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PAPER
A Sequential Approach to Detect Drifts and Retrain Neural
Networks on Resource-Limited Edge Devices∗

Kazuki SUNAGA†a), Takeya YAMADA†b), Nonmembers, and Hiroki MATSUTANI†c), Member

SUMMARY A practical issue of edge AI systems is that data distribu-
tions of trained dataset and deployed environment may differ due to noise
and environmental changes over time. Such a phenomenon is known as a
concept drift, and this gap degrades the performance of edge AI systems
and may introduce system failures. To address this gap, retraining of neural
network models triggered by concept drift detection is a practical approach.
However, since available compute resources are strictly limited in edge de-
vices, in this paper we propose a fully sequential concept drift detection
method in cooperation with an on-device sequential learning technique of
neural networks. In this case, both the neural network retraining and the
proposed concept drift detection are done only by sequential computation
to reduce computation cost and memory utilization. We use three datasets
for experiments and compare the proposed approach with existing batch-
based detection methods. It is also compared with a DNN-based approach
without concept drift detection. The evaluation results of the proposed
approach show that the proposed method is capable of detecting each of
four concept drift types. The results also show that, while the accuracy is
decreased by up to 0.9% compared to the existing batch-based detection
methods, it decreases the memory size by 88.9%–96.4% and the execution
time by 45.0%–87.6%. As a result, the combination of the neural network
retraining and the proposed concept drift detection method is demonstrated
on Raspberry Pi Pico that has 264 kB memory.
key words: edge AI, concept drift, on-device learning, OS-ELM

1. Introduction

With the rapid spread of AI (Artificial Intelligence) and IoT
(Internet-of-Things) technologies, the number of IoT devices
connected to the Internet continues to grow significantly. In
cloud-based AI systems, IoT devices typically collect data at
deployed edge environments and send the data to datacenters
via the Internet. In this case, IoT devices focus on the data
collection, and cloud servers are in charge of big data anal-
ysis and sophisticated machine learning tasks using plenty
of compute resources. In addition, edge intelligence [1] in
which some machine learning tasks such as prediction are
performed in the edge side is also becoming popular since
performance and efficiency of edge devices have been im-
proved significantly. Although conventional edge AI systems
focus on prediction tasks, recently an on-device learning ap-
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proach of neural networks is proposed for resource-limited
IoT devices [2].

However, there are some limitations on such on-device
learning approaches. First, there is a limitation on computa-
tion power and cost. Since they are often battery-powered,
low-power consumption is required. In addition, deployed
environments around the edge devices may change over time.
That is, data distribution observed by the edge devices may
shift as time goes by. For example, data distributions of
trained dataset and deployed environment may differ due to
noise and environmental changes. This gap degrades the
performance of edge AI systems and may introduce system
failures. To address this gap, a concept drift detection is a
well-known approach [3].

Since edge devices are resource-limited, in this paper
we propose a lightweight concept drift detection method for
resource-limited edge devices. The contributions of this
paper are as follows.

• We propose a fully sequential concept drift detection
method to be combined with the on-device sequential
learning approach of neural networks.

• Since both the neural network retraining and the pro-
posed concept drift detection are done only by sequen-
tial computation, we demonstrate that the combined
approach is implemented on Raspberry Pi Pico that has
264 kB memory.

The proposed approach is compared to existing concept
drift detection methods in terms of accuracy using practi-
cal datasets. It is compared with a DNN-based approach
without concept drift detection. It is also evaluated in terms
of execution time and memory utilization on edge devices.

The rest of this paper is organized as follows. Section 2
overviews concept drift detection methods. Section 3 ex-
plains the proposed detection method. Section 4 describes
the experimental setup including the datasets, counterparts,
and platforms. Section 5 shows the evaluation results in
terms of the accuracy, execution time, and memory utiliza-
tion. Section 6 concludes this paper.

