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Improved Just Noticeable Difference Model Based Algorithm for
Fast CU Partition in V-PCC∗

Zhi LIU†a), Member, Heng WANG†, Yuan LI†, Hongyun LU†, Hongyuan JING††,
and Mengmeng ZHANG† ,††b), Nonmembers

SUMMARY In video-based point cloud compression (V-PCC), the par-
titioning of the Coding Unit (CU) has ultra-high computational complexity.
Just Noticeable Difference Model (JND) is an effective metric to guide this
process. However, in this paper, it is found that the performance of tradi-
tional JND model is degraded in V-PCC. For the attribute video, due to the
pixel-filling operation, the capability of brightness perception is reduced for
the JND model. For the geometric video, due to the depth filling operation,
the capability of depth perception is degraded in the boundary area for depth
based JND models (JNDD). In this paper, a joint JND model (J_JND) is
proposed for the attribute video to improve the brightness perception capac-
ity, and an occupancy map guided JNDD model (O_JNDD) is proposed for
the geometric video to improve the depth difference estimation accuracy of
the boundaries. Based on the two improved JND models, a fast V-PCC Cod-
ing Unit (CU) partitioning algorithm is proposed with adaptive CU depth
prediction. The experimental results show that the proposed algorithm
eliminates 27.46% of total coding time at the cost of only 0.36% and 0.75%
Bjontegaard Delta rate increment under the geometry Point-to-Point (D1)
error and attribute Luma Peak-signal-Noise-Ratio (PSNR), respectively.
key words: V-PCC, JND, JNDD, partition

1. Introduction

In video-based point cloud compression (V-PCC) [1], the
patch projection-based method produces a large number of
empty pixels, and the far and near components are projected
to different 2D images (video frames), respectively. Conse-
quently, the projected video is always with high resolutions
and double frame rates, which brings high computational
complexity for coding in V-PCC.

The partitioning of Coding Unit (CU) is an important
task and has ultra-high computational complexity in V-PCC.
In order to reduce the complexity, a few fast algorithms
have been proposed recently [2]. In these proposed fast al-
gorithms, cross information of attribute video, geometric
video and occupancy maps was utilized to remove temporal
and spatial redundancy in point cloud video. To reduce cod-
ing complexity, the characteristics of human visual system
(HVS) are also adopted. In [3], [4], the Just Noticeable Dif-
ference (JND) model is used to categorize the coding units,
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and to reduce the number of candidate modes. However,
it is found in this paper that the traditional JND model [5]
does not apply to projected video in V-PCC, due to the pixel
and depth filling operation. Based on this observation, two
improved JND models are designed, and a fast CU partition
algorithm is proposed. The main contributions of this paper
are as follows. Firstly, the performance of the typical JND
model for the projected point cloud video is studied, and a
joint JND (J_JND) model and an Occupancy Map-guided
depth JND (O_JNDD) model are designed. Secondly, the
coding tree units of attribute videos and geometric videos
are classified using the improved JND model. Finally, com-
bined with adaptive partitioning, the optimal partitioning
range is determined for the coding tree units, and the process
of partitioning is terminated in advance.

2. Observation and Motivation

2.1 JND Model Mapping Analysis for Attribute Video

The JND model is used to delineate the sensitivity of the
HVS toward changes in stimuli. For traditional video, the
JND value in the visual sensitive area is distinct from that
in nonvisual sensitive area. The sensitive area usually has
relatively high JND value, while the nonvisual sensitive area
has relatively low one, as the red box and the yellow box

Fig. 1 Ordinary and attribute video frame JND map.
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shown in Figs. 1 (a) and (b), respectively. Sequence Basket-
ballDrill and Redandblack in Fig. 1 are derived from [6] and
[7], respectively.

In V-PCC, the 3D points of the point cloud are pro-
jected and packaged to form 2D attribute and geometric
videos. Due to the mechanism of the packaging method [1],
the output attribute video contains plenty of unoccupied ar-
eas. To improve the coding efficiency, the unoccupied areas
of the attribute video are filled based on pixel fill operation.
The yellow box in Fig. 1 (c) shows an example of the filled
unoccupied area in attribute videos. While this method im-
proves encoding efficiency, it inevitably results in relatively
large man-made low-contrast areas. Our study found that,
in these areas, the brightness perception sensitivity of the
traditional JND model is degraded, as shown of the yellow
and red boxes in Figs. 1 (c) and (d).

