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Construction of Ergodic GMM-HMMs for Classification between
Healthy Individuals and Patients Suffering from Pulmonary Disease

SUMMARY Owing to the several cases wherein abnormal sounds,
called adventitious sounds, are included in the lung sounds of a patient
suffering from pulmonary disease, the objective of this study was to auto-
matically detect abnormal sounds from auscultatory sounds. To this end, we
expressed the acoustic features of the normal lung sounds of healthy peo-
ple and abnormal lung sounds of patients using Gaussian mixture model
(GMM)-hidden Markov models (HMMs), and distinguished between nor-
mal and abnormal lung sounds. In our previous study, we constructed
left-to-right GMM-HMMs with a limited number of states. Because we
expressed abnormal sounds that occur intermittently and repeatedly using
limited states, the GMM-HMMs could not express the acoustic features of
abnormal sounds. Furthermore, because the analysis frame length and in-
tervals were long, the GMM-HMMs could not express the acoustic features
of short time segments, such as heart sounds. Therefore, the classification
rate of normal and abnormal respiration was low (86.60%). In this study,
we propose the construction of ergodic GMM-HMMs with a repetitive
structure for intermittent sounds. Furthermore, we considered a suitable
frame length and frame interval to analyze acoustic features. Using the
ergodic GMM-HMM, which can express the acoustic features of abnormal
sounds and heart sounds that occur repeatedly in detail, the classification
rate increased (89.34%). The results obtained in this study demonstrated
the effectiveness of the proposed method.

key words: hidden Markov model, lung sound, patient detection, abnormal
respiration

1. Introduction

Auscultation of the lungs is used for detecting patients with
pulmonary diseases. Despite other noninvasive and inex-
pensive methods, auscultation using a stethoscope can ob-
tain valuable information regarding the health status of an
individual. In several cases, abnormal sounds (called adven-
titious sounds [1]) are included in the lung sounds of patients
with pulmonary disease, and auscultation is currently an ef-
fective method for diagnosing pulmonary disease. However,
this method requires expert knowledge and expertise. There-
fore, identifying the difference between healthy people and
patients is difficult for non-medical personnel, and this may
be the reason auscultation is not used in common households.
Furthermore, it is difficult for the elderly or individuals living
in depopulated areas to visit hospitals. Thus, the distinction
between healthy individuals and patients performed at home
can facilitate early detection of pulmonary diseases. Several
studies have focused on automatically detecting adventitious

Manuscript received March 2, 2023.
Manuscript revised August 4, 2023.
Manuscript publicized December 12, 2023.
"The author is with the Graduate School of Engineering,
Nagasaki University, Nagasaki-shi, 852—-8521 Japan.
a) E-mail: masaru@nagasaki-u.ac.jp
DOI: 10.1587/transinf.2023EDP7040

Masaru YAMASHITA ", Member

sounds from lung sounds [2]-[4]. These studies either de-
tected a specific adventitious sound using a wavelet trans-
form or distinguished the frame of an adventitious sound
using a short-time spectrum. However, the time of occur-
rence and duration of adventitious sounds vary. Therefore, it
is desirable to discriminate sounds using the features of the
entire respiration process and its inflection. Furthermore,
the features of adventitious and respiratory sounds depend
on the individual and the progression of the disease. There-
fore, we believe that these features should be expressed sta-
tistically. Recently, convolutional neural networks [S]-[7]
and recurrent neural networks [8], [9] have been used to
analyze lung sounds. Furthermore, in the field of speech
recognition, end-to-end models becoming the prominent ap-
proach [10]-[12]. However, these methods require a large
volume of training data to achieve good performance. To
overcome these issues, in our previous studies, the features
should be expressed statistically. The time series of the
acoustic features of lung sounds are expressed by construct-
ing Gaussian mixture model (GMM)-hidden Markov models
(HMMs) to discriminate between normal and abnormal res-
piratory sounds [13]-[18]. However, we did not consider the
suitable state transition of the GMM-HMMEs, analysis frame
length, and frame intervals.