2. Background and Related Work

2.1 Concept Drift Types

A concept drift [5] is known as a phenomenon where statisti-
cal properties of target data change over time. It is sometimes
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Fig. 1 Four concept drift types [5]

Fig. 2 Overview of proposed detection method

caused by changes on hidden variables which cannot be ob-
served directly. There are various types of concept drifts,
and representative ones [5] are illustrated in Fig. 1. In the
figure, the vertical and horizontal axes represent data distri-
bution and elapsed time, respectively. The sudden drift is a
concept drift in which a data distribution changes suddenly.
In the sudden drift, an old data distribution before the con-
cept drift does not appear after the concept drift. The gradual
drift is a concept drift in which an old data distribution is
gradually replaced with a new data distribution. Both the
old and new distributions appear during the concept drift.
In the incremental drift, the data distribution is incremen-
tally shifted from an old distribution to a new distribution
during the concept drift. In the reoccurring drift, after the
data distribution has been changed to a new one, the old data
distribution reoccurs.

2.2 Concept Drift Countermeasures

There are various approaches to address the concept drifts,
and they can be classified into active approaches and passive
approaches [6]. In this paper, a machine learning model that
solves classification or regression tasks is called a “discrim-
inative model”, and a model that detects concept drifts is
called a “detection model”. An example of their relationship
is illustrated in Fig. 2.

2.2.1 Passive Approach

In the passive approach, a discriminative model is retrained

whenever a new data arrives. Since the discriminative model
can be always trained with the latest data, its accuracy tends
to be high. It does not use any detection model. How-
ever, it requires computation resource and memory to retrain
a discriminative model. This may limit its application to
resource-limited edge devices. To enable retraining of neu-
ral networks on resource-limited edge devices, OS-ELM [7]
is used as an online sequential learning algorithm of neu-
ral networks that have a single hidden layer in ONLAD [8].
Since it sequentially updates weight parameters of neural
networks when new training samples come, the memory uti-
lization is quite small compared to batch training algorithms.
ONLAD is classified as a passive approach. Specifically,
OS-ELM is combined with a forgetting mechanism to for-
get old collected data and follow a concept changes quickly.
The training batch size is fixed to one so that pseudo inverse
operation of matrixes can be eliminated.

2.2.2 Active Approach

In the active approach, a machine learning model is retrained
only when a concept drift is detected. It thus requires a de-
tection model in addition to a discriminative model. Since
it may be difficult to address all the concept drift types in-
troduced in Sect. 2.1 at the same time for any applications,
existing active approaches often focus on some specific con-
cept drift types [9]. There are several detection models and
they can be broadly classified into two methods below and
their ensemble [5].

The first detection method is an error-rate based drift
detection method. This method monitors prediction errors of
a discriminative model using labeled teacher data, and it de-
tects a concept drift when the error-rate exceeds a threshold
value. DDM [10] and ADWIN [11] are the error-rate based
drift detection methods. DDM (Drift Detection Method)
uses two threshold levels: warning level and drift level.
When an error-rate reaches the warning level, it starts a
retraining of a discriminative model. When the error-rate
reaches the drift level, the retrained discriminative model
replaces the old model. The number of samples required to
judge concept drifts, which is called window size, is fixed
at DDM. In ADWIN (Adaptive Windowing), the window
size is adaptively adjusted based on test statistics. Since
these approaches need a labeled teacher dataset to detect a
concept drift, they are not suited to resource-limited edge
devices with a limited memory capacity.

The second detection method is a distribution-based
drift detection. Quant Tree [12] and SPLL [13] are the
distribution-based drift detection methods. Quant Tree de-
tects concept drifts by using a histogram. Although the size
of histogram increases as the number of features (the number
of dimensions) increases in typical histogram-based detec-
tion methods, it can be fixed in Quant Tree. Also, the test
statistics to detect concept drifts does not depend on training
and test datasets. SPLL detects concept drifts by using semi-
parametric log-likelihood. Input data samples are clustered
by using k-means method, and then the resultant clusters
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are modeled assuming GMM (Gaussian Mixture Model) to
detect concept drifts. The distribution-based drift detection
methods, such as Quant Tree and SPLL, often process a batch
of data samples to detect concept drifts. Thus, they are also
not suited to resource-limited edge devices with a limited
memory capacity. In this paper, we will propose a concept
drift detection method of neural networks both of which
require only sequential computation to reduce computation
cost and memory utilization.

