
1192
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.9 SEPTEMBER 2024

PAPER
A mmWave Sensor and Camera Fusion System for Indoor
Occupancy Detection and Tracking

Shenglei LI†a), Haoran LUO†, Tengfei SHAO†, Nonmembers, and Reiko HISHIYAMA†, Member

SUMMARY Automatic detection and recognition systems have numer-
ous applications in smart city implementation. Despite the accuracy and
widespread use of device-based and optical methods, several issues remain.
These include device limitations, environmental limitations, and privacy
concerns. The FMWC sensor can overcome these issues to detect and track
moving people accurately in commercial environments. However, single-
chip mmWave sensor solutions might struggle to recognize standing and
sitting people due to the necessary static removal module. To address these
issues, we propose a real-time indoor people detection and tracking fusion
system using mmWave radar and cameras. The proposed fusion system
approaches an overall detection accuracy of 93.8% with a median position
error of 1.7 m in a commercial environment. Compared to our single-chip
mmWave radar solution addressing an overall accuracy of 83.5% for walk-
ing people, it performs better in detecting individual stillness, which may
feed the security needs in retail. This system visualizes customer informa-
tion, including trajectories and the number of people. It helps commercial
environments prevent crowds during the COVID-19 pandemic and analyze
customer visiting patterns for efficient management and marketing. Pow-
ered by an IoT platform, the system can be deployed in the cloud for easy
large-scale implementation.
key words: mmWave radar, camera, occupancy detection, tracking

1. Introduction

With the implementation of automatic and smart space in
Society 5.0, the automatic detection and recognition of peo-
ple are becoming increasingly essential. The critical infor-
mation needed for customized services and automation is to
allow the space to recognize people and know where and how
many of them are. Based on such information, better user
analysis, as well as sustainable and emerging services, can be
facilitated: these include services for Heating, Ventilation,
Air Conditioning (HVAC), online-to-offline (O2O), visiting
pattern analysis and social distance keeping [1]. A highly
accurate people-recognizing system is urgently required to
seamlessly integrate the above services without active human
efforts and good user acceptance (non-intrusive), as shown
as Fig. 1.

Currently, the most commonly used method for indoor
occupancy detection relies on devices. However, device-free
methods are becoming increasingly attractive. However, the
effectiveness of popular wearable devices, such as smart-
phones, smartwatches, and smart bands, is limited, as they
depend on users constantly carrying them, which may not al-
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Fig. 1 Sensor-based occupancy detection IoT system with network struc-
ture for profiling analysis of customer visit patterns to provide O2O service.

ways be the case [2], [3]. The passive infra-red (PIR) sensor
has been the most widely implemented device-free solution
in past years. However, it may fail to recognize people
moving slowly or crawling [4]. Advances in computational
power, big data, machine learning, and deep learning have
significantly enhanced the accuracy and adoption of optical
methods [5]–[7]. Some of these methods, such as RGB-D
cameras (stereo cameras) and Lidar, can provide accurate
recognition and tracking but may be demanding to imple-
ment on a large scale due to their limited range, narrow
tracking view, and high cost. Other camera solutions using
web cameras or Closed-Circuit Television (CCTV) cameras
may be more feasible for widespread implementation but
share the drawbacks of optical methods. For example, they
need a clear view relying on suitable lighting conditions and
line-of-sight. These methods may fail in challenging scenar-
ios like darkness, smoke, or obstruction. Moreover, they may
raise privacy concerns and face user resistance due to their
intrusive nature. Wireless sensings, such as Radiofrequency
Identification (RFID) and Frequency Modulated Continu-
ous Wave (FMCW), are state-of-the-art techniques for next-
generation human detection and activity monitoring for mul-
tiple people. WiFi channel state information (WiFi CSI) is
capable of subject count and activities performed by multiple
people [8]. However, only the people walking between the
separate transmitter (Tx) and receiver (Rx) could be detected,
and it also needs some help in tracking multiple people in
the same scene. mmWave sensor applications with excellent
range detection performance used to be mainly geared to-
ward the automotive market. Due to its wall-penetrated and
unobtrusive nature, it is possible to place such sensors under
thin walls or furniture, leading to less user resistance [9],
[10]. Researchers documented that a single-chip solution
could provide detection accuracy from 50% to 90% for one
to a dozen people [2], [3], [11]–[14]. However, the accuracy
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Fig. 2 An example of complementary properties of mmWave radar and
vision-based detection systems are illustrated in their respective capabilities
and limitations. While mmWave radar is effective in challenging scenarios
such as darkness, it struggles to differentiate between individuals walking
or standing closely due to sparse data and noise. On the other hand, vision-
based detectors accurately estimate objects in suitable-light conditions but
fail in low-light and other challenging environments.

falls substantially when the number of people in the same
scene increases. Additionally, the performance in detecting
stationary people still is unfavorable. Figure 2 illustrates
the complementary properties of mmWave radar and cam-
era, based on our previous works. Figure 2 (a) shows people
detection and tracking using a single-chip mmWave radar so-
lution, while Fig. 2 (b) shows camera-based people recogni-
tion using Convolutional Neural Networks (CNNs)) and You
Only Look Once (YOLO). As can be seen, the radar sensor
detects and localizes targets, but the vision-based detector
fails due to insufficient illumination. Besides, the vision-
based detector successfully recognizes people walking and
standing closely, but the radar sensor fails to separate them.
Neither a single-chip radar sensor solution nor an optical
method satisfactorily meets the need for automatic detection
in smart spaces. Therefore, a fusion system of two sensing
modalities should be considered and motivated.

Conventional fusion methods of radar and camera, pre-
dominantly applied in the automotive industry, rely on the
standard Kalman Filter (KF) [15], [16] and its variants, such
as the Interval Kalman Filter (IKF) [17] and the Two-Stage
Kalman Filter [18]. Despite their effectiveness, these meth-
ods often simplify radar detections to point detections and
share common drawbacks like the need for accurate object
modeling and extensive calibration. Alternatively, neural
network models, with their increasing layers, show promise
in complex problem-solving and classification tasks, prompt-
ing researchers to explore their use in enhancing the accu-
racy and generalizability of mmWave radar and vision fu-
sion systems. Notably, initiatives, like Millieye [22], have
adopted models, originally successful in other domains, such
as CNNs, Long Short-Term Memory (LSTM) networks, and
variants of YOLO. These models are applied to the inte-

grative processing of radar and vision data, as documented
in [19]–[22]. However, the high computational resource
demands of these deep learning-based methods pose limita-
tions for deployment in small or portable devices, potentially
restricting their application in popular smart space devices
like Amazon Echo, Google Nest, and Mi Home.

