Construct a history model from at most N points
(O(N))

2. However, in Step 1b, note that all points can be part of

Table 1 Models used in the experiment.

Fig. 4 Difference between the history length and the number of parame-
ters.
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Fig. 5 Mean squared error (MSE), log-likelihood, and F1-score of each
model. CNT is a regular VAR model, while TOP, LIN, and GAU are
proposed method with the tophat, linear, and Gaussian kernel, respectively.

at most L history models. Hence, step 1b amortized to
O(LN)

Step 1, minus the amortized part, has the complexity of
O(N log N). The amortized part is O(LN), yielding the

Fig. 6 Comparison of F1-score at each data size using CNT20 and GAU5.
Higher is better.

final complexity of O(LN + N log N).
For the proposed local density estimation, the complex-

ity isO( hw N+Np+N log N)where h is the history length, p is
the number of history samples (number of parameters), and
w is the time step used for the prediction target. Similarly,
this came from:

1. For each data point N:

a. Find the points that are in the history length
(O(log N) using binary search)

b. Construct and sample p samples of density from
at most N points (O(N + p))

2. However, in Step 1b, again, all points can be part of at
most h

w history models. Hence, step 1b amortized to
O( hw N + Np)

Note that h
w is essentially L in the complexity of the

regular VAR model. Hence, the proposed algorithm can
only be asymptotically slower than the regular VAR model
if and only if Np is larger than both h

w N and N log N , which
seems unlikely, as part of the reason to use this procedure is
to reduce the number of model parameter p to be less than
h
w .

4. Conclusion

We have proposed a new procedure to pre-process data with
kernel density estimation for modeling a point process us-
ing a vector autoregressive (VAR) model. Our experiments
showed that on sparse data, our procedure increased the
prediction performance significantly over the regular VAR
model, especially with the Gaussian kernel, while still keep-
ing the number of model parameters low. This procedure can
be applied anywhere a VAR model is being used to model
a point process, especially for Granger causality inference.
The proposed method is also robust against the number of
data points. While this work used the tophat, linear, and
Gaussian kernels, which are the most common kernels, de-
pend on the data, other kernels such as cosine can also be
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used. We have also shown that the complexity of the pro-
posed procedure is equivalent to the regular VAR model.
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