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PAPER
Grid Sample Based Temporal Iteration for Fully Pipelined 1-ms
SLIC Superpixel Segmentation System

Yuan LI†a), Tingting HU††, Ryuji FUCHIKAMI††, Nonmembers, and Takeshi IKENAGA†, Member

SUMMARY A 1 millisecond (1-ms) vision system, which processes
videos at 1000 frames per second (FPS) within 1 ms/frame delay, plays an
increasingly important role in fields such as robotics and factory automation.
Superpixel as one of the most extensively employed image oversegmenta-
tion methods is a crucial pre-processing step for reducing computations
in various computer vision applications. Among the different superpixel
methods, simple linear iterative clustering (SLIC) has gained widespread
adoption due to its simplicity, effectiveness, and computational efficiency.
However, the iterative assignment and update steps in SLIC make it chal-
lenging to achieve high processing speed. To address this limitation and
develop a SLIC superpixel segmentation system with a 1 ms delay, this pa-
per proposes grid sample based temporal iteration. By leveraging the high
frame rate of the input video, the proposed method distributes the iterations
into the temporal domain, ensuring that the system’s delay keeps within
one frame. Additionally, grid sample information is added as initialization
information to the obtained superpixel centers for enhancing the stability
of superpixels. Furthermore, a selective label propagation based pipeline
architecture is proposed for parallel computation of all the possibilities of
label propagation. This eliminates data dependency between adjacent pixels
and enables a fully pipelined system. The evaluation results demonstrate
that the proposed superpixel segmentation system achieves boundary recall
and under-segmentation error comparable to the original SLIC algorithm.
When considering label consistency, the proposed system surpasses the per-
formance of state-of-the-art superpixel segmentation methods. Moreover,
in terms of hardware performance, the proposed system processes 1000 FPS
images with 0.985 ms/frame delay.
key words: image processing system, real-time, SLIC, superpixel, FPGA

1. Introduction

With the rapid advancement of factorial digitalization and
Internet technologies, machine vision has emerged as a crit-
ical technology in various domains, including robotics and
factory automation (FA). Machine vision systems typically
employ cameras to capture visual data, utilize machine vi-
sion algorithms to process this data, and provide feedback
to actuators based on the processed information. However,
it is crucial to minimize delays in the algorithmic process-
ing stage, as real-world scenes continuously change during
this time. If there is a significant delay, the feedback pro-
vided to the actuator becomes outdated and ineffective. On
the contrary, if the algorithm with ultra-low delay is im-
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plemented, interactions between the algorithm and actuator
become more frequent. The actuator responds in a timely
manner and works seamlessly. In order to achieve more ef-
ficient and accurate machine vision systems, ultra-low delay
implementation is necessary. Specifically, systems capable
of processing 1000 frames per second (FPS) with process-
ing speeds under 1 ms are desired. This consideration arises
from the fact that the actuators can operate at frequencies
of 1 kHz [1]. Many previous studies have already explored
the use of Field-Programmable Gate Arrays (FPGAs) to de-
velop high frame rate and ultra-low delay systems in various
fields. Examples include object tracking [2], straight-line
detection [3], and subpixel displacement measurement [4].

Superpixels involve the grouping of connected pixels
exhibiting similar features. This concept significantly aids in
reducing image redundancy and computational complexity
for various subsequent tasks. Examples of such tasks include
salient object detection [5] and 3D matching [6]. Currently,
there are two main approaches to superpixel segmentation:
hand-crafted feature-based algorithms and learned feature-
based algorithms. Hand-crafted algorithms utilize features
such as color and texture to group spatially adjacent pixels.
Simple linear iterative clustering (SLIC) [7] clusters pixels
based on their color similarity and proximity in the image
plane. SLIC requires multiple iterations to obtain the final
segmentation results. Linear spectral clustering (LSC) [8]
maps image pixels to weighted points in ten-dimensional
feature space by kernel functions. For learned feature-based
algorithms, SCN [9] employs the U-net architecture to pre-
dict the association for each pixel. AINet [10] proposes an AI
module to implant the corresponding grid features to the sur-
roundings of the pixel. This module further perceives the re-
lations between pixels and their neighbors. Learned feature-
based algorithms are computation-intensive and memory-
expensive, posing challenges in achieving ultra-low delay
processing. Among the hand-crafted algorithms, SLIC is
the most commonly used because of its high stability and
fast segmentation speed [11]. Therefore, this paper adopts
SLIC as the basic architecture for superpixel segmentation.