In this case, we propose an IoT platform-based fusion
system using mmWave radar and vision to detect and track
people indoors. Based on both the vision-based detector and
mmWave radar tracker, it could be functional under chal-
lenging scenarios, such as darkness, smoke, and individual
remaining stillness, where either the image-only methods [5],
[6], [23] or the single-chip mmWave radar solution [2], [3],
[11], [13] may fail. Since we apply an IoT platform and use
a result-level fusion strategy, it needs less local calculation
overhead than the conventional radar and camera fusion sys-
tem, mainly for the automotive market. [19]–[22], [24]–[26].
By visualizing the real-time positions and the number of in-
dividuals within a space, the system allows users to observe
visiting patterns, crowd dynamics, and customer preferences
in smart environments. This capability underscores the sys-
tem’s utility in facilitating crowd control, enhancing security,
and optimizing seating or business operations for restaurants
and retail sectors amidst the COVID-19 pandemic. Lever-
aging a 60-64 GHz radar, Raspberry Pi, and the IoT plat-
form, the system offers a significant reduction in cost and
size compared to traditional setups that employ 70-74 GHz
radars with PC or laptop backends [14]. These improve-
ments not only lower the overall expense and footprint of
the system but also increase its adaptability across various
applications, thereby supporting extensive deployment. The
system design adheres to the philosophy of privacy protec-
tion by minimizing the collection and processing of personal
data [27]. In commercial environment tests, user acceptance
has been improved by reducing the intrusive nature of the
vision detector. For example, it excludes individuals’ facial
features and blends into the environment, thereby reducing
the sensation of being surveilled. In brief, the main contri-
butions of this work are concluded as follows:

• We proposed a mmWave radar sensor and camera fu-
sion system for indoor occupancy detection and track-
ing in smart space. It helps to address the drawbacks of
the single-chip mmWave radar system that may fail to
detect stationary individuals and overcome some envi-
ronmental limitations of the vision-based detector.

• We conducted extensive experiments, including in ac-
tual commercial environments, to evaluate the perfor-
mance and adaptability of the proposed system. Com-
pared to the single-chip mmWave radar solution with
an overall accuracy of 70 ∼ 84% [2], [11], [13], [14]
and our first version using cameras as sub-sensors with
93% accuracy under suitable lighting conditions [28],
the proposed system achieved 93.8% in a commercial
environment including challenging scenarios. It also
demonstrated the same level of tracking accuracy with a
median error of 0.17m and better adaptability than other
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fusion systems that require heavy calibration since the
computation could be carried out on the IoT platform.

The remainder of this paper is organized as follows:
Sect. 2 introduces the background of this category; Sect. 3
describes the detailed architecture of the proposed systems;
Sect. 4 shows the experimental configurations; Sect. 5 pro-
vides evaluations of the system and discussions; Finally,
Sect. 6 concludes the paper.

2. Background

2.1 mmWave Radar Sensor Detection and Tracking

Millimeter-wave (mmWave) radars, operating in the 30-300
GHz range, use an active transceiver for object detection and
tracking by measuring signal time delays [29]. As shown
in Fig. 3, our Texas Instruments mmWave radar transmits a
chirp, a sinusoidal signal with a linearly increasing frequency
over time characterized by its start frequency, bandwidth,
and duration, to extract objects’ range, radial velocity, and
angle relative to the radar receiver through standard post-
processing steps, including range, Doppler, and Angle of
Arrival (AoA) estimation. The radar’s Intermediate Fre-
quency (IF) signals, obtained by calculating the frequency
differences between transmitted and received signals, are
analyzed with the Fast Fourier Transform (FFT) to generate
a frequency spectrum, where each peak indicates an obsta-
cle’s range. Utilizing a 3×4 Multiple-Input-Multiple-Output
(MIMO) array from three transmitters from three transmit-
ters and four receivers, it estimates the AoA through phase
differences, achieving angular resolutions of approximately
14◦ azimuth and 57◦ elevation. This system generates a
point cloud, with each point representing an object’s (x, y, z)
coordinate and radial velocity regarding the radar, although
with potential noise, offering valuable occupancy tracking
data in smart spaces.

2.2 Vision-Based Detection and Classification

Vision detection methods are broadly categorized into one-
stage and two-stage detectors. One-stage detectors, such
as Single Shot Detector (SSD) [30], YOLO [5], [16], and
its variants, directly perform regression and classification
on predefined anchor boxes, offering a low computational
overhead suitable for edge and embedded devices, real-time

Fig. 3 Flow of radar data through FFT processing.

services, and large-scale implementations. Conversely, two-
stage detectors like Faster Region-CNN (Faster RCNN) [7],
[31] and Region-based Fully CN (R-FCN) [32] incorporate a
distinct module for generating proposal regions before con-
ducting separate object classification. Unlike one-stage de-
tectors that employ a direct learning approach for classifi-
cation and localization, two-stage detectors initiate with a
Region Proposal Network (RPN) to generate object propos-
als, each with an objectness score. These proposals are then
classified in a separate stage, utilizing a Region of Interest
(RoI) pooling layer to crop and resize regions from convolu-
tional feature maps. Cropped regions are processed through
a fully connected layer to yield fixed-length feature vectors,
which are subsequently input to two sibling output layers:
one for softmax probability estimates across object classes
and another for bounding-box refinements of each proposal.
This method achieves greater object detection accuracy but is
more computationally demanding than one-stage detectors.