3. Proposed Detection Method

Figure 2 illustrates an overview of the proposed concept drift
detection method. Specifically, the proposed lightweight
detection method is combined with the on-device sequential
learning approach of neural networks [2] as a discriminative
model. In this section, the discriminative model assumed
in this paper is briefly illustrated first. Then the proposed
detection method is explained.

3.1 Discriminative Model

Assume data can be classified into one of multiple labels.
In the discriminative model, the same number of OS-ELM
based neural networks (called “instances”) as the number of
labels in the training dataset are used. For each label in the
training dataset, a discriminative model instance is trained
with the data belonging to the label. Each discriminative
model instance forms an autoencoder [14] for unsupervised
anomaly detection. That is, the numbers of input and output
layer nodes of the discriminative model instances are the
same, and each instance is trained so that its output can
reconstruct a given input data with a smaller number of
hidden nodes.

In the test phase, a reconstruction error (anomaly score)
is calculated by comparing the input and output data in each
model instance, and the smallest anomaly score among all
the instances is used as the final prediction result (see lines
6 and 7 in Algorithm 1). For the sequential training, a single
model instance that outputs the smallest anomaly score (i.e.,
the “closest” instance) trains the input data sequentially. We
employ this architecture for anomaly detection on multiple
normal patterns as in [2].

3.2 Concept Drift Detection

At first, the proposed concept drift detection method calcu-
lates a centroid of trained data for each label. It records the
same number of trained centroids as the number of labels.
Then it sequentially updates the centroid with recent test data
for each label whenever it predicts. It maintains test centroids
in addition to the trained centroids. A drift rate is calculated
based on a sum of the distance between the trained centroid
and corresponding test centroid for each label (see line 14
in Algorithm 1). Then a concept drift is detected when the
drift rate exceeds a pre-determined threshold value.

The proposed method is illustrated below. In the initial

Fig. 3 Overview of proposed detection algorithm: (a) initial samples, (b)
trained centroids, (c) test centroids before concept drift, and (d) those after
concept drift

training phase, a discriminative model is trained with initial
samples. Assume there are initial samples which are labeled
as one of three different colors as shown in Fig. 3 (a). In the
case of unsupervised learning, it is assumed that these initial
samples can be labeled with a clustering algorithm such as
k-means. A centroid of the initial samples is calculated for
each label, as shown in Fig. 3 (b). In this figure, the centroids
are represented as deeper-colored points. They are referred
as “trained centroids”. The proposed method thus records
the same number of trained centroids as the number of labels
in the initial training phase.

In the prediction phase, the discriminative model pre-
dicts a label for each test sample. The centroids are sequen-
tially updated based on each test sample and its predicted
label. They are referred as “test centroids”. When the cen-
troids are calculated, it is possible to assign a higher weight
to a newer sample (a lower weight to an older sample) so that
they can represent “recent” test centroids. Assume a new
test sample comes and it is labeled as “blue” by the discrim-
inative model. The recent test centroid of “blue” label is
then sequentially updated. The data distribution is relatively
stable before a concept drift occurs. We can thus expect that
distances between the trained centroids and the recent test
centroids are small as shown in Fig. 3 (c).

Next, let us illustrate a case when a concept drift hap-
pens. Assume the data distribution is changed and new test
samples appear as shown in yellow circles in Fig. 3 (d). If
these new test samples are labeled as “blue” by the discrimi-
native model, the recent test centroid of “blue” label is moved
to near the yellow circles in Fig. 3 (d). The distance between
the test centroid and the trained centroid increases due to
the new data distribution. A drift rate is calculated based
on a sum of these distances, and a concept drift is detected
when the drift rate exceeds a pre-determined threshold value.
Please note that in the proposed method, the distances can
be sequentially updated when it predicts. It thus requires
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much less memory than batch-based concept drift detection
methods introduced in Sect. 2.2.2.