Adventitious sounds are divided into two classes: con-
tinuous and discontinuous. Figure 1 shows the respira-
tions including discontinuous adventitious sounds, which
are called fine crackles. Figure 2 shows the respirations
including continuous adventitious sounds, which are called
wheezes. A distinctive feature of discontinuous adventitious
sounds is that short sounds occur repeatedly. Although the
acoustic features of adventitious sounds differ by type, we
considered the discontinuous adventitious sound period to
be a steady state and expressed it using a left-to-right GMM-
HMM. Therefore, the classification rates of normal and ab-
normal respiration were low. Furthermore, in auscultation,
noise hinders the detection of adventitious objects with high
accuracy. Auscultatory sounds often include noise from the
body and the rustle of the stethoscope. A typical noise from
the body is the sound of the heart. Figure 3 shows examples
of respiratory sounds, including adventitious sounds, heart
sounds (S1 and S2), and other noise. The frequency of the
appearance of heart sounds auscultated near the heart is high.
The database used in our study included several heart sounds;
consequently, several normal respiratory sounds were iden-
tified as abnormal. To distinguish adventitious sounds from
heart sounds, we constructed a heart sound model using

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers
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Fig.1 Respirations including discontinuous adventitious sounds [19],
[20].
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Fig.2  Respirations including continuous adventitious sounds [19], [20].
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Fig.3  Respiratory sounds, including adventitious sounds, heart sounds,
and other noise [16].

heart sounds for model learning [16], [17]. As a result, nor-
mal respiratory sounds were correctly identified. However,
the accuracy decreased in the case of abnormal respiratory
sounds. We assumed that these models were unsuitable.
Therefore, we focused on analyzing the topology of the
acoustic models and the frame lengths of adventitious and
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heart sounds. In our previous study [18], we constructed an
ergodic GMM-HMM for discontinuous adventitious sounds.
In this study, we apply the construction method to respira-
tions, including continuous adventitious and heart sounds,
and set a suitable analysis frame length and appropriate
frame intervals. We then examine the combination of er-
godic GMM-HMMs for each sound. As a result, we con-
firmed that the construction of the ergodic GMM-HMM for
respiration, including short sounds, is suitable for the detec-
tion of abnormal respiration in patients.

2. Lung Sound Database
2.1 Dataset

The lung sounds were recorded by a medical doctor using an
electronic stethoscope. They were recorded in WAVE for-
mat, sampled at 5 kHz, and quantized at 16 bits. The doctor
judged the recording points for each subject. Therefore, the
number of recording points differed between subjects. The
respiratory count was 5 breaths, and the average of recorded
time was 15.3 s. The medical doctor provided diagnoses and
classified the subjects as healthy and patients. As the result,
the data included 134 healthy subjects and 109 patients.

2.2 Hand Labeling

We manually performed segmentation based on recorded
sounds, waveforms, spectrograms, and power. First, lung
sounds were divided into inspiration and expiration sound
segments (respiratory sound segments). Next, the respira-
tory sound segments were divided into adventitious and other
breathing sound segments. The adventitious sound segments
were classified into continuous adventitious and discontinu-
ous sounds. Additionally, we marked the heart sound seg-
ments on the lung sounds recorded from auscultation points
near the heart. Because the first (S1) and second sounds (S2)
can be clearly observed, we marked them as heart sounds.
If the occurrence interval of adventitious sounds and heart
sounds was shorter than 100 ms, it was considered as one
segment.

2.3 Definition of Normal and Abnormal Respiration

The acoustic features of some noises were similar to those
of the adventitious sounds. Some respiratory sounds from
healthy individuals included adventitious sounds. Therefore,
it is difficult for a nonmedical person to diagnose this con-
dition. Conversely, some of the respiratory sounds from the
patient did not include adventitious sounds. However, they
cannot be referred to as normal respiratory sounds. Respi-
ratory sounds were grouped into four categories and defined
as normal and abnormal respiration as follows:

* Abnormal respiration by patients (AP): respirations that
include adventitious sounds.

* Abnormal respiration by healthy individuals (AH): res-
pirations that include noises resembling adventitious
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Table 1  Number of respiratory sounds of each category.
Category ~ Number
AP 2135
AH 899
NP 3035
NH 4271
sounds.

* Normal respiration by patients (NP): respirations that
do not include adventitious sounds or noises resembling
adventitious sounds from patients.

* Normal respiration by healthy individuals (NH): respi-
rations that do not include adventitious sounds or noises
resembling adventitious sounds from patients.

