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PAPER
MDX-Mixer: Music Demixing by Leveraging Source Signals
Separated by Existing Demixing Models

Tomoyasu NAKANO†a), Nonmember and Masataka GOTO†b), Fellow

SUMMARY This paper presents MDX-Mixer, which improves music
demixing (MDX) performance by leveraging source signals separated by
multiple existing MDX models. Deep-learning-based MDX models have
improved their separation performances year by year for four kinds of sound
sources: “vocals”, “drums”, “bass”, and “other”. Our research question
is whether mixing (i.e., weighted sum) the signals separated by state-of-
the-art MDX models can obtain either the best of everything or higher
separation performance. Previously, in singing voice separation and MDX,
there have been studies in which separated signals of the same sound source
are mixed with each other using time-invariant or time-varying positive
mixing weights. In contrast to those, this study is novel in that it allows for
negative weights as well and performs time-varying mixing using all of the
separated source signals and the music acoustic signal before separation.
The time-varying weights are estimated by modeling the music acoustic
signals and their separated signals by dividing them into short segments. In
this paper we propose two new systems: one that estimates time-invariant
weights using 1x1 convolution, and one that estimates time-varying weights
by applying the MLP-Mixer layer proposed in the computer vision field to
each segment. The latter model is called MDX-Mixer. Their performances
were evaluated based on the source-to-distortion ratio (SDR) using the
well-known MUSDB18-HQ dataset. The results show that the MDX-Mixer
achieved higher SDR than the separated signals given by three state-of-the-
art MDX models.
key words: Music demixing, Music source separation, 1x1 convolution,
MLP-Mixer layer, Time-varying mixing

1. Introduction

The challenge of Music Demixing (MDX), or Music Source
Separation (MSS), is to separate individual source signals
such as vocals, drums, and bass from a real-world music
acoustic signal. High-performance MDX is an essential
technology for a variety of applications that analyze and
exploit the characteristics of individual sound sources. In
fact, MDX was used to add effects to individual source
(instrument) sounds for music appreciation [1] and adjust
their volume [1–4], to improve the cochlear implant user’s
musical experience by adjusting the volume of preferred
instruments [5], to synthesize singing voices [6], to ac-
quire feature expressions of singing voices [7], to iden-
tify singers [8], to estimate compatibility between singing
voices and accompaniment [9], and so on. In addition,
there are examples used in commercial software related
to music production (e.g., Audionamix XTRAX STEMS,
https://audionamix.com/xtrax-stems/).
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Fig. 1 MDX-Mixer overview. The music acoustic signal and source sig-
nals separated by several existing MDX models are mixed approximately
every 6 seconds to obtain the final separated signal.

To build a higher-performance MDX framework with
better generalization performance, researchers have been
working on developing model architectures and training
methods and have been preparing and augmenting the di-
versity of a vast amount of training data. As for model ar-
chitectures, Deep Neural Networks (DNNs) are widely used
as one of the best performing frameworks [10, 11], and cur-
rent deep MDX models can be broadly classified into the
following four types:

(1) separation in the amplitude spectral domain [12–21],
(2) separation in the complex spectral domain [22–25],
(3) separation in the waveform domain [26–30],
(4) hybrid separation of waveforms and complex spectra

[31–33].

Other areas of research include increasing the amount and
diversity of training data [24, 34, 35], dealing with small
numbers of training data by using few-shot learning [36],
and estimating synthesis parameters for musical instrument
from sound mixtures [37].

In most MDX studies, source-to-distortion ratios
(SDRs) of separation methods are evaluated and compared
for four types of sources (Drums, Bass, Other, and Vocals).
Table 1 shows the SDRs of the four state-of-the-art (SOTA)
models with the highest SDRs for each source as of Febru-
ary 2023†. The top two rows show the SOTA model for
MUSDB18 [38], and the bottom two rows show the SOTA
model for MUSDB18-HQ [39] (the frequency-bandwidth-
widened version of MUSDB18).

†Models published in peer-reviewed conferences are listed.
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Table 1 SDRs in the two datasets MUSDB18 and MUSDB18-HQ for the SOTA models of MDX,
where “All” means the average of the four source results. Bold font denotes the maximum value in each
dataset. Models marked with “†” were evaluated by the median SDR in all frames of all 50 songs; the
others were evaluated by the “median of frames, median of tracks”.