3. System Design

3.1 Overview

The proposed system comprises three modules: a mmWave
radar-based object tracker, a vision-based detector, and a
refinement head. The separated weight pre-training of the
vision-based detector reduces the reliance on extensive la-
beled radar-vision data. Compared to the one-stage detec-
tor, such as the Tiny YOLOv3 [33] used in our previous
work [28], the two-stage detectors employed in this system
include an additional refinement step to increase accuracy.
As described in Sect. 2.1, the radar detector provides infor-
mation about indoor occupancy and object trajectories. It
can assist the refinement module in better distinguishing ob-
jects in the smart space and help with challenging scenarios
where the vision-based detector may fail, such as darkness
or exposure that may cause a dim view. Additionally, the
vision-based detector can help handle challenging scenarios
where the single-chip mmWave radar detector may fail, such
as when individuals remain still or when multiple occupants
are close to each other or at the boundary of the indoor smart
space.

An overview of the proposed system is presented in
Fig. 4. The system follows a two-stage pipeline from a
system-level perspective. In the first stage, aggregation of
Box Proposals N = {Nc,Nr } = {nk}Kk=1, where N = Nc,Nr

are the box proposals from the camera detector and radar
tracker, respectively, and K is the total number of RoIs.
Then the Local Feature Extraction per RoI for camera and
radar, Lc ,Lr can be obtained by feature extraction Lc, Lr =

Cropping(Gc,Gr ; N). from the global multi-modality fea-
ture maps for camera detector (Gc) and radar tracker(Gr ).
After removing redundant bounding boxes, local features
are obtained by cropping the global features based on their
positions using a RoI layer in the second stage. A refine-
ment head estimates a new location for each box within the
frame and assigns it a confidence score. Individuals who are
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Fig. 4 The proposed network architecture. Inputs to the network are radar point cloud and camera
image. The proposals generated from radar point cloud are fused with image features to improve box
localization.

walking undergo the two stages mentioned above. However,
stationary individuals may be detected only by the vision-
based detector, as the mmWave radar tracker might fail to
consistently detect them.

3.2 mmWave Radar Tracker

Due to the potential for the vision-based detector to fail in
generating confident object detection under harsh conditions
such as darkness, exposure, and non-line-of-sight in indoor
environments, a radar tracker is proposed to generate de-
sirable detection based on point cloud data. In the radar
tracker module, a mmWave radar sensor is employed, as in-
troduced in Sect. 2.1, to obtain estimated features based on
their unique properties measured by the time delay between
the transmission and reception of the pulse. The linearly
increased frequency ramp of the periodically transmitted
mmWave signal Tr (t) is commonly recognized as a chirp.
Multiple chips are usually emitted to measure the range and
velocity information of the target. The transmitted signal
Tr (t) and receiver-captured signal Rr (t) could be donated as:

Tr (t) = A1e j(2π( fc )t+π B
T t2) (1)

Rr (t) = A2e j(2π fc (t−td )+π B
T (t−td )2) (2)

where fc , B, Tc are the start frequency, bandwidth, duration
and td is the time delay of the corresponding signal reflected
off the human body. A1 and A2 represent the amplitudes
before and after propagation and circuit losses, respectively,
which are approximately equivalent due to the short detection
range within 10 meters. This radar tracker module is based
on previous work [14] with similar approaches adopted in
[2], [13]. The data processing of mmWave radar includes

point cloud generation, clustering, and tracking. These steps
can be summarized as follows.

3.2.1 Point Cloud Generation

The point cloud generation module is based on range-FFT,
clutter removal, Doppler-FFT, and AoA estimation. Clutter
removal filters out stationary obstacles from the scene using
range information processed by range-FFT. In each frame,
radar data comprise a set of points that include (x, y, z)
coordinates and radial velocity.

pi := [xi, yi, zi, vi] ∈ R4 (3)

However, reflections from occluded areas change over
time as people move, resulting in noise. The contaminated
radar point could contain clutter and noise signals that trigger
failure and confusion in object detection.

3.2.2 Clustering

To distinguish the points of the foreground targets from the
clutter and noise, we employ the clustering module from our
previous work [14]. The primary procedures involve ran-
domly selecting a point that does not belong to a cluster or
is an outlier. The point is then classified as a core point or
not based on its distance and radial velocity to its neighbors.
The mean of the cluster is then recalculated as a new cen-
troid or marked as noise. The cluster is expanded by adding
reachable points until an outlier is added. The added out-
lier is marked as a boundary point, and the above steps are
repeated. Outliers (noise) are filtered out, and the clusters
are passed to the next module. This module could perform
better on the varying density point cloud and less processing
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time than the DBSCAN and DBmeans used in the related
scholars [2], [11], [13], [22]. Unlike K-means [34], which
requires prior information about the number of clusters, this
method can detect an arbitrary number of targets without
such information. The distance between point i and point j
is given by

di j = W × [pi − pj]⊺,W ∈ R1×4 (4)

where pi is the (x, y, z) coordinate and radial velocity of
point i, W is the weight vector to optimize the contribution
of each parameter.

3.2.3 Box Proposal and Tracking

Each point passing through the clustering module is labeled
by either an index of a cluster or a flag of noise. After
the noise is removed, the position of each cluster’s centroid
can be estimated. Based on the distance from the boundary
points of each cluster to its centroid, an approximated box
representing each cluster can be proposed.

In the tracking module, a Kalman Filter [35] calculates
the prior state and covariance estimation for track prediction.
We employ the Hungarian method [36] to associate multiple
clusters generated in each frame and across frames with mul-
tiple tracks. A matrix is constructed using the Euclidean dis-
tances between the centroids of tracks and detected objects
in the current frame. The cost matrix needs to add dummy
rows/columns because the number of detections and tracks is
only sometimes matched. This approach shows good perfor-
mance in multi-detections and reduces the effect of flicker
in frames for temporally consistent tracks. If detection is
outside all gates, it is sent back to initialization for a new
track iteratively. After the number of points associated with
a track exceeds the threshold, it is transmitted to the updating
step, where we apply an Extended Kalman Filter (EKF) to
smooth the locations and sizes of clusters. The state of a
track that has gone through the above period is changed or
deleted based on inactivity.

The proposed boxes are shadowed on the 2D coordi-
nate plane with boundaries having the same color as their
respective trajectories. Additionally, the 2D images of the
boxes serve for the radar tracker to fuse with the vision-based
detector at the same timestamp.