Algorithm 1 shows the proposed detection method men-
tioned above. The inputs to the proposed algorithm are a
discriminative model, a test dataset, the number of class la-
bels, the number of dimensions of the data, trained centroids,
the number of samples in each label, a window size, and er-
ror/drift threshold values. Variable dri f t indicates whether
a concept drift is occurring now or not. In line 2, it is initial-
ized to False. Variable check indicates whether a concept
drift needs to be checked or not. In line 3, it is initialized
to False. In line 6, assuming the discriminative model with
multiple instances introduced in Sect. 3.1, a class label pre-
dicted by the model is set to variable c. In line 7, an anomaly
score predicted by the discriminative model is set to variable
error . In lines 8 and 9, if the anomaly score exceeds a given
threshold value θerror , check is set to True so that a concept
drift will be checked. θerror is a tuning parameter. In line
10, a window counter win is initialized to 0.

If check is True and the window counter is less than
a pre-determined window size W , recent test centroid of
the predicted label c is sequentially updated based on an
incoming data. In line 12, cor[c] is the test centroid of label
c. Then a sum of the distance between the trained centroid
and the recent test centroid for each label is updated. In
line 14, dist is the sum of the distances. If the window
counter win reaches a given window size W , a concept drift is
checked by comparing the distance dist and a threshold value
θdri f t in line 17. The threshold θdri f t can be determined as
explained in Sect. 3.4. If the distance exceeds the threshold,
dri f t is set to True in line 18. In this case, the discriminative

model is retrained in line 21. Reconstruct_Model() function
is described in Sect. 3.3.

3.3 Model Reconstruction

The discriminative model reconstruction is divided into four
parts. The model reconstruction flow is shown in Algo-
rithm 2. In the first part, an initial coordinate is selected for
each label by Init_Coord() function in line 4. In Init_Coord()
function, given the number of labels C, C initial samples are
selected as initial coordinates of C labels. Specifically, these
initial coordinates are selected so that a sum of all the dis-
tances between these coordinates is maximized. This part
is inspired from an idea of k-means++ algorithm [15] that
spreads out initial cluster centroids for a better clustering.
The detail implementation of Init_Coord() function is shown
in Algorithm 3.

In the second part, centroids of C labels are updated
based on an incoming data by Update_Coord() function in
line 6. Specifically, a label that minimizes the distance be-
tween the incoming data and centroid of the label is selected.
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Based on the selected label, its centroid is then sequentially
updated. This part is very similar to a sequential k-means
algorithm. The detail implementation of Update_Coord()
function is shown in Algorithm 4. Please note that since
there is a possibility that initial coordinates selected by
Init_Coord() are outliers, the centroids are further refined
by Update_Coord() function using more samples.

In the third part, the discriminative model is retrained.
In lines 8 and 9, a label that minimizes the distance between
the incoming data and centroid of the label is selected, and
then the discriminative model is sequentially updated by the
incoming data and the selected label.

The fourth part is similar to the third part, but as shown
in lines 11 and 12, a label is predicted by the discriminative
model being retrained, and then the discriminative model is
sequentially updated by the incoming data and the predicted
label.

3.4 Threshold

The threshold value θdri f t is used to detect a concept drift in
line 17 of Algorithm 1. For each trained sample, a distance
between the sample and the centroid of its predicted label is
calculated and stored in dist array. In this paper, θdri f t is
calculated based on the mean and standard deviation of dist
array, as shown below.

µ =
1
N
Σi∈N dist[i]

θdri f t = µ + z

√
1
N
Σi∈N (dist[i] − µ)2,

(1)

where N is the number of trained samples and dist[i] is a
distance between the i-th sample and the centroid of a cluster
the i-th sample belongs to. z is a tuning parameter and we
simply assume z = 1 in this paper.