Model Test SDR in dB
ID Name Dataset All Drums Bass Other Vocals
A CDE-HTCN [33] MUSDB18 6.89 7.33 7.92 4.92 7.37
B ResUNetDecouple+† [25] MUSDB18 6.73 6.62 6.04 5.29 8.98
C KUIELAB-MDX-Net† [31] MUSDB18-HQ 7.54 7.33 7.86 5.95 9.00
D Hybrid-Demucs [32] MUSDB18-HQ 7.68 8.24 8.76 5.59 8.13

Table 1 shows that there are different models for obtain-
ing the best SDR for each sound source. In other words, the
research question “Can the best performance be obtained or
exceeded for all four sources by utilizing the source signals
separated by multiple MDX models?” can be considered. In
fact, there are two MDX studies [31, 40] that mix separated
source signals in a time-invariant manner to improve sepa-
ration performance. In those studies, single source signals
separated by two different models (e.g., two separated vocal
signals) were mixed using positive weights.

Furthermore, since the optimal weights of the mixing
may change from time to time depending on the music con-
tent, a method was proposed to estimate time-varying posi-
tive mixing weights only for the singing voice separation, and
its effectiveness was reported [41]. However, the three sound
sources other than the singing voice (i.e., Drums, Bass, and
Other) were never evaluated.

Unlike these previous studies, this paper proposes a
system, MDX-Mixer, with the following three novelties.

1. We propose a system for time-varying mixing by using
not only the separated source signals, but also the music
acoustic signal before separation (hereinafter simply
referred to as “music acoustic signals”). As shown
in Figure 1, time-varying weights can be obtained by
dividing the music acoustic signal and its separated
signals (by existing MDX models) into short segments
and estimating the mixing weights.

2. MDX-Mixer mixes not only the separated signals of the
same sound source but also the separated signals of
all four types of sound sources and the music acoustic
signal. For example, to obtain a separated singing voice
signal, a separated drum signal is also mixed as a sound
source other than the singing voice.

3. Negative weights are also allowed in order to take into
account utilization of the music acoustic signal and sep-
arated signals of different types of sound sources. The
negative wights are expected to be effective for the re-
moval of residual signals of different types of sound
sources.

2. Related work

Previously, there have been studies called blending, fusion,
ensemble, combine, etc., which mix multiple source sepa-
ration models or their separation results [31, 40–48]. For

speech enhancement or speech separation, focusing on the
amplitude spectrum, models were integrated or estimated
masks were mixed [42, 43, 45, 46].

In the context of MDX or singing-voice/accompaniment-
sound separation, there are studies that utilize the results of
multiple separation methods as input to another model. For
singing-voice/accompaniment-sound separation, McVicar
et al. [47] proposed a method to estimate an amplitude spec-
tral mask by a conditional stochastic field, using the outputs
from multiple source separation methods as feature vectors.

In addition, there are studies that use multiple sepa-
ration methods as one of the components of another model.
Driedger et al. [44] proposed a multi-stage system consisting
of multiple separation methods for the amplitude spectrum,
focusing on different properties such as harmonic and per-
cussive components.

Moreover, there are studies that are closely related to
this paper and that select [48] or mix [31, 40, 41] separated
signals. Manilow et al. [48] proposed a method to train a
DNN model that estimates the SDRs of multiple separation
methods every short time and selects the separation results
to maximize the predicted SDR. Uhlich et al. [40] and Kim
et al. [31] mixed the separated source signals by using time-
invariant positive mixing weights.

Let 𝑥𝑖,model1 (𝑡) and 𝑥𝑖,model2 (𝑡) be the source signals
separated by two MDX models (model1 and model2). They
are mixed as follows using the time-invariant weights 𝑤𝑖 (𝑡)
for each source 𝑖:

𝑥𝑖 (𝑡) = 𝑤𝑖𝑥𝑖,model1 (𝑡) + (1 − 𝑤𝑖)𝑥𝑖,model2 (𝑡). (1)

Uhlich et al. [40] determined a time-invariant source-
independent weight 𝑤𝑖 that maximizes the average SDR for
the DSD100 Dev set. The optimal 𝑤𝑖 = 0.25 determined in
that way was used to mix the signals separated by the feed-
forward model (model1) and the BLSTM model (model2).
Kim et al. [31] used source-dependent weights 𝑤𝑖 to mix
the signals separated by a modified TFC-TDF-U-Net [22]
(model1) and Demucs [49] (model2). Specifically, 𝑤𝑖 was
set to 0.5, 0.5, 0.7, and 0.9 for bass, drums, other, and vocals
in MDX Challenge 2021 [50]†.

As for time-varying mixing of separated signals, there
is a work by Jaureguiberry et al. [41] for singing voice sepa-
ration. This is a method to estimate positive mixing weights

†https://github.com/kuielab/mdx-net/blob/Leaderboard_
A/README_SUBMISSION.md
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𝑖 𝑤𝑖,𝑛 = 1 conditional on ∀𝑤𝑖,𝑛 ≥ 0 at time 𝑛, using as in-
put the short-time power spectra of the music acoustic signal
and multiple separated singing signals.

However, the effectiveness of time-varying mixing
weights has never been evaluated for the mixing of separated
signals other than singing voices, nor have music acoustic
signals or other types of sound sources been utilized as tar-
gets for negative mixing weights.