3.3 Vision-Based Detector

The mmWave radar tracker may experience difficulties in
generating accurate estimation boxes, particularly when its
performance is impaired by the state of targets. This impair-
ment is often associated with the clutter removal feature in
the point cloud generation module (refer to Sect. 3.2.1 and
Fig. 3 for details). Drawing on related studies [2], [11], [13],
as well as our previous work [14], it has been observed that
this feature might inadvertently filter out stationary individ-
uals, especially in settings like restaurants or shops where
people tend to sit or stand for extended periods.

In this case, a two-stage vision-based detector based on

CNN is utilized for addressing these scenarios in the smart
space. As described in Sect. 2.2, it detects targets and pro-
poses bounding boxes with category and confidence scores
if providing a clear view of the objects. Similar to the one-
stage vision-based detector used in our previous work [28],
the two-stage detector follows the archetype consisting of
a feature extractor, feature maps, and a head network. A
feature extractor, which typically consists of convolutional,
activation, and pooling layers, takes an image as input and
outputs a set of feature maps. Such feature maps are then
processed for the head network to generate a set of boxes rep-
resenting the location of objects in the image. The difference
is that the two-stage detector conducts a RPN to efficiently
scan the image to assess whether further processing needs to
occur in a given region. In contrast, the one-stage detector
does not need such RP. Outputs from this two-stage detector,
after being filtered by a confidence threshold, are merged
with the 2D estimations from the radar tracker to form com-
prehensive estimations. These are then refined through a
result-level strategy within the refinement head module.

3.4 Refinement Head

In the refinement head module, the proposals from both
the radar tracker and vision-based detector are merged for
the second stage of detection. NonMaximum Suppression
(NMS) is employed to merge highly overlapped redundant
proposals before moving on to the next stage. Note that
vision-based proposals are less reliable in ranging distance
compared to radar-based proposals. It is due to the fact that
radar detection is based on signal transmission and reception
time delay, while vision-based detection typically relies on
2D images without depth information. However, NMS typi-
cally removes overlapping proposals without discriminating
based on such characteristics. In this case, matching pro-
posals are first identified using an Intersection over Union
(IoU) threshold. Then, range information measured by the
radar is used for these matching proposals. The bounding
box offset is learned as a regression, and the Euclidean loss
is employed for each candidate. Then, the remaining pro-
posals, regardless of their origin, are fed to the second stage
of detection network.

The second stage of detection network is based on Fast
R-CNN [7]. Based on the inputted feature map from the
remaining proposals, every single object proposal would be
cropped from the feature map. The feature vector of the same
size Input the feature map from the remaining proposals, and
crop every object proposal from the feature map. Then, a
RoI pooling layer extracts a feature vector with the same size
for each object proposal from the feature map. Process the
feature vectors in a sequence of fully connected layers and
pass to the softmax bounding box regression layers. Out the
category classification and bounding box regression for each
proposal. Note that, in this work, only the people would
be classified and detected due to the commercial environ-
ments required, and the trajectory of the estimations would
be shown on the manual inputted 2D map of the smart space.
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The loss function follows the real-time Fast R-CNN [31] us-
ing a multi-task loss as objective function.

L(pi, ti) =
1

Ncls

∑
i

Lcls(pi, p∗i )

+ λ
1

Nreg

∑
i

p∗i Lreg(ti, t∗i )
(5)

where i represents the anchor index, while pi denotes
the predicted probability of the ith anchor. The value of p∗i is
determined by whether the anchor is positive (1) or negative
(0). The vector ti represents the four parameterized coordi-
nates of the estimated bounding box, with t∗i representing the
ground-truth box. Classification Loss (Lcls): This compo-
nent of the loss function is computed using a log loss over
two classes (object vs. not object). It’s calculated for each
anchor and is used to classify whether an anchor is an object
or not. Lreg(ti, t∗i ) = R(ti−t∗i )where R is the robust loss func-
tion smooth L1(x) = 0.5x2 if |x | < 1, otherwise |x | − 0.5.
Regression Loss (Lreg): This part of the loss function in-
volves bounding box regression, where a robust loss function
(smooth L1) is used. It’s activated only for positive anchors
and is disabled otherwise. This component computes the dif-
ference between the predicted bounding box and the ground-
truth box. Ncls and Nreg are normalization parameters, and
λ is a balance parameter weight the two terms.

4. Implementation

4.1 Experiment Settings

In this paper, a data capture site includes a backend con-
necting to a mmWave radar, which is elevated by arms, and
cameras hidden in the box to reduce customer concerns as
lower as possible. Since the user’s resistance to camera-
involved systems is significant, and privacy concerns are
sincerely respected in this paper. The camera in our system
is oriented towards the legs of the users. It ensures that only
the lower body part is captured by our cameras, excluding
any facial features used in other ordinary optical recogni-
tion methods. Due to the physical nature of mmWave radar
and camera, each room needs one data capture site. For
the mmWave radar sensor, we employ a low-cost COTS one
(IWR6843ISK) from Texas Instruments. Both Raspberry
Pi and laptop could be used as backends. Here we use a
Raspberry Pi 3 (1.4GHz, 32GB RAM) to transmit data to
the IoT platform built on AWS. The IoT platform is the same
one from our previous works [14], [28], as shown in Fig. 5.
In Fig. 6, the layout of the commercial environments utilized
in the experiment is depicted, demonstrating the strategic
positioning of radar and camera systems alongside the cor-
ridor, facing the main pathways of each room. The overhead
group is situated at the entrance/exit points. The evalua-
tion areas, measuring approximately 6m× 6m and 4m× 5m,
encompass the main routes. Individuals within these areas
engage in various activities, including walking, standing,

Fig. 5 IoT platform designed for the proposed system. It allows remote
controlling and combining multiple data-capture sites.

Fig. 6 The layout of the commercial spaces for experiments.

and sitting, along the main pathways where the data cap-
ture sites are located. Such smart spaces accommodate up
to 40 customers and five staff. Customers predominantly
occupy positions along both sides of a central passageway,
extending linearly from the entrance to the far end. Due to
the physical limitation of our mmWave radar, the maximum
number of occupancy per scene is set to 10. The real-time
visualization of the number and position of users in the smart
space is valuable for analyzing the customer visiting pattern,
crowd management, and other business impacts. Moreover,
in light of significant user resistance to camera-based sys-
tems, this work diligently addresses privacy concerns by
implementing a system design that deliberately avoids col-
lecting facial data and incorporates unobtrusive elements to
minimize user resistance. Utilizing our indoor smart space
occupancy detection and tracking systems, including our
previous works [14], [28], the commercial space effectively
reorganized its business schedule and limited customer ca-
pacity during the COVID-19 to mitigate crowds and maintain
social distances.