Tablel shows the number of respirations of each category. In
this study, we performed two types of experiments: detection
of abnormal respiration and detection of patients. In the de-
tection experiment of abnormal respiration and the training
data for normal and abnormal respiration, we used only NH
as normal respiration and AP as abnormal respiration. That
is, AH and NP were not used for the experiment or train-
ing data. However, in the detection experiment of patients,
all respirations were used. We used a series of respirations
for each test individual. That is, we used AP, AH, NP, and
NH for the detection experiment of the patient; however, we
used only NH and AP for the training data. The classification
procedure for the two experiments is described in Sect. 3.

3. Fundamental Classification Procedure

3.1 Detection of Abnormal Respiration

Generally, in the field of speech recognition, acoustic models
of phonemes (the smallest unit of speech) and the occurrence
probability of words are used to construct stochastic models.
We applied this technique to the lung sounds. Figure 4 shows
the architecture of the classification system for normal and
abnormal respiration [16]. It comprises training and testing
processes. In the training process, the GMM-HMMs are
trained as the acoustic and segment sequence models, which
define the occurrence probability of the divided segments. In
the test process, the input respiration is classified as normal

For each respiration  For each individual

Architecture of the classification system for normal and abnormal respiration.

or abnormal based on the maximum likelihood approach. If
we assume that sample respiration W consists of N segments,
it can be expressed as W = wy wp -+ w; - -+ wp, where w;
is the i-th segment of W.

The training process was as follows. First, we extracted
acoustic features and trained each segment. In the case of
normal respiration, if we assume that it does not include
heart sounds, it consists of one segment (N = 1). If it
includes heart sounds, it consists of at least two segments
(N = 2). Conversely, abnormal respiration, including ad-
ventitious sounds, consists of at least two segments (N > 2)
even if it does not include heart sounds. For example, the case
of expiration shown in Fig. 2 consists of one wheeze segment
and two breathing segments (N = 3). The inspiration shown
in Fig. 2, which does not include adventitious sounds, con-
sists of one breathing sound segment (N = 1). The training
of the segment sequence model can be explained as follows:
We calculated the occurrence probability of segments P(W)
by using a segment bigram. P(W) can be expressed as

P(W) = P(w) X T1Y, P(wi|w;_1) @)
Let P(w;|w;—1) be defined as
P(w;ilwi_1) = C(wi—1,w;)/C(wi—1), 2)

where C(w;_1) is the number of w;_;, and C(w;,w;_) is the
number of the segment w; after w;_; in the training database.

The test process can be explained as follows: The max-
imum likelihood among the calculated likelihoods was de-
termined, and the corresponding segment sequence W was
selected to recognize the sample respiration sound. If the se-
quence included at least one adventitious sound, the sample
respiration was identified as an abnormal sound. If not, the
sample respiration was identified as a normal sound. W can
be expressed as

W = arg max(log P(X|W) + a log P(W)) 3)
w

where X is the sample respiration and log P(X|W) is the

acoustic likelihood. The weight factor o was experimentally

obtained.
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3.2 Detection of Patient Suffering from Pulmonary Disease

This section describes the detection of the patients suffer-
ing from pulmonary disease. Noise from the outside of the
body occurs irregularly. In contrast, adventitious sounds
occur periodically. Therefore, in the case of healthy individ-
uals, most of the likelihood values for normal respiration are
higher than those for abnormal respiration, even if some res-
pirations are classified as abnormal. To detect patients, we
calculated the likelihood L(W,,,) for the segment sequence
Wm, that does not include adventitious sounds, and the max-
imum likelihood L(W,;,) for the segment sequence Wp that
includes adventitious sound segments for each respiration.
If the total of L(W,;,) was greater than or equal to the total of
L(W,,), then the individual was classified as a patient. That
is, ZiL(W; ap) = X;L(Wj »0), where L(W; ,p) is the like-
lihood of the segment sequence that includes adventitious
sound segments for the j-th respiration of the individual
and L(W; ,,,) is the likelihood of the segment sequence that
does not include adventitious sound segments for the j-th
respiration of the individual.