3. Method

In order to mix the music acoustic signal and separated
source signals (hereafter simply referred to as the separated
signals) in the waveform domain, this paper proposes two
new systems: (1) a comparison system that learns time-
invariant weights using 1x1 convolution, and (2) MDX-
Mixer that estimates time-varying weights using the MLP-
Mixer layer [51].

In this paper, we define X as the input signal that consists
of both a stereo music acoustic signal† and a multi-channel
(𝐶-channel) signals separated by several existing MDX mod-
els. The input signal X is segmented into short segments of𝑇
samples, and the 𝑘th segment is denoted as X𝑘 ∈ R𝑇×(2+𝐶 ) .
In other words, the X𝑘 is obtained by concatenating the ma-
trix of 2-channel music acoustic signals of𝑇 samples and the
matrix of 𝐶-channel separated signals of 𝑇 samples. If four
stereo sources separated by one MDX model and a stereo
source signal separated by another MDX model are used,
then 𝐶 = 10. Each MDX model does not necessarily have
to output all 4 target sound sources. For example, a MDX
model that outputs only vocals can be used.

The comparison system uses the same (time-invariant)
weight W for each segment to obtain the separated signal
Y𝑘 = WX𝑘 . In contrast, the proposed MDX-Mixer obtains
the separated signal Y𝑘 = W𝑘X𝑘 by using different (time-
varying) weights W𝑘 for each segment.

The separated signal Y𝑘 is an 8-channel signal con-
sisting of stereo signals for four sound sources: ”Drums”,
”Bass”, ”Other”, and ”Vocals”.

3.1 1x1 convolution: Time-invariant mixing

This paper uses 1x1 convolution to mix the music acoustic
signal with the source signals separated by “multiple” MDX
models. This is for achieving the stereo separated signal
Y𝑘 by removing residual signals of different types of sound
sources and by enhancing the targeted sound source signal.
In contrast, previously, Kim et al. [31] used 1x1 convolution
on the music acoustic signal and the signal separated by a
“single” MDX model to remove residual signals from other
sources.

Our 1x1 convolution-based system is a special case of
our proposed MDX-Mixer as shown in Figure 2 and estimates
a time-invariant weight matrix W. The system estimates

†The left (L) and right (R) channels of each signal are treated
as independent signals, so the stereo signal is 2-channel.
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Fig. 2 MDX-Mixer system overview. The system estimates time-varying
mixing weight matrix W𝑘 . If the process indicated by the blue arrow is not
performed, the time-invariant weights are estimated by 1x1 convolution, in
which case the weight matrix is called W.

W ∈ R(2+𝐶 )×8 taking the inner product Y𝑘 = X𝑘W with X𝑘

to obtain the 8-channel separated signal Y𝑘 . Since W is the
same weight regardless of the input signal X𝑘 , it expresses
the degree of influence of each MDX model on each target
source. The 1x1 convolution-based system thus considers
inter-channel (inter-source) relationships.

3.2 MDX-Mixer: Time-varying mixing

Figure 2 shows an overview of the MDX-Mixer system. The
input signal X is segmented to obtain X𝑘 , which is then
mixed with (multiplied by) the weights W𝑘 to estimate Y𝑘 .
This segmentation allows the time-varying content of X to
be taken into account. The rows of the matrix X𝑘 repre-
sent time and the columns represent sources (channels). As
described in Section 3.1, the 1x1 convolution-based system
takes into account the inter-channel (inter-source) relation-
ship. In contrast, MDX-Mixer can consider the intra-channel
relationship between different times (i.e., different samples
within a segment) in addition to the inter-channel relation-
ship.

Therefore, as an extension of the 1x1 convolution, we
use the MLP-Mixer layer [51] that can be expressed in terms
of full connections between channels and can also consider
full connections within channels. The MLP-Mixer layer has
been proposed in the computer vision field and has the ad-
vantages of simple structure, high performance, low training
cost, and high inference throughput. Through this MLP-
Mixer layer, we estimate the time-varying mixing weights
W𝑘 ∈ R(2+𝐶 )×8 and obtain the 8-channel output signal Y𝑘

of the four stereo sources as the product of X𝑘 and W𝑘

(i.e., Y𝑘 = X𝑘W𝑘).
The architecture of the MLP-Mixer layer is shown in
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Figure 3. In [51], the input image is divided into patches
and used as a multi-channel signal, and the image class
is estimated by repeating token-mixing MLP, which is the
fully connected MLP within each divided image (channel),
and channel-mixing MLP, which is the fully connected MLP
between all divided images (channels). If𝑇 samples and (2+
𝐶)-channel matrices are used as input, the size of the weight
matrix Wtoken required for token-mixing MLP becomes huge
when 𝑇 is large. To reduce its size, 𝑇 samples are divided
(folded) by 𝐹 and concatenated in the channel direction to
obtain the matrix Z𝑘 ∈ R𝑇/𝐹×(2+𝐶 )𝐹 .