To confirm this observation, we carried out a series
of experiments to study the performance of JND model in
the filled unoccupied areas and the visually sensitive areas.
The mean JND values are used as the metric. The results
are illustrated in Fig. 2. It can be found from the figure
that, the average JND values in filled unoccupied areas are
comparable to that in sensitive areas.

2.2 JNDD Model Mapping Analysis for Geometry Video

The geometric video represents the depth information of the
point cloud video, as an example shown in Fig. 3 (a). Like the
attribute video, the output geometric video of the packaging
process contains plenty of unoccupied areas, and the depth
filling operation uses the residual values from the original
and predicted blocks to fill these areas.

The HVS has a visual masking effect in depth due to
the varying sensitivities of human eyes to changes in depth.

Fig. 2 Comparison of JND mean values between visual sensitive and
nonvisual sensitive areas.

Fig. 3 Geometric image JNDD map.

The depth based JND (JNDD) model [8] is used to describe
this feature. However, it is found in our study that, the
aforementioned depth filling operation yields a decrease in
geometric video’s boundary depth difference, as shown in
Fig. 3 (b), which degrades the differentiation of the JNDD
model to the changes of the depth boundary, as shown in
Fig. 3 (c).

2.3 Motivations

Since the area with large JND values represents the visually
sensitive area, and it usually contains more information, for
the CU partition process in video coding, to increase the
prediction efficiency, this kind of area can be partitioned
into small CU and has relatively large depth in the coding
tree. While nonvisual sensitive area, it is always partitioned
into large CU and has relatively small depth in the coding
tree.

In the following sections, the observations stated in this
section will be utilized to improve JND models and used to
design a fast CU partition algorithm.

3. Proposed Algorithm

3.1 Improvements of the JND Model

3.1.1 Proposed Joint JND Model for Attribute Video

The traditional JND model [5] can be expressed as,

JND = LA + CM − Clc ∗ min{LA,CM} (1)

Where LA and CM represent the luminance adaptation, and
contrast masking feature of HVS, respectively, and Clc is a
parameter.

As shown in Sect. 2.1, our study found that, for the
attribute video in V-PCC, the JND model fails to describe
the perceived brightness changes in the unoccupied areas,
which means the LA module in (1) needs to be improved. In
this subsection, a joint LA (J_LA) module is designed, as
shown of the red area in Fig. 4, and the improved model is
named as joint JND (J_JND) model.

The BartenCSF based LA [9] is a variation of LA. It
takes a global perspective and directly converts the bright-
ness value into perceived brightness, which can significantly
improve the uniformity of brightness perception. In the pro-
posed J_JND model, for the unoccupied area, the BartenCSF

Fig. 4 Structure of the proposed J_JND model.
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based LA module, denoted as LA_U, is used to substitute the
original LA module, and is obtained using:

LA_U =


lum(B(x, y) − 62) − lum(B(x, y) − 63)
lum(B(x, y) − 62) + lum(B(x, y) − 63) ∗ w

lum(B(x, y) − 63) − lum(B(x, y) − 64)
lum(B(x, y) − 63) + lum(B(x, y) − 64) ∗ w

(2)

where B(x, y) represents the brightness at point (x, y), and
lum is an inverse perceptual luminance converter, and w is
set to 0.238 [9].

For the occupied area, the original LA module of JND
is used, denoted as LA_O. The joint luminance adaptation
(J_LA) is expressed as,

J_LA = α ∗ LA_O + (1 − α)LA_U (3)

where α is set to 1 for unoccupied areas, and 0 for occupied
areas. The proposed J_JND model is expressed as,

J_JND = J_LA + CM − 0.3 ∗ min{J_LA,CM} (4)

3.1.2 Proposed Occupancy Map-Guided JNDD Model for
Geometric Video

As has been stated in Sect. 2.2, the depth filling in geometric
videos may blur the depth boundaries of geometric videos,
and degrade the differentiation of the JNDD model to the
changes of the depth boundary.