4.2 Datasets

Three datasets are used in this work.
Microsoft COCO [37] is a comprehensive resource for ob-
ject detection, segmentation, and captioning, featuring over
200,000 labeled images, which include 250,000 instances
of people with keypoints. As a significant benchmark for
object detection tasks, the Microsoft COCO dataset sees
widespread use. However, it includes only 565 images cap-
tured in low-light conditions, constituting a mere 0.23% of
its entire collection. To augment the representation of low-
light data, we utilize a 6-class sub-dataset from COCO to
cooperate with the low-light dataset, encompassing more
than 40,000 images in total.
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Fig. 7 (a) 1080p cameras and 60-64GHz mmWave radars (TI IWR6843)
are used for data collection. (b) Training data is represented by gray parts,
and test data by blue parts. Each illumination level’s dataset is divided into
four parts. The final results are obtained by averaging four trials during
evaluation. (c) The distribution of our dataset on lighting conditions, group
size, and data collection locations.

ExDark [38] is employed as the low-light dataset, which
contains 7363 images to complement the dark scenarios.
Same as the sub-dataset of COCO, a 6-class sub-dataset of
Exdark, contained the exact same categories, is employed to
enhance the performance of people detection in the commer-
cial smart space. Each categories account for 14% to 20%
of the total images to relatively distribute the sub-dataset.
Self-Collected Data is a single-class dataset of occupancy
detection with 1400 frames captured in the pre-experiment
and field experiments in indoor commercial environments.
Figure 7 (a) shows each data capture site has two cameras,
one mmWave radar, setting to a sampling frequency of 30Hz,
and key-frames at 4Hz. As shown in Fig. 7(b), a 4-fold cross-
validation paradigm is employed to obtain the average of four
trails, since it is a small-scale dataset compared to the other
two. A fundamental principle guiding our division into four
folds is to ensure that the data in each fold are collected from
distinct locations, thereby showcasing the model’s ability to
generalize. The average of four trails would be taken as re-
sults. As shown in Fig. 7(c), the maximum number of people
in the same scene can reach up to 10. Customers and staff
are randomly walking, standing, and sitting in front of our
data capture sites in four kinds of rooms in the restaurant and
shop, as shown in Fig. 6. Note that the private information
of the customer and staff, such as the face, gender, and age,
are not included in our dataset due to users’ resistance to a
camera-involved system in a commercial environment. The
illumination level has an unbalanced share due to the neces-
sary lighting conditions in business time. As a preprocessing
step of the mmWave tracker involved system, the annotations
and point cloud data first need to be transformed to the users’

coordinates and then converted to their equivalent bounding
boxes, as described in Sect. 3.4.
Implementation The first two training stages are conducted
on the mixed dataset of COCO [37] and ExDark [38], and the
third training stage is conducted on our dataset. As recom-
mended in [31], the classification loss is normalized by the
mini-batch size Ncls and the bounding box regression loss
by the number of anchor locations Nreg. This approach en-
sures losses are proportionally scaled based on the processed
samples and anchor positions for box predictions. To ensure
that both loss components contribute equally to the model’s
learning process, we use a balance parameter, λ, set to 10.
This setting aims to equalize the influence of both the clas-
sification accuracy and the precision of the bounding boxes
on the overall training performance. The NMS threshold has
been set as 0.5 for all experiments.

4.3 mmWave Radar Configuration

The available bandwidth was 4 GHz, ranging from 60 to
64 GHz. The chirp cycle time (Tc) was 58.23 µs, and the
frequency slope (S) was 77.73 GHz/ms. The maximum
detection range was 6.0 m with a range resolution of 0.045
m and a velocity revolution of 0.25 m/s.

5. Evaluation and Discussion

5.1 Evaluation Metrics

5.1.1 Precision, Recall, F1 Score, and Overall Accuarcy

The precision and recall are given by:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(6)

where TP, FP, and FN are true positives, false posi-
tives, and false negatives, respectively. Precision measures
the percentage of all instances where the positive predic-
tion is actually positive. Recall measures the percentage of
actual positive instances that are correctly classified. The
sample’s true or false attribute is determined by whether its
IoU ( IntersectionareaUnionarea ) between the ground truth boxes ex-
ceeds the threshold. The F1 score measures the trade-off
between precision and recall, given by their harmonic mean
( 2×Precision×Recall

Precision+Recall ). Maximize the F1 score implying maxi-
mizing both precision and recall simultaneously. The overall
accuracy (TP+FP

Total ) is employed to assess the performance of
the proposed system and other related systems during field
tests, as described in Sect. 5.3.1.

5.1.2 mean Average Precision and Confusion Matrix

The mean Average Precision (mAP) serves as a widely used
metric for object detection and classification, quantifying
model accuracy by comparing predicted bounding boxes to
ground truths. It is derived from the area under the precision-
recall (P-R) curve, which is constructed from detections
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Fig. 8 The comparison of mAP of the proposed system and reference group. The F1 score curve
is derived from the vision-based detector. The horizontal coordinate is the confidence threshold of
the vision-based detector, and the vertical coordinates are the mean Average Precision and F1 score,
respectively.

ranked by confidence. While lower confidence thresholds
(e.g., 0.001) can theoretically maximize mAP by extending
the P-R curve, they often lead to excessive false positives,
making such thresholds impractical. Consequently, a mod-
erate threshold is preferred to strike a balance between pre-
cision and recall, allowing for a more realistic evaluation
of model performance through mAP and F1 scores across
varied thresholds.

The confusion matrix is a commonly used tool for eval-
uating binary and multi-class classification. We employ it
on our real-time data captured in the actual commercial en-
vironment, which consists of a single class of people but
varies in the number of individuals present in each scene.