4. Evaluation Setup

This section describes datasets, counterparts of the proposed
method, and platforms for the evaluations.

4.1 Datasets

Three datasets used in the evaluations are described below.

4.1.1 Synthetic Dataset

First, we evaluate the proposed method using sine and cosine

waves to demonstrate its capability to detect each type of
concept drifts shown in Fig. 1. Each data has 100 features,
and a random noise of [−0.1,0.1] is added to each feature.
We use sin θ, cos θ, and − sin θ as a training dataset. The
following four patterns are used as test datasets.

1. The first dataset focuses on a sudden drift. We use sin θ,
cos θ, and − sin θ as test data before a concept drift, and
those with a phase shift of 135 degrees for each as test
data after the concept drift. The concept drift occurs at
the 1998th data point.

2. The second dataset focuses on a gradual drift. The
dataset used is almost the same as the first dataset, but in
the second dataset, both the patterns are mixed between
the 1998th data point and the 2808th data point so that
a gradual drift can be reproduced.

3. The third dataset focuses on an incremental drift. The
dataset used is almost the same as the first dataset,
but in the third dataset, the phase gradually shifts in a
continuous manner from the 1998th data point to the
2808th data point so that an incremental drift can be
reproduced.

4. The fourth dataset focuses on a reoccurring drift. The
dataset used is almost the same as the first dataset, but
in the fourth dataset, data after the concept drift ap-
pear only between the 1998th data point and the 2808th
data point. Those before the concept drift reoccur after
the 2808th data point so that reoccurring drift can be
reproduced.

4.1.2 NSL-KDD Dataset

NSL-KDD [16] is a famous dataset which can be used to
evaluate network intrusion detection methods. As data dis-
tribution of the dataset shifts from the training data to the
test data, it can also be used for evaluating concept drift
detection methods [3]. This change in data distribution is
attributed to changes in attack patterns. The original dataset
contains a lot of samples with 23 labels. In this paper, we
use selected samples labeled with “normal” and “satan” for
training, and “normal” and “ipsweep” for testing. We fur-
ther select 1523 and 13709 samples for the initial training
and test, respectively. A concept drift occurs at the 6110th
data point.

4.1.3 Cooling Fan Dataset

The cooling fan dataset [17] contains vibration patterns of
various cooling fans measured by an industrial accelerom-
eter PCB M607A11. These vibration patterns were mea-
sured at a silent environment and a noisy environment near
a ventilation fan. The vibration pattern is represented as a
frequency spectrum ranging from 1 Hz to 511 Hz. Thus, the
number of features is 511 in the cooling fan dataset. The
data of four vibration patterns (0 rpm, 1500 rpm, 2000 rpm,
and 2500 rpm) are used. Specifically, those observed in a
silent environment are used as a training dataset, and those
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Table 1 Detector and discriminative model parameter settings in synthetic dataset

Table 2 Detector and discriminative model parameter settings in NSL-KDD dataset

Table 3 Detector and discriminative model parameter settings in fan dataset

observed in a noisy environment are used as a testing dataset.

4.2 Evaluated Methods

In this paper, the following six combinations are evaluated
and compared as concept drift countermeasures.

1. Detector: the proposed method, Discriminative model:
OS-ELM

2. Detector: none (no concept drift detection), Discrimi-
native model: OS-ELM

3. Detector: Quant Tree, Discriminative model: OS-ELM
4. Detector: SPLL, Discriminative model: OS-ELM
5. Detector: none, Discriminative model: ONLAD (OS-

ELM with a forgetting mechanism)
6. Detector: none, Discriminative model: DNN (3 hidden

layers)

The first method is our proposal, and the second method
is a baseline without concept drift detection. The first, third,
and fourth methods are classified as the active detection
approach, while the fifth method is the passive approach.
The sixth method is a DNN-based approach without concept
drift detection.