The occupancy map in V-PCC not only provides the
information of occupied and unoccupied pixels, but also
provides accurate boundary information [1]. To address the
aforementioned issue in geometric video, the occupancy
map is used as a visual masking factor to calibrate the
JNDD model, denoted as Occupancy Map-Guided JNDD
(O_JNDD) model, which is expressed as,

DO_JNDD = λ ∗ JNDD (5)

where λ is the visual masking factor, which is set to 1 when
current pixel is in the occupied area, and 0 when it is not.

3.2 Fast CU Partition Algorithm Based on the Improved
JND Model

The main idea of the fast CU partition algorithm based on
improve JND model can be stated as follows. Since the HVS
sensitivity of the area has correlation to the partition depth
in the coding tree, the JND values are used to classify all the
coding tree units (CTUs). For each kind of CTU, the optimal
depth range is obtained through statistics method. Based on
the optimal depth range, the encoder can skip the search of
the depth out of the optimal range, and save coding time.

3.2.1 Classification of CTUs Based on JND Values

Based on the JND values, CTUs in a video frame are classi-
fied into three kinds: Visual Sensitive (VS) CTUs, Medium
Visual Sensitive (MVS) CTUs, and Non-Visual Sensitive

Fig. 5 JND thresholds for different QPs.

Table 1 The optimal depth level for attribute videos.

Table 2 The optimal depth level of near layer for geometric videos.

Table 3 The optimal depth level of far layer for geometric videos.

(NVS) CTUs. The classifier is expressed as,
NVS CTU, JND ≤ L
MVS CTU, L < JND ≤ H
VS CTU, JND > H

(6)

where L and H are thresholds and are obtained through
statistics.

Figure 5 shows the values of L and H for far layer and
near layer with different quantization parameters (QP). Due
to the unique dual frame rate structure of V-PCC, one frame
in point cloud video will generate one near layer frame and
one far layer frame. There is a significant difference in the
partition depth between the near and far frame, therefore, the
CTUs in near and far frame are classified independently.

3.2.2 Optimal Depth Range for CU Partition

Based on extensive statistical analysis, the optimal depth
range of CTU is obtained and shown as follows.

For attribute video, it is found that the optimal depth
range of near layer frame and far layer frame is the same, and
is shown in Table 1.

For geometric video, the optimal depth range for near
layer frame is shown in Table 2. The optimal depth range
for NVS CTUs is all 0, while the optimal depth range for VS
CTUs is [1,3].

Table 3 shows the optimal depth range for far layer frame
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Table 4 Performance of V-PCC fast algorithm.

in geometric videos. Due to the presence of large flat areas
in geometric video and the low probability of partitioning
for far layer, there are only two kinds of CTUs: NVS CTU
and VS CTU.

4. Experimental Results

4.1 Configurations and Settings

The proposed algorithm is implemented in V-PCC reference
software TMC2-18.0 [10] to verify performance. All the
coding experiments follow the V-PCC common test condi-
tions (CTCs) [10]. The coding configuration is set to all
intra, and the recommended five bitrate sets {R1, R2, R3,
R4, R5} are used. Time saving ratio is obtained using:

∆T = (Torg − Tfast)/Torg (7)

where Torg and Tfast are the coding time of TMC2-18.0 and
the proposed fast algorithm, respectively.

4.2 Total Performance of the Proposed Algorithm

Table 4 shows the overall performance of the proposed fast
algorithm. Compared with TMC2-18.0, under all intra con-
figuration, the average saving of total coding time, attribute
video coding time, and geometric video coding is 27.46%,
41.03%, and 47.04%, respectively.

In addition, Table 4 shows that the average BD-rate
increment is very small for the proposed algorithm. For
attribute videos, the average BD-rate changes are 0.84%,
−0.29%, and −0.05% for Luma, Cb, and Cr content, respec-
tively. For geometric videos, the average BD-rate increment
is 0.36% and 0.56% for D1 and D2 metrics, respectively.
For the total bitrate, the results show that the BD-rate incre-
ment is small for both geometric and attribute videos, with
a maximum value of 0.75%.

The algorithm proposed in [2] was implemented in the
experimental condition of this paper, and the results are
shown in Table 4. The results show that the time saving
of the proposed algorithm is 12.20% higher than [2] with

less coding loss.

5. Conclusion

In this paper, the degradation of the traditional JND model in
V-PCC is observed, and improved JND models are designed.
Based on the improved JND model, a fast CU partition al-
gorithm is proposed. The experimental results show that the
proposed algorithm can significantly reduce coding time.
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