In our current implementation, 𝑇 = 218 (about 6 sec-
onds with the sampling frequency of 44.1 kHz) is used.
Assuming the number of channels to be (2 + 𝐶) = 12, the
size of the weight matrix 𝑊token of the token-mixing MLP
without folding is (218)2, and the weight matrix 𝑊 channel
has a size of 122. Folding them with 𝐹 = 28 reduces
their sizes to (210)2 and (12 × (28))2, respectively, which
are 0.000153 times smaller. Such a folding results in
token-mixing MLP modeling the relationships within folded
patches and channel-mixing MLP modeling the relationships
between those patches.

As shown in Figure 2, the F-folded matrix Z𝑘 passes
through 𝑁 MLP-Mixer layers. Each MLP-Mixer layer con-
sists of a Layer Normalization [52], skip connections, a
token-mixing MLP, and a channel-mixing MLP (Figure
3). The token-mixing MLP and channel-mixing MLP have
Gaussian Error Linear Unit (GELU) [53], dropout, and fully
connected layers. Since both the token-mixing MLP and
channel-mixing MLP have two fully-connected layers, re-
spectively, we can design the number of hidden dimensions
between the layers, denoted 𝐷𝑇 and 𝐷𝐶 for time and chan-
nel, respectively. The 𝑁 MLP-Mixer layers are followed by
the Global Average Pooling, which averages across channels
and reduces the number of elements while summarizing the
data, and finally the weight matrix W𝑘 is obtained through a
fully connected layer.

The proposed MDX-Mixer can thus take into account
the time-varying content of music by estimating different
weights W𝑘 for different segments X𝑘 . If appropriate time-
varying mixing weights could be estimated, they could lead
to higher separation performance.

4. Experiment

To evaluate the effectiveness of the proposed 1x1
convolution-based system and MDX-Mixer, these models
were trained using the standard MUSDB18-HQ dataset [39].
86 songs were used as training data, 14 songs as validation
data, and 50 songs as test data.

Four sound sources –”drums,” ”bass,” ”other,” and
”vocals”– were used for separation, and the music acous-
tic signals were stereo with a sampling frequency of 44.1
kHz.

Separation performance was evaluated by calculating
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Fig. 3 Overview of MLP-Mixer layer.

SDR using the museval Python package†. As in most pre-
vious studies ( [19, 32], etc.), the SDR of each source is
calculated by taking the median values over all 1-second
segments of each song to obtain the SDR of the track, and
then taking the median of all tracks (i.e., “median of frames,
median of tracks”).

4.1 MDX models used for mixing

To focus on discussing performance differences between our
approach and existing methods, we used public pre-trained
models available on the web for research purposes. Since
the pre-trained models for IDs “B”, “C”, and “D” in Table
1 were publicly available, they were used as existing MDX
models as follows to obtain the separated signals for mixing.
The pre-trained model for ID “A” was not used here because
it was not publicly available.

Model B: “ResUNet143 Subband vocals”: A public pre-
trained model of ResUNetDecouple+ [25]††. Its SDR
for Vocals is the highest in MUSDB18 and more than
1.6 dB higher than that of another model (Table 1).
Since only the vocal/accompaniment separation model
is publicly available, only the vocal separated signal
was used.

Model C: “kuielab mdxnet A”: A public pre-trained model
of KUEILAB-MDX-Net [31]†††. Highest SDR for Vo-
cals and Other in MUSDB18-HQ (Table 1). The final
layer includes the process of mixing the music acoustic
signal and the four sources with 1x1 convolution.

Model D: “mdx” A public pre-trained model of Hybrid-
Demucs [32]††††. The highest SDRs for drums and

†https://github.com/sigsep/sigsep-mus-eval
††https://github.com/bytedance/
†††https://github.com/kuielab/mdx-net-submission/
tree/leaderboard_A
††††https://github.com/facebookresearch/demucs
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Table 2 SDRs in MUSDB18-HQ for the pre-trained MDX models. Models with “*” are trained on
MUSDB18-HQ training data. The highest value for each source is shown in bold font.

Model Test SDR in dB
ID Name All Drums Bass Other Vocals
B “ResUNet143 Subband vocals” (ResUNetDecouple+ [25]) N/A N/A N/A N/A 8.21
C “kuielab mdxnet A” (KUIELAB-MDX-Net [31])* 7.47 7.20 7.83 5.90 8.97
D “mdx” (Hybrid-Demucs [32])* 7.77 8.21 9.28 5.50 8.10

Table 3 SDRs in MUSDB18-HQ for the system estimating time-invariant mixing weights W based
on 1x1 convolution. The bold font means that the value is greater than the highest value in Table 2, and
the highest value in this table is indicated by an underline. The notation “*” means that the separated
signal for that source was not mixed. Specifically, ID: 1-0 is the condition of not using the existing MDX
model (i.e., 𝐶 = 0) and ID: 1-1 is the condition using the MDX model in which only stereo vocal signal
is used. For IDs: 1-4, 1-5, and 1-6, the results of three runs with different random seeds under the same
conditions are shown.