3.3 Classification Procedure Using the Heart-Sound Model

To distinguish adventitious sounds from heart sounds, we
constructed a heart sound model in addition to the breathing
sound and adventitious models [16], [17]. We trained the
acoustic models during the training process. In the case
of normal respiration sounds, we trained the normal sound
model using breathing and heart sound segments. In the case
of abnormal sounds, we trained the model as described in the
fundamental classification procedure. In the test process, the
maximum likelihood among the calculated likelihoods was
determined, and the corresponding segment sequence W was
selected to recognize the sample respiration sound, similar
to the fundamental classification procedure. The difference
from the fundamental classification procedure was that even
if the sequence included heart sounds, the sample respiration
was identified as normal respiration.

4. Construction of Ergodic GMM-HMMs

In our previous studies [13]-[18], we constructed a left-to-
right GMM-HMM with limited states for each segment, as
shown in Fig. 5 (a), and assumed that the models were not
suitable. Therefore, we focused on analyzing the topology
of the acoustic models. For example, the duration of the
stationary sound period was significantly different between
heart and adventitious sounds. Table 2 shows the mean and
standard deviation (SD) of the adventitious and heart sound
durations. The duration of heart sounds was shorter than
that of adventitious sounds, and it was too small to analyze
using a long frame length and long frame intervals. There-
fore, we focused on the adventitious and heart sounds for
the model. For example, to construct an GMM-HMM that
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(a) Left-to-right GMM-HMM

(b) Ergodic GMM-HMM

Fig.5 Topology of GMM-HMMs [21].

Table 2 Mean and standard deviation (SD) of duration for adventitious
and heart sounds [16], [20].

Source sound Mean (s) SD (s)
Adventitious sound  0.53 0.31
Heart sound 0.12 0.03

is appropriate for discontinuous adventitious sounds, we as-
sumed that the discontinuous sound period consists of the
repetition of an abnormal sound period and a silent period.
We then constructed an ergodic GMM-HMM that transitions
to the former state, as shown in Fig. 5 (b). Furthermore, to
construct the ergodic GMM-HMM, we selected the suitable
analysis frame length and frame intervals because an abnor-
mal sound period and a silent period are too short to analyze
through the typical values used in the frequency analysis of
speech.

5. Classification Experiments
5.1 Experimental Conditions

Every 10 ms, six mel-frequency cepstral coefficients
(MFCCs) and power values were extracted as acoustic fea-
tures using a 25 ms Hamming window. Figure 6 shows
the auscultation points. In this study, a heart sound model
was used to auscultate lung sounds from three points near
the heart (P4-Pg). Conversely, a heart sound model was not
used to auscultate lung sounds from six points away from
the heart (P;-P3, P7-Py). Table 3 lists the number of ab-
normal respiratory sounds that included adventitious sounds
and the number of patients that included at least one ad-
ventitious sound; as many normal respirations or healthy
individuals were randomly selected for each detection ex-
periment of abnormal respiration and patients. The number
of each sound segment is listed in Table 4. These were used
as the training data for the GMM-HMM. The respiration
data recorded at the same point as the testing data were used
for training. Thus, we constructed a point-dependent model.
We performed leave-one-out cross-validation to construct an
individual-independent model. In other words, we did not
use respiration data from the same or another recording point
of the same individual.

5.2 Classification Experiments between Normal and Ab-
normal Respirations

We compared the left-to-right and ergodic GMM-HMMs
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Table3  Number of abnormal respiratory sounds and patients [21].
Points  No. Abnormal respirations ~ No. Patients
Py 219 44
P, 161 89
P3 254 53
Py 217 47
Ps 312 62
Pg 206 52
P; 182 46
Pg 329 62
Py 260 62
Total 2135 517
Table4  Number of each sound segment [20].
Points No. of Sound segments
Heart sound 4949
Discontinuous adventitious sound 1753
Continuous adventitious sound 397
Breathing sound 4285
Normal respiration 2135
Table 5  Combinations of frame length and frame interval [21].