5.2 Performance on Datasets

5.2.1 Overall Performance

This section evaluates the performance of the proposed sys-
tem on the COCO, ExDark, and field-captured datasets, us-
ing the improved Tiny-YOLOv3 and the Refinement head
based on Faster R-CNN [7] as reference models.
Improved YOLOv3 is an enhanced version of Tiny-
YOLOv3 serving as a vision-based detector in our previous
work. It is lightweight and well-suited for use on micro-PCs,
mobile devices, and distributed architectures, performing
well in real-time IoT people detection services under limited
internet conditions.
Refinement head based on Faster R-CNN, serves as the
second stage of detection in this work. As a comparison, it
replaces the decision-level fusion module (CNN) connected
with the improved YOLOv3. In other words, it can be viewed
as an enhancement of our first version [28], but without a
mmWave radar tracker to demonstrate the effectiveness of
the radar proposals in our fusion system. All models are
pre-trained on COCO and ExDark before being tested on
field-captured datasets. Both references are without a radar
tracker and rely solely on images.

Figure 8 presents the comparative performance of var-
ious models on our field-captured datasets† focusing on the
detection of individuals within groups of varying sizes across

†The training set and the testing set are collected in different
places to ensure variability and generalizability.

different environments. The one-stage detector (Improved
YOLOv3) and two-stage detector (Refinement head) exhibit
performance on par with the mmWave-camera fusion system
under suitable lighting conditions but are somewhat inferior
in low-light scenarios. In suitable lighting, both the Im-
proved YOLOv3 and Refinement head perform satisfactorily
due to the simplicity of ourour people detection datasets in
terms of density and diversity, thereby limiting the advan-
tages of radar sensors in these conditions. Conversely, un-
der low-light conditions, the fusion system leveraging radar
notably surpasses both Improved YOLOv3 and Refinement
head, which are trained on COCO and ExDark, particularly
at an IoU threshold of 0.5. This underscores the capability
of radar tracker to detect element that optical methods may
overlook due to inherent physical constraints. The differ-
ences between each method are minimal when the confidence
threshold is as low as 0.1 but become more pronounced as
the confidence threshold increases. When the IoU threshold
is set as low as 0.5, the main contribution of improvement be-
longs to the radar-based tracker. Meanwhile, the refinement
head module with NMS improves significantly compared to
the one-stage detector, validating its importance in filtering
and adjusting bounding box positions. As a result, the differ-
ences between each method are generally more minor than at
higher IoU thresholds but follow a similar trend of increasing
differences with raised confidence thresholds.

5.2.2 Performance on COCO and Exdark

This section evaluates the efficacy of the vision-based detec-
tor and refinement head on image-only datasets, including
COCO and ExDark. For this purpose, the mmWave radar
tracker was excluded, and the fusion system’s remaining
components were retrained, since there was no radar data in
COCO and Exdark datasets. The diverse nature and minimal
inter-category bias of these datasets enable a focused analysis
of model performance while reducing the influence of dataset
variations. Millieye [22], recognized for its effective CNN-
based camera detection and DBSCAN-based radar tracking,
serves as a baseline in our fusion system assessment. Other
includes Improved YOLOv3 for consistency with prior com-
parison. Distinct training datasets delineate the reference
models: Imp.YOLO_COCO and Imp.YOLO_ExDark were
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Fig. 9 mAP of different approaches on COCO and ExDark datasets under
0.5 IoU threshold.

trained on COCO and ExDark datasets, respectively. Mean-
while, millieye, Imp.YOLOv3_Both and Ours_img_only re-
ceived training on both datasets. Figure 8 summarizes the
mAP across 12 categories COCO and ExDark. Consistent
with existing literature, models trained on more extensive
datasets exhibited superior performance. Notably, when the
confidence threshold was set below 0.2, models trained on
both COCO and ExDark demonstrated marked improvement
compared to those trained on a single dataset. However, this
enhancement was not as significant as anticipated for confi-
dence thresholds above 0.2.

5.3 Performance on People Detection and Tracking Task
in Field Experiments

Different from the metrics discussed in previous sections,
the overall performance highlighted in this section specif-
ically pertains to the detection and tracking of individuals
through field experiments conducted in real commercial en-
vironments near Waseda Campus, emphasizing random cus-
tomer information. The radar tracker, unaffected by lighting
conditions, achieves up to 99% accuracy for single targets.
However, this accuracy drops to below 80% in scenarios
involving approximately a dozen individuals. Conversely,
the vision-based detector, trained on low-light datasets such
as ExDark, enhances the detection of multiple targets un-
der low-light conditions but may falter in minimal lighting.
Consequently, the integration of these systems improves the
overall performance, offering broader scenario coverage than
either the radar tracker or vision-based detector alone. How-
ever, the accuracy under conditions below the specified light
threshold remains unchanged, without enhancement.

5.3.1 Overall Performance in Field Experiments

As show in Fig. 10 (a), the proposed system achieves an over-
all accuracy of 93.8% from the confusion matrix of original
data in scenarios involving up to 10 people in the same
scene. The confusion matrix of Fig. 10 (b) shows an overall
accuracy of 90.1% due to it is the average of class-wise ac-
curacies, effectively weighting each class equally regardless
of their size. The confusion matrix is calculated by com-
paring the predictions of different group sizes against actual
observations, and the precision and accuracy are given by
Precision = TP

TP+FP , Accuracy = TP
Total . Where TP is true

Fig. 10 Confusion matrix of 10 insiders.

positive, FP is false positive, and Total is the total number of
the predictions. The group size significantly affects the per-
formance of radar detection, leading to a variance in overall
accuracy in field tests compared to the results obtained from
our dataset in the previous section. Notably, when customers
are mindful of maintaining social distancing, the prevalence
of smaller groups increases.

In comparison, single-chip mmWave radar solutions
show accuracies of 71.1% ([11]†) and 83.5% [14]. Vision-
based detectors have an accuracy of 91.4% [7], [31] while
our previous system integrating mmWave radar with a sub-
sensor camera achieved 92.1% accuracy [28]. A commercial

†In this work, the single-chip mmWave radar system from
Taxes Instrument demonstrates an overall accuracy of 71.1%, and
73.0% when the group size is smaller than four. Please refer to
https://www.ti.com/sensors/mmwave-radar/overview.html for more
information.
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Fig. 11 Impact of the number of insiders between the single-chip
mmWave radar system and the proposed camera-radar fusion system.

solution using a stereo camera for overhead counting reaches
94.0% accuracy under suitable lighting conditions for up to
five individuals. However, the system may encounter diffi-
culties in challenging conditions, such as overexposed envi-
ronments. These limitations can be attributed to the physical
constraints of the commercial cameras utilized in this work,
as well as to the inadequacy of datasets in environmental
dynamics. For a more detailed analysis of environmental
dynamics and their impact, refer to Sect. 5.4.