1x1 convolution Test SDR in dB
ID B C D All Drums Bass Other Vocals
1-0 0.68 0.36* 0.85* 1.32* 0.20*
1-1 ✓ 2.82 0.58* 1.13* 1.48* 8.09
1-2 ✓ 7.36 7.19 7.46 5.98 8.8
1-3 ✓ 7.73 8.25 9.00 5.55 8.11

1-4-1 ✓ ✓ 7.83 8.29 9.00 5.70 8.31
1-4-2 ✓ ✓ 7.81 8.24 9.00 5.71 8.30
1-4-3 ✓ ✓ 7.83 8.25 8.98 5.71 8.37
1-5-1 ✓ ✓ 8.13 8.34 9.04 6.18 8.97
1-5-2 ✓ ✓ 8.00 8.37 8.87 6.18 8.59
1-5-3 ✓ ✓ 8.04 8.39 9.04 6.17 8.55
1-6-1 ✓ ✓ ✓ 8.03 8.26 9.06 6.23 8.57
1-6-2 ✓ ✓ ✓ 8.05 8.35 8.99 6.31 8.54
1-6-3 ✓ ✓ ✓ 8.16 8.34 9.08 6.19 9.05

Table 4 SDRs in MUSDB18-HQ for MDX-Mixer estimating time-varying mixing weights W𝑘 . The
bold font means that the value is greater than the highest value in Table 2, and the highest value in this
table is indicated by an underline. “*” means that no separated signal was given for that source.

MDX-Mixer Test SDR in dB
ID B C D 𝑁 -layers dropout 𝑝 All Drums Bass Other Vocals
2-0 8 0 0.77 0.80* 0.68* 1.08* 0.51*
2-1 ✓ 8 0 2.90 1.13* 0.97* 1.43* 8.06
2-2 ✓ 8 0 7.45 7.19 7.83 5.87 8.92
2-3 ✓ 8 0 7.72 8.25 8.98 5.54 8.09
2-4 ✓ ✓ 8 0 8.04 8.65 9.17 5.77 8.59
2-5 ✓ ✓ 8 0 8.16 8.24 9.22 6.19 8.97
2-6 ✓ ✓ ✓ 8 0 8.21 8.29 9.19 6.26 9.08
2-7 ✓ ✓ 8 0.2 7.94 8.42 9.18 5.76 8.42
2-8 ✓ ✓ 8 0.2 8.16 8.24 9.28 6.27 8.85
2-9 ✓ ✓ ✓ 8 0.2 8.17 8.29 9.20 6.22 8.97
3-0 16 0 0.76 0.81* 0.67* 1.05* 0.52*
3-1 ✓ 16 0 2.84 1.03* 0.85* 1.41* 8.10
3-2 ✓ 16 0 7.45 7.19 7.78 5.93 8.91
3-3 ✓ 16 0 7.72 8.26 8.97 5.54 8.11
3-4 ✓ ✓ 16 0 7.96 8.40 9.04 5.80 8.57
3-5 ✓ ✓ 16 0 8.16 8.29 9.16 6.16 9.02
3-6 ✓ ✓ ✓ 16 0 8.21 8.54 9.10 6.17 9.01
3-7 ✓ ✓ 16 0.2 7.95 8.63 9.12 5.73 8.34
3-8 ✓ ✓ 16 0.2 8.21 8.29 9.26 6.25 9.03
3-9 ✓ ✓ ✓ 16 0.2 8.15 8.27 9.20 6.23 8.90

bass in MUSDB18-HQ, and also the highest average
(“All”) of the four sound sources (Table 1).

The evaluation results of these models in MUSDB18-
HQ are shown in Table 2. Note that the results are not exactly
the same as in Table 1 due to differences in training datasets,

models, evaluation methods, etc. Our goal here is to obtain
performance beyond these SDRs by mixing different MDX
models.
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Table 5 The highest SDR value from the existing MDX model for
MUSDB18-HQ (Table 2), the average of three runs of the system based
on 1x1 convolution (Table 3), and the results from MDX-Mixer with dif-
ferent number of layers 𝑁 and the average of the results with dropout 𝑝

(Table 4). For example, “CD” means the mixture of the music acoustic
signal and the signal separated by models C and D (ID: 2-5, 2-8, 3-5, 3-8)
for MDX-Mixer.