Conditions  Frame length  Frame interval
A 5 2
B 10 4
C 15 6
D 20 8
E 25 10
F 30 12

and selected the frame length and frame intervals for anal-
ysis. In our previous studies [13]-[18], we set the analysis
frame length to 25 ms and frame interval to 10 ms. In this
study, we selected several combinations of frame length and
frame interval, as presented in Table 5. Figure 7 shows the
classification rate between normal and abnormal respirations
using a left-to-right GMM-HMM and ergodic GMM-HMM
for heart sounds. When the analysis frame length and inter-
val were too small, the classification rate decreased because
the frequency resolution was low. First, we constructed an
ergodic GMM-HMM for heart sounds. The models of the
other sounds were constructed using a left-to-right model.
Figure 8 shows the classification rate between normal and ab-
normal respiration using the ergodic GMM-HMM for heart
sounds. By comparing Figs. 7 and 8, we can observe that the
accuracy using the ergodic GMM-HMM for heart sounds is
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slightly higher. This is because the ergodic GMM-HMM
for approximately half of the respirations, including heart
sounds, used the transition to the former state for the calcu-
lation of likelihood, and the model was valid. However, the
ergodic GMM-HMM for the remaining half respirations did
not transition to the former state to calculate the likelihood.

Subsequently, we constructed an ergodic GMM-HMM
for the discontinuous sounds. The models of the other sounds
were constructed using left-to-right models. In both er-
godic GMM-HMMs for heart and discontinuous adventitious
sounds, the accuracy was higher than that of the left-to-right
GMM-HMMs for which the analysis frame length was set
to 25 ms and the frame interval was set to 10 ms. This is
because the analysis frame length and interval were too large
to express the acoustic features of each intermittent sound.
We then set the frame length and interval to a smaller value
(Condition C), which resulted in an increase in the classi-
fication accuracy. When a suitable analysis frame length
and appropriate frame interval were set, the ergodic GMM-
HMM could express the acoustic features of intermittent
sounds. Furthermore, we constructed an ergodic GMM-
HMM for continuous sounds. The other sound models were
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constructed using the left-to-right model. The accuracy us-
ing the ergodic GMM-HMM for continuous adventitious
sounds was lower than that of the left-to-right GMM-HMM
under all the conditions. We considered that this is because
the amount of training data was smaller than that of discon-
tinuous adventitious sounds, and the acoustic features were
constant throughout the continuous adventitious sound peri-
ods. We then constructed a combined ergodic GMM-HMM
for heart and discontinuous sounds. The models of the other
sounds were constructed using the left-to-right model. Ac-
curacy using the ergodic GMM-HMM for both heart and
discontinuous adventitious sounds was the highest for the
methods mentioned above. We conducted a t-test and the
result indicates the significant effectiveness (p < 0.01) of
constructing an ergodic GMM-HMM for heart and discon-
tinuous adventitious sounds.

5.3 Classification Experiments between Healthy Individu-
als and Patients

Finally, an experiment for the classification of healthy in-
dividuals and patients is discussed. Figures 9, 10 show
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the classification rates of healthy individuals and patients.
When we compared the results, we observed that there was
the same tendency between normal and abnormal respira-
tion as in the previously mentioned classification experi-
ments. The results obtained by the experiment for classify-
ing healthy individuals and patients also indicated the signif-
icant effectiveness (p = 0.026) of constructing a combined
ergodic GMM-HMM of heart and discontinuous adventi-
tious sounds, wherein the frame length and interval were set
to as in Condition C.

6. Conclusions

This study proposed the construction of an ergodic GMM-
HMM for sounds that occur intermittently and repeatedly,
with the aim of classifying normal and abnormal respira-
tions with high accuracy. The ergodic GMM-HMMs for
heart and discontinuous sounds were valid, and the accu-
racy using both models showed an improvement over using
the models separately or left-to-right GMM-HMM. Further-
more, to construct an ergodic GMM-HMM with a repeti-
tive structure, we set a suitable analysis frame length and
appropriate frame intervals. The results obtained through
the classification experiment confirmed that the classifica-
tion rate improved when the frame length and interval were
set slightly smaller than the typical values used in the fre-
quency analysis of speech. We consider that the ergodic
model is valid for sounds that occur intermittently and re-
peatedly. Furthermore, the improvement was also significant
in the experiment for classifying healthy individuals and pa-
tients. Thus, the effectiveness of the proposed approach was
demonstrated.

In future work, we will clarify the suitable topology
of GMM-HMMs using a deep neural network, which has
proven to be effective in the field of speech recognition.
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