Except for the DNN-based approach, OS-ELM is used
in the discriminative model. More specifically, the same
number of OS-ELM based autoencoder instances as the num-
ber of labels are used, as mentioned in Sect. 3.1. The reason
for using OS-ELM in the discriminative model is that it can
be retrained on resource-limited edge devices [2]. Another
reason is that we want to compare the proposed method

with ONLAD that uses OS-ELM and a lightweight forget-
ting mechanism. By adding the DNN-based approach, we
also compare OS-ELM with a DNN.

The synthetic dataset is used to verify the operation of
the proposed method. Table 1 shows the hyperparameters
used for the synthetic dataset. The numbers of input and
output layer nodes of the model are 100 and that of the hidden
layer nodes is 22. Table 2 shows the hyperparameters used for
the NSL-KDD dataset. In the OS-ELM based discriminative
model, the numbers of input and output layer nodes are 37
and that of the hidden layer nodes is 22. In Quant Tree, the
batch size is 400 and the number of histograms is 32. In
SPLL, the batch size is 400. In ONLAD, the numbers of
input, hidden, and output layer nodes are the same as those
of the OS-ELM model. The forgetting rate is 0.99. The
DNN model has three hidden layers and are trained by a
back-propagation algorithm with a SGD optimizer. Also,
Table 3 shows the hyperparameters used for the cooling fan
dataset. The six methods are set up accordingly.

4.3 Evaluation Platforms

The above-mentioned six methods are running on Raspberry
Pi 4 Model B [18]. In addition, due the memory size con-
straints, only the proposed method is demonstrated on Rasp-
berry Pi Pico [19]. These methods are evaluated in terms
of memory utilization in Raspberry Pi 4 Model B. The ex-
ecution time breakdown of the proposed method is further
analyzed in Raspberry Pi Pico. Table 4 shows the specifica-
tions of Raspberry Pi 4 Model B and Raspberry Pi Pico.
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Table 4 Specifications of Raspberry Pi 4 Model B and Raspberry Pi Pico

5. Evaluation Results

This section shows evaluation results of the six methods
listed in Sect. 4.2 in terms of the accuracy, delay to detect
concept drifts, memory utilization, and execution time.

5.1 Synthetic Dataset

First, the proposed concept drift detection method is evalu-
ated for the four concept drift types. Figure 4 (a), (b), (c), and
(d) are the evaluation results for sudden drift, gradual drift,
incremental drift, and reoccurring drift, respectively. The
X-axis indicates the number of data, and Y-axis is the error
between input and output in each graph. The first vertical bar
at the 1998th data point in Fig. 4 represents an occurrence of
concept drift, and the second vertical bar at the 2808th data
point represents the end of concept drift in the cases of (b),
(c), and (d). Please note that the second bar in (d) indicates
the data distribution before the concept drift occurred has re-
occurred. It can be seen from each figure that loss is sharply
increased when a concept drift occurs. In the sudden drift, it
is observed that loss is decreased by learning after the drift
detection. In the gradual drift and incremental drift, there
may appear “intermediate concept” [20] during the transfor-
mation, so if the intermediate concept is learned, the loss
may be high even after the end of drift point. However, in
the proposed method, a retraining flag is set based on the
loss. Therefore, it can be observed that the proposed method
is able to learn the data after the drift even if an intermediate
concept is learned. In the reoccurring drift, the emphasis is
on how to find the best matched historical concept in a short
time. Since, the proposed method uses centroids of the data,
the best matched one can be selected simply by storing these
centroids and comparing them with centroids of the most
recent data.

5.2 NSL-KDD Dataset

The six methods are evaluated with NSL-KDD dataset. Fig-
ure 5 shows evaluation results in terms of the accuracy of
the discriminative model. Table 5 summarizes the accuracy
and the delay to detect a concept drift. The delay means the
number of samples needed to detect a concept drift after the
concept drift actually happens. A vertical bar at the 6110th
data point in Fig. 5 shows a concept drift.