ID All Drums Bass Other Vocals
max(Table 2) 7.77 8.21 9.28 5.90 8.97

1x1 convolution
mean(BD) 7.82 8.26 8.99 5.71 8.33
mean(CD) 8.06 8.37 8.99 6.18 8.70

mean(BCD) 8.08 8.32 9.04 6.24 8.70
MDX-Mixer (𝑇 = 218, 𝐹 = 27)

mean(BD) 7.97 8.53 9.13 5.76 8.48
mean(CD) 8.17 8.27 9.23 6.22 8.97

mean(BCD) 8.19 8.35 9.17 6.22 8.99

4.2 Training 1x1 convolution and MDX-Mixer

The proposed systems were trained using only a music acous-
tic signal or, in addition, separated signals obtained using one
or more of the MDX models.

The number of samples 𝑇 should be set to a power of
2 in order to fold 𝐹 in the time direction. In this paper,
both 1x1 convolution-based system and MDX-Mixer were
trained on segments of 𝑇 = 218 (about 6 seconds) with a
shift interval of 215 (about 0.7 seconds).

The hyperparameters specific to the MDX-Mixer were
𝐹 = 27, the number of MLP-Mixer layers 𝑁 = 8, 16, and
a dropout probability 𝑝 of 0 or 0.2. The 𝑁 and 𝑝 were
determined with reference to previous studies [51, 54] that
used MLP-Mixer layers. The number of dimensions of the
hidden layers 𝐷𝑇 and 𝐷𝐶 were set to be the same size as Z𝑘 ,
i.e., 𝐷𝑇 = 𝑇/𝐹 and 𝐷𝐶 = (2 + 𝐶)𝐹.

Both systems were trained using the following L1 loss
function L between separated signals Y𝑘 and predicted sig-
nals Ŷ𝑘 .

L = |Ŷ𝑘 − Y𝑘 | (2)

Adam optimizer [55] was used to optimize the model pa-
rameters with a learning rate of 0.0003. The training was
distributed across multiple GPUs, with a batch size of 4 on
each GPU. The parameter to be optimized in 1x1 convolu-
tion is W, which can be implemented as an fully connected
layer. On the other hand, the parameters to be optimized
in MDX-Mixer are the weights of all the multiple fully con-
nected layers in the MLP-Mixer layer shown in Fig. 3 and
weights of a fully connected layer shown in Fig. 2.

The 1x1 convolution-based system was trained for 50
epochs. The MDX-Mixer was also trained for 100 epochs
under the same conditions. For the system based on 1x1
convolution, the validation loss converged around 20 epochs,
while for MDX-Mixer, the loss fluctuated during the 100
epochs but tended to decrease gradually. The waveforms
were normalized so that the mean amplitude of the music
acoustic signal was 0 and the standard deviation was 1.

Table 6 Average of 4 conditions of SDR in MUSDB18-HQ for MDX-
Mixer when the music acoustic signal is not used for mixing. If the value
exceeds the value for the same condition in Table 5 where the music acoustic
signal is used for mixing, it is indicated by bold font. Conversely, if the
value decreased, a ↓ is annexed.

ID All Drums Bass Other Vocals
MDX-Mixer (without music acoustic signal)

mean(CD) 8.17 8.27 9.23 6.14↓ 9.05
mean(BCD) 8.15↓ 8.27↓ 9.13↓ 6.15↓ 9.06

Table 7 Average of 4 conditions of SDR in MUSDB18-HQ for MDX-
Mixer when 𝑇 and 𝐹 are changed. If the value exceeds the value for the
same condition in Table 5, it is indicated by bold font. Conversely, if the
value decreased, a ↓ is annexed.

ID All Drums Bass Other Vocals
MDX-Mixer (𝑇 = 217, 𝐹 = 26)

mean(CD) 8.19 8.44 9.15↓ 6.18↓ 8.99
mean(BCD) 8.19 8.44 9.16↓ 6.15↓ 9.04

MDX-Mixer (𝑇 = 216, 𝐹 = 25)
mean(CD) 8.18 8.33 9.22↓ 6.16↓ 9.03

mean(BCD) 8.19 8.41 9.17 6.14↓ 9.06

For each training condition, the model with the smallest
validation loss was used for the test evaluation. In the test
data separation, the music acoustic signal and its separated
signal obtained by the MDX model were divided into seg-
ments X𝑘 of fixed length 𝑇 with shift width 𝑇/4, and their
mixed results Y𝑘 were weighted overlap-added to obtain the
final signal Y.

4.3 Results

Tables 3 and 4 show the results of the systems trained by
the different hyperparameters. The check marks in columns
“B”, “C”, and “D” indicate the MDX model used to obtain
the separated signals. If none of them are checked, it means
that only the music acoustic signal was input as 𝑋𝑘 , which
corresponds to𝐶 = 0 and X𝑘 ∈ R𝑇×2. Model B outputs only
the vocal separated signal, while the other models output all
four source separated signals.