5.3.2 Impact of Number of People

In the mmWave radar people detection category, the number
of people and their status substantially affect performance
due to the sparse point cloud. Even when using the Hun-
garian method [36] to improve multi-target assignment in
single-chip solutions [14], the results are still unsatisfactory.
In contrast, the vision-based detector can recognize dozens
of objects but typically require line-of-sight and lighting
conditions. As shown in Fig. 11, the proposed fusion system
performs well in detecting multiple people. Meanwhile, the
single-chip mmWave radar systems [2], [11], [13], [14] ex-
perience a substantial decrease in accuracy when detecting
more than four individuals in a smart space. mID [2] shows
a solid performance but requires prior knowledge of insid-
ers’ walking information, while others do not. Vision-based
detectors based on the front of view perform well and stably
but fail to recognize individuals correctly when some parts
of their bodies overlap. Such issues could be resolved by
raising cameras like CCTV, but we found that this may raise
more vital privacy concerns than placing cameras at lower
heights with a limited view of individuals’ legs and feet.
One of our future goals is to find a balance between per-
formance and user acceptance. Overhead counting systems
also perform well in this task but cannot provide real-time
information about users in a smart space. Additionally, the
maximum number of people detected by this commercial
system is limited to five, which is unsatisfactory for com-
mercial environments with large numbers of simultaneous

Fig. 12 Tracking performance of competing methods, including our pro-
posed fusion system.

customers, such as restaurants and stations.

5.3.3 Tracking

With the aid of the mmWave radar tracker, the proposed
system can provide accurate tracking and real-time user po-
sitioning. As the coordinates of users are solely derived
from radar sensor data, our proposed system exhibits com-
parable accuracy and detection range to that of a single-chip
mmWave radar solution [14], achieving a median error of
0.17m in a detection range of 6m. Similar to reference meth-
ods like TI and mID, false detection is excluded in tracking
performance evaluation but analyzed in the impact of group
size. In comparison, one of the state-of-the-art optical track-
ing methods, Kinect v2†, achieves a median error of 0.88
m within a detection range of 4.5 m. Additionally, Kinect
v2’s error fluctuates between 0.7 m and 1.0 m, while the
mmWave radar tracker-involved system provides much more
stable and low-level tracking errors., as shown in Fig. 12.

5.3.4 Standing and Sitting Individuals

Single-chip mmWave radar sensor solutions [2], [13], [14]
primarily focus on detecting walking individuals due to the
nature of radar sensors requiring static removal, which can
significantly hinder the performance of detecting stationary
people. To address such issues, the use of a camera-involved
radar fusion system, commonly used in automotive applica-
tions, has gained attention in the indoor smart space category
and provides users with more options. Table 1 summarizes
the merits and demerits of the mmWave radar-camera fusion
system compared to the single-chip mmWave radar systems
and vision-based technologies. In comparison to single-chip
solutions, the mmWave-camera fusion system shows signif-
icant improvement in accurately detecting both walking and
stationary individuals. This function is essential for commer-
cial environments such as restaurants, theaters, and waiting
halls. However, it also shares the drawbacks of optical meth-
ods that require a clear view of the body, a minimum lighting
level, and line-of-sight. These limitations will be discussed
in the next section.

†According to https://github.com/mcgi5sr2/kinect2_tracker.
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Table 1 Comparison of different people detection methods.

Table 2 mAP of our proposed system and competing methods (IoU
threshold: 0.5) under darkness scenarios.

5.4 Robustness to Environmental Dynamic

5.4.1 Lighting

Darkness scenarios: Considering the substantial impact of
lighting conditions on the efficacy of vision-based detectors,
our evaluation includes scenarios of darkness within our
mixed datasets derived from COCO and ExDark. For exam-
ple, we consider environments like a restaurant at night, lit
only by emergency exit lights. Table 2 presents the mAP re-
sults under such darkness scenarios, also comparing a refer-
ence group relying solely on a camera sensor. The proposed
fusion system performs better than the vision-based detectors
based on improved YOLOv3 and the refinement head using
Fast R-CNN in such challenging scenarios. Furthermore, as
detailed in Sect. 5.2.2 and depicted in Fig. 9, vision-based
detectors trained on datasets incorporating darkness scenar-
ios show a marked improvement over those lacking exposure
to such environments.
Unfit lighting: In the field tests, unfit lighting conditions
(Unfit LT), including overexposure and low light, signifi-
cantly impacted the performance of vision-based detectors
(both front-view and overhead) but had minimal effect on the
radar tracker. Table 3 summarizes the comparisons under
various conditions: The field test was conducted in a com-
mercial indoor setting, where bright natural light was present
at the entrance and windows during specific times, typically
at noon and sunset. “Good light” denotes suitable indoor
lighting conditions minimally influenced by natural light.
“Unfit light” includes environments with high-intensity light
exposure, as illustrated in Fig. 2(b). “Darkness” pertains to
scenarios where business operations have ceased, leaving
only emergency or exit lighting active, as depicted in Fig. 2.
The proposed system Given that the overhead people count-

Table 3 Performance under different lighting conditions. It contains the
overall accuracy of people detection from competing single-chip mmWave
radar solutions, image-only detectors including Kinect v2, stereo camera
(overhead), and our mmWave-radar fusion system. Unfit lighting (Unfit LT)
includes natural environment dynamics such as overexposure and low-light
during the business time.

Table 4 Impact of different materials on the non-line-of-sight perfor-
mance of mmWave radar. It is evaluated by the point cloud density change
when different materials cover the radar. All included materials are com-
monly used in Chinese and Japanese architecture.

ing system is ideally positioned at the entrance/exit of the
smart space, the impact of natural lighting is more significant
than that experienced by front-of-view optical methods and
indoor radar setups. It has a range of results to enhance such
influence. In summary, the vision-based detector’s profi-
ciency in accurately detecting stationary individuals affords
the proposed system a performance edge over single-chip
mmWave radar systems, as elaborated in Sect. 5.3.4.