First, the results show that the parameter tuning of a
forgetting rate of ONLAD is difficult. Since a concept drift
happens at the 6110th data point, it is expected that accuracy
of the ONLAD model should be constantly high before the
concept drift. However, the results show that the accuracy

Fig. 4 Loss changes on synthetic dataset

Fig. 5 Accuracy changes on NSL-KDD dataset

Table 5 Accuracy (%) and delay (number of samples) for detecting con-
cept drift on NSL-KDD dataset

of the ONLAD model gradually decreases even before the
concept drift happens.

The results also show that the proposed method can
detect the concept drift as well as the batch-based Quant
Tree and SPLL methods in the NSL-KDD dataset. After
the concept drift is detected, the accuracy of the proposed
method becomes high compared to the baseline method that
does not detect concept drifts. As a result, the proposed
method outperforms the baseline method without concept
drift detection, ONLAD with a forgetting mechanism, and
DNN by 25.4%, 41.9%, and 21.7%, respectively, while the
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Fig. 6 Accuracy changes on cooling fan dataset

Table 6 Accuracy (%) and delay (number of samples) for detecting con-
cept drift on cooling fan dataset

accuracy is decreased by up to 0.9% and 0.8% compared to
the batch-based SPLL and Quant Tree methods, respectively.
Please note that the proposed method needed less samples to
detect the concept drift compared to the batch-based Quant
Tree and SPLL methods.

5.3 Cooling Fan Dataset

Next, we show the results of the evaluation on the cooling
fan dataset in Fig. 6. Table 6 summarizes the accuracy and
the delay to detect a concept drift. A vertical bar at the 400th
data point in Fig. 6 shows a concept drift as well as Fig. 5.

In the cooling fan dataset, the accuracy becomes high
in the methods that detect the concept drifts. As a result, the
proposed method outperforms the baseline method without
concept drift detection, ONLAD with a forgetting mecha-
nism, and DNN by 33.6%, 33.5%, and 32.1%, respectively,
and the accuracy is increased by up to 0.5% and 0.3% com-
pared to the batch-based SPLL and Quant Tree methods,
respectively. It also needed less samples to detect the con-
cept drift compared to the batch-based Quant Tree and SPLL
methods.

5.4 Memory Utilization

Table 7 shows the evaluation results in terms of the memory
utilization on Raspberry Pi 4 Model B. The cooling fan
dataset is used for the memory size evaluation; in this case,
the batch size of the Quant Tree and SPLL methods is 235
while it is one in the proposed method.

Table 7 Memory utilization (kB)

The results show that the proposed method uses much
less memory size compared to the batch-based Quant Tree
and SPLL methods. Specifically, the proposed method de-
creases the memory utilization by up to 96.4% and 88.9%
compared to SPLL and Quant Tree, respectively. This is
because in the batch-based concept drift detection meth-
ods, data samples are stored in the device memory to detect
concept drifts, while the proposed method processes data
samples one by one and detects concept drifts sequentially;
thus, the proposed method does not store past samples in the
device memory.

Please note that since RAM size of Raspberry Pi Pico
is only 264 kB as shown in Table 4, the batch-based Quant
Tree and SPLL methods cannot operate on Raspberry Pi
Pico. It is known that Raspberry Pi Pico is available from
only $4 [19]. The memory size reduction by the proposed
approach is beneficial in terms of the hardware cost, be-
cause our proposed system can be implemented on this low-
cost device. In addition, the memory size reduction by the
proposed approach can extend the applicable range of micro-
controllers. For example, ultra-low power products of STMi-
croelectronics STM32 microcontrollers include several se-
ries, such as STM32L0, STM32L4, STM32L4+, STM32L5,
and STM32U5 [21]. Especially, in the cases of STM32L4,
STM32L4+, and STM32L5 series, their SRAM sizes typi-
cally range from 40 kB to 640 kB. Thus, our approach can
be implemented on a wider range of these microcontrollers
compared to the counterparts. In Sect. 5.5, only the proposed
method shows the execution time on Raspberry Pi Pico in
addition to that on Raspberry Pi 4 Model B.