Table 5 shows the average of the results of three runs
(training with the same hyperparameters and different ran-
dom seeds) in the system based on 1x1 convolution. It
also shows the average of the results for the MDX-Mixer
condition using the same MDX models but with different
hyperparameters.

To validate the effectiveness of the systems in more
detail, SDR averages for the conditions using models C and
D (ID: 2-5, 2-8, 3-5, 3-8) and for the conditions using models
B, C, and D (ID: 2-6, 2-9, 3-6, 3-9) without using music
acoustic signals for mixing are shown in Table 6. Similarly,
SDR averages are shown in Table 7 for the results when the
segment length 𝑇 and the splitting factor 𝐹 are changed. We
used (𝑇 = 217, 𝐹 = 26) and (𝑇 = 216, 𝐹 = 25) to keep one
token size 𝑇/𝐹 (size of token-mixing MLP) constant.

Finally, examples of the estimation result of time-
invariant mixing weights W and time-varying mixing
weights W𝑘 are shown in Figures 4 and 5, respectively. The
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W (ID: 1-6-3)

Output signals

(B) Vocals

(D) Drums

(D) Bass

(D) Other

(D) Vocals

(C) Drums

(C) Bass

(C) Other

(C) Vocals

Drums Bass Other Vocals

Music

acoustic

signal

Fig. 4 Example of time-invariant mixing weights W estimated by the
1x1 convolution-based system. The rows indicate the signals used for the
mixing, and (B), (C), and (D) are the IDs of the MDX models.

W and W𝑘 were estimated by ID: 1-6-3 and ID: 2-6, respec-
tively, for the MUSDB18-HQ test data “The Doppler Shift -
Atrophy”. The rows indicate the 20 sources (10 stereo sig-
nals) used for the mixing, and (B), (C), and (D) are the IDs of
the MDX models. In addition, an example of the mean and
standard deviation of W𝑘 within one song is shown in Fig-
ure 6. In Figures 4 to 6, the largest positive weights for each
channel of output are marked with bold-line square boxes,
large negative weights (less than −0.3) are marked with dot-
ted square boxes, and the weights for the same channel of
music acoustic signals are marked with dashed square boxes.

4.4 Discussion

First, the results of applying 1x1 convolution and MDX-
Mixer to a single MDX model (ID: 1-/2-/3-1,2,3) show that
these SDRs were not improved compared to Table 2 in gen-
eral. However, a comparison of the results for the condition
without the separated signal (ID: 1-0, 2-0, 3-0) with the re-
sults for the condition using only the vocal separated signal
from Model B (ID: 1-1, 2-1, 3-1) shows that the SDRs for
Drums, Bass, and Other were improved. Furthermore, the
SDRs for Vocals in the conditions with signals separated by
Model B and Model D (ID: 1-4-1, 1-4-2, 1-4-3, 2-4, 2-7, 3-4,
3-7) were better than when Model B and Model D were used
alone. This indicates that separation performance could be
improved by using other sound sources, as reported by Kim
et al. [31].

Next, the results of applying 1x1 convolution to multiple
MDX models (3 runs each in Table 3: ID: 1-4, 1-5, 1-6) show
that it yielded higher performance on average than using a

W (ID: 2-6)

Output signals (45.8 - 51.8 [s]) Output signals (81.4 - 87.3 [s])

(B) Vocals

(D) Drums

(D) Bass

(D) Other

(D) Vocals

(C) Drums

(C) Bass

(C) Other

(C) Vocals

(B) Vocals

Music

acoustic

signal

Music

acoustic

signal

(D) Drums

(D) Bass

(D) Other

(D) Vocals

(C) Drums

(C) Bass

(C) Other

(C) Vocals

Drums Bass Other Vocals Drums Bass Other Vocals

Fig. 5 Examples of time-varying mixing weights W𝑘 estimated by MDX-
Mixer at two different segments (song name: “The Doppler Shift - Atro-
phy”). Different W𝑘 were estimated for different segments X𝑘 , i.e., the
weights were indeed time-varying.

W (ID: 2-6)Avg. S.D.

(B) Vocals

(D) Drums

(D) Bass

(D) Other

(D) Vocals

(C) Drums

(C) Bass

(C) Other

(C) Vocals

Music

acoustic

signal

(B) Vocals

(D) Drums

(D) Bass

(D) Other

(D) Vocals

(C) Drums

(C) Bass

(C) Other

(C) Vocals

Music

acoustic

signal

Output signals

Drums Bass Other Vocals

Output signals

Drums Bass Other Vocals

Fig. 6 Example of the mean and standard deviation of W𝑘 estimated by
MDX-Mixer within one song (song name: “The Doppler Shift - Atrophy”).
The standard deviations show that the weights changed over time, and in
this example, Vocals and Other had particularly large weight variations.

single MDX model did, as shown in the “All” column in Table
5. Here, the BCD condition performed better on average than
the BD and CD conditions, indicating that mixing a variety
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of separated signals is beneficial. And when MDX-Mixer
was applied to multiple MDX models (Table 4: ID: 2-4 to
2-9 and 3-4 to 3-9), SDR improved on average compared to
the system based on 1x1 convolution (Table 5). The results
in Table 4 also show that differences in the number of MLP-
Mixer layers 𝑁 and dropout probability 𝑝 had little effect on
the SDR.