5.4.2 Non-Line-of-Sight

Previous research [2], [11], [14], [28] has shown that
mmWave radar has good material penetration capabilities.
As demonstrated in Table 4, we found that there is less than
a 1% difference in point-cloud density change when the radar
sensor is covered by sheets (approximately 0.3cm × 10cm2)
made of different materials. However, unlike the mmWave
radar-based system using a camera as the sub-sensor where
the radar tracker can work independently [28], this fusion
system cannot penetrate such sheets due to the requirement
for line-of-sight from the vision-based proposal. On the other
hand, our proposed system still outperforms vision-based
detectors (cameras) in many scenarios in actual commercial
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environments during experiments. For example, when in-
dividuals are partially obscured by each other or furniture.
Furthermore, this penetration capability has considerable po-
tential, particularly in traditional Chinese and Japanese ar-
chitecture, where many tables, chairs, doors, windows, and
room dividers are made of wood and paper.

5.5 Privacy Concerns

In this work, experiments were conducted in real commercial
environments within a shopping district near Waseda Univer-
sity, Japan. Both customers and business owners expressed
significant privacy concerns regarding the use of camera-
involved systems. Such concerns primarily arise from tech-
nologies requiring a clear view of the user’s face, as this is
often perceived as intrusive. mmWave radar sensor-based
systems appear more user-friendly and raise fewer privacy
concerns due to the non-intrusive nature of mmWave radar
and the spread of 5G. Notably, the proposed system has
shown reduced privacy concerns and improved user accep-
tance compared to traditional optical methods in commer-
cial settings, primarily due to the omission of facial features.
This has been evidenced by the positive response from busi-
ness owners who participated in our experiments. However,
further research is required to comprehensively understand
customer/user acceptance. Detailed comparisons and find-
ings are presented in Table 1.

6. Related Works

mmWave radar-based people detection. Many works have
been on using mmWave radar for device-free people detec-
tion as an alternative to device-based technology like PIR
sensors. Wei et al. documented a new passive tracking
method (mTrack) that can pinpoint the target’s initial po-
sition and track its trajectory with high precision, at a cost
of limited in short range detection like touch events and
writing [12]. Huang et al. proposed indoor people detection
and tracking method based on DBmeans+RKF to improve
the clustering performance on mmWave data and achieved
84% accuracy, but over on only five insiders [13]. Zhao
et al. built a people tracking and identifying method using
Softmax modified network with Bi-LSTM layers analyzing
people’s gait. They provided an accuracy of 87% for four
insiders and 73% for 12 insiders [2], at high deployment cost
of users’ information before they visit. Our previous work
use a clustering method based on k-means and a assignment
module based on Hungarian method presented an overall ac-
curacy of 83.7% for ten insiders but loss more than excepted
in detecting stationary individuals [14]. A comparison of
different mmWave radar detection methods could be found
in Table 2.
Radar-camera fusion system people detection. Thanks to
the great success of the supervised object detection methods
like YOLO [5], Faster R-CNN [7] in recent years, many fu-
sion approaches are proposed but mainly in the automotive
market. The conventional radar-camera fusion approaches,

like [15], are basically feed Kalman filter and its variants, and
simplified radar detection to a point leading more potential
failures. Recently, the fusion based on deep learning have un-
dergone significant developments [19]–[26]. Some of these
cross-domain object detection approaches typically involve
the use of end-to-end CNN architectures utilizing raw data
captured by radar and cameras. This has led to a substantial
demand for multi-modal datasets and labeled data. Shuai et
al. described Millieye, a radar-camera fusion system featur-
ing a replaceable CNN-based camera detector, but a need for
enhancements in radar component. Bijilic et al. produced a
multi-sensors fusion to see through the fog on the road [24]
at high deployment and training cost. Chadwick et al. pro-
posed a process for automatically labeling a new dataset by
combining detection from multiple sensors, but limited to
only simple image-like radar representation [25]. However,
this category is mainly focused on automotive market and
only limited research narrow such technologies to the indoor
scenarios [23].

7. Conclusion

In this paper, we present a real-time, and robust people de-
tection system that uses mmWave radar and camera fusion.
Through multi-module cooperation, our system improves the
performance of people detection using COTS. sensors. No-
tably, it performs well in challenging environments that the
single-chip mmWave radar trackers and image-only vision-
based detector may fail, including low-light conditions, sta-
tionary individuals, and when people are close to each other.
Our evaluations illustrate that even including the above chal-
lenging scenarios, the proposed system achieves an mAP
of 74.4% and an overall people detection accuracy of 93.8%
with a median position error of 1.7 m in an actual commercial
environment. As a comparison, the improved-tiny-YOLOv3
used in our previous work [28] achieves an mAP of 66.9%,
and the refinement head based on Faster R-CNN gives an
mAP of 72.6%. Besides, the single-chip mmWave radar
systems, including TI [11], ctracker [13], and one of our pre-
vious work [14], have a people detection accuracy of 74.1%
(group size: 1-4), 84.7% (group size: 1-5), 83.5% (group
size: 1-10), respectively; One current commercial overhead
counting system gains an accuracy of 93.7% under suitable
conditions. However, it cannot provide user information
inside the smart space and fails to detect people in challeng-
ing scenarios. With our IoT platform based on AWS, our
proposed system provides real-time services for commercial
environments. It also demonstrates the potential of artificial
intelligence IoT (AIoT) technologies to detect and recognize
users automatically in smart city implementations. Despite
its strengths, the proposed system has some limitations that
warrant future study. In this paper, the point cloud from
mmWave radar does not directly participate in object clas-
sification but provides proposals with coordinates. It leads
to an improvement in accuracy at the cost of losing material
penetration. Furthermore, at the current stage, the sparse
point cloud generated by FFT suffers from low angular res-
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olution, making the mmWave radar system unsuitable for
classification tasks. In the near future, radar technology
could provide a viable alternative to image-only methods for
classification tasks as it provides more detailed information.
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