5.5 Execution Time

Tables 8 and 9 show evaluation results in terms of the exe-
cution times on Raspberry Pi 4 Model B and Raspberry Pi
Pico, respectively. The same cooling fan dataset is used for
this evaluation.

Table 8 shows the execution time to process the cooling
fan dataset that contains 1600 samples in total. As shown,
the execution time of the proposed method is much less
than that of Quant Tree and SPLL. Specifically, the pro-
posed method decreases the execution time by up to 87.6%
and 45.0% compared to SPLL and Quant Tree, respectively.
Since SPLL executes k-means clustering, the execution time
of SPLL is increased compared to the others. In the case of
the proposed approach, there is a possibility to meet a timing
constraint with a lower operating frequency or less compute
resources. Since a higher operating frequency and more
compute resources tend to increase the power consumption
and hardware cost, the proposed approach is beneficial in
terms of the power consumption and miniaturization of tar-
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Table 8 Execution time (sec) for 1600 samples on Raspberry Pi 4 Model
B

Table 9 Execution time breakdown (msec) for 1 sample by proposed
method on Raspberry Pi Pico

get devices. Although the proposed method increases the
execution time by 58.2% compared to the baseline method
without concept drift detection, it significantly improves the
accuracy compared to the baseline as shown in Figs. 5 and
6. Thus, the proposed method is an attractive option when
concept drifts are expected in target applications.

Table 9 further analyzes the execution time breakdown
for a single sample by the proposed method on Raspberry Pi
Pico. In the table, “Label prediction” and “Distance compu-
tation” are corresponding to lines 6 and 14 in Algorithm 1,
respectively. “Model retraining without label prediction” is
done in lines 8 and 9, while “Model retraining with label pre-
diction” is done in lines 11 and 12 in Algorithm 2. “Label
coordinates initialization” is Init_Coord() function in Algo-
rithm 3, and “Label coordinates update” is Update_Coord()
function in Algorithm 4. The results show that the additional
computation time for the concept drift detection is less than
the label prediction time of the discriminative model. Please
note that the latency is within a few hundred milliseconds
even in such a low-end edge device.

6. Conclusions

In edge AI systems, data distributions of trained dataset and
deployed environment may differ due to noise and envi-
ronmental changes over time. This gap degrades the per-
formance of edge AI systems and may introduce system
failures. To address this gap, retraining of neural network
models triggered by concept drift detection is a practical ap-
proach. As practical concept drift detection, error-rate based
detection methods and distribution-based detection methods
have been used. However, since such a batch-based pro-
cessing and use of labeled teacher dataset are not suited for
resource-limited edge devices, in this paper we proposed a
fully sequential concept drift detection method in cooper-
ation with the on-device sequential learning technique of
neural networks. Both the neural network retraining and the
proposed concept drift detection are done only by sequen-
tial computation to reduce computation cost and memory
utilization. The proposed approach was compared with ex-

isting concept drift detection methods and a DNN model
without concept drift detection.

Evaluation results of the proposed approach showed
that while the accuracy is decreased by up to 0.9% compared
to existing batch-based detection methods, it decreases the
memory size by 88.9%–96.4% and the execution time by
45.0%–87.6%. Thanks to these significant decreases on the
memory size and computation cost, the combination of the
neural network retraining and the proposed concept drift de-
tection method was demonstrated on Raspberry Pi Pico that
has 264 kB memory. A possible extension of this work is
a combination of multiple detection models with different
window sizes to address more complicated concept drift be-
haviors since it is expected that the sizes of detection models
are less dominant compared to the discriminative model.
We are also planning to apply the proposed system to more
practical applications, such as anomaly detection on rotating
machines as in [22].
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