The maximum SDR value for each sound source in
Table 2 averages 8.09 dB= (8.21 + 9.28 + 5.90 + 8.97)/4.
Therefore, as shown in Table 5, the MDX-Mixer can separate
sound sources better than manually selecting the MDX model
that takes the maximum value for each sound source.

The most improvement occurred when Models C and D
were used (ID: 3-8) or when Models B, C, and D were used
(ID: 2-6, 3-6), with an “All” of 8.21 dB. This is an improve-
ment of more than 0.44 dB in SDR from the maximum value
of 7.77 dB for the MDX model D. These results show the
effectiveness of the MDX-Mixer in estimating time-varying
mixing weights.

Figures 4 to 6 indicate that the weights of the sources
with higher SDRs by each MDX model tended to be larger.
Figures 5 and 6 show that the weights changed over time, and
in the visualized standard deviations in Figure 6, weights of
Vocals and Other showed particularly large changes over
time (i.e., had larger standard deviations). Relatively large
positive weights were estimated not only for the separated
signals but also for the music acoustic signal, indicating
that the music acoustic signal was utilized. In fact, if the
music acoustic signal was not used for mixing (Table 6),
the SDRs for Drums, Bass, and Other decreased on average,
while Vocals had a higher average SDR. As shown in the
top two rows of Figure 6, the weight of the music acoustic
signal was small for Vocals and relatively large for Other,
Drums, and Bass, indicating that the music acoustic signal
had an influence on the three types of sound sources other
than Vocals. Furthermore, negative weights were actually
estimated for some music acoustic and separated signals,
which was expected to have an effect such as attenuating
residual sound from other sound sources. For example,
Figures 4 to 6 show that Vocals in Model C had large negative
weights for the output of Other, suggesting that separated
signals of Vocals were used to remove them from Other.

Finally, changing the segment length𝑇 and the segmen-
tation factor 𝐹 did not change the performance on average
from Table 7. However, there was an improvement in Drums
and Vocals and a decrease in Bass, so it may be possible to
tune the results by adjusting these parameters.

5. Conclusion

This paper proposes two systems that utilize source signals
separated by multiple MDX models. The contributions of
this paper are as follows.

• We proposed a system using 1x1 convolution that
mixes the source signals separated by multiple exist-
ing MDX models and the music acoustic signals with

time-invariant mixing weights.
• Extending the system based on 1x1 convolution, we

also proposed the MDX-Mixer system to estimate time-
varying mixing weights.

• We have shown that SDRs can be improved by us-
ing multiple existing MDX models for both 1x1
convolution-based system and MDX-Mixer. To an-
swer the research question stated in Section 1, the re-
sults show that the MDX-Mixer, which estimates time-
varying weights, is superior to the system based on 1x1
convolution and could improve performance over man-
ually selecting an existing MDX model that takes the
maximum SDR value for each source.

• Figures 4 to 6 show that the music acoustic signals
were utilized by mixing with positive weights. Nega-
tive weights were also estimated for the music acous-
tic signal and the separated signals, which could have
been used for removing residual signals of other sound
sources, etc.

As more diverse pre-trained models become available
in the future, it will become more important to leverage them
for target applications. Although this paper showed how to
automatically combine pre-trained models to obtain better
performance, this approach has potential to be extended to
more interactive or semi-automatic ways to combine them
according to target applications.
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[10] Z. Rafii, A. Liutkus, F.R. Stöter, S.I. Mimilakis, D. FitzGerald, and
B. Pardo, “An overview of lead and accompaniment separation in
music,” IEEE/ACM Trans. on Audio Speech and Language Process-
ing, vol.26, no.8, pp.1307–1335, 2018.

[11] C. Gupta, H. Li, and M. Goto, “Deep learning approaches in topics
of singing information processing,” IEEE/ACM Trans. on Audio
Speech and Language Processing, vol.30, pp.2422–2451, 2022.

[12] A. Jansson, E. Humphrey, N. Montecchio, R. Bittner, A. Kumar, and
T. Weyde, “Singing voice separation with deep U-Net convolutional
networks,” Proc. the 18th International Society for Music Information
Retrieval Conference (ISMIR 2017), pp.745–751, 2017.
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