Several previous works have made efforts to accelerate
SLIC. gSLIC [12] implements SLIC in GPU and achieves a
six-fold speed improvement when compared to CPU imple-
mentations. FMSLIC [13] introduces a pixel-based search
operation in the assignment step to remove data dependency.
FMSLIC achieves a processing speed of 143 frames per
second for input images. Despite these advancements in
speed and memory efficiency, the iterative assignment and
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update steps make these approaches challenging to process
images at 1000 FPS with a processing speed under 1 ms. FP-
SLIC [14] directly reduces the number of iterations to a very
small number, but it compromises the algorithm’s robust-
ness. To address this challenge, and as an extension of our
previous work [15], this paper proposes a hardware-oriented
SLIC algorithm with its system-level hardware implemen-
tation. The contributions of this paper are summarized as
follows:

1. Grid sample based temporal iteration is proposed. In-
stead of performing iterations within each image pro-
cessing, the iterations are distributed into temporal do-
main. Each frame processes a single iteration. Grid
sample information is incorporated as initialization data
to enhance the stability of superpixels.

2. Selective label propagation based pipeline architecture
is proposed to eliminate data dependency between ad-
jacent pixels and achieve a fully pipelined system. All
the possibilities of label propagation are calculated si-
multaneously and final results are selected based on the
label propagation.

3. The proposed architecture has been implemented on an
FPGA to develop a high frame rate and ultra-low delay
system. Extensive experiments have been conducted
to thoroughly validate both the algorithm and hardware
performance of the system.

The rest of this paper is organized as follows. Section 2
reviews the related works. The proposed methods and im-
plementation details are presented in Sect. 3. Experimental
results and analysis are presented in Sect. 4. Finally, Sect. 5
makes a conclusion.

2. Related Works

2.1 Hand-Crafted Feature-Based Algorithm

ERS [16] formulates superpixel segmentation as an opti-
mization problem. It aims to maximize the entropy rate
of a random walk on the image graph. ARWN [17] utilizes
the gradient of all pixels to assist in seed selection. This
strategy allows each pixel to have the possibility of being
chosen as a seed. However, the ultra-low delay implementa-
tion of these algorithms on FPGAs faces challenges due to
their reliance on global processing. SLIC [7] calculates the
Euclidean distance in color and proximity between each pixel
and the superpixel center. It employs a local search range
and involves simple calculations. LSC [8] is based on SLIC
structure. LSC extends the search range to the entire image
and maps pixels to weighted points in a ten-dimensional fea-
ture space to improve performance. ETPS [18] proposes a
coarse-to-fine segmentation approach. This approach starts
from a square grid and gradually reduces it to a one-pixel
grid. SEEDS [19] also utilizes a grid-based initialization and
iteratively reassigns boundary pixels using color and bound-
ary histograms. However, The coarse-to-fine architecture of
ETPS and SEEDS requires significant hardware resources to

handle the different grid sizes. In the pursuit of accelerating
SLIC, SNIC [20] introduces a priority queue to avoid itera-
tive steps. However, constructing a priority queue requires
saving the entire image. Additionally, the access between
memory and processing core leads to a long delay during
implementation.

2.2 Acceleration of SLIC

Due to the relatively low computational requirements and
local calculations in SLIC, several works have attempted
to accelerate SLIC and implement it on FPGA platforms.
Khamaneh et al. [21] proposes a memory-efficient SLIC ar-
chitecture. Only the label of each pixel and RGB color
information are stored in memory. An RGB–to–CIELAB
convertor is employed in the assignment step. The proposed
SLIC algorithm achieves a frame rate of 24 fps for a camera
with a resolution of 300x400 pixels. Mighani et al. [13] in-
troduces a structure that replaces the cluster-based search op-
eration with the pixel-based process in the assignment step.
By eliminating the data dependency between the assignment
and update steps, simultaneous execution is enabled. The
proposed architecture processes 143 fps for an input image
of 300x400 pixel resolution. Although the previous works
have improved memory efficiency and execution time, the
processing speed still falls short of achieving ultra-low de-
lay. The iterations within each image processing result in
frequent reading and writing of labels to memory, and lead
to a long processing delay.

To address the issue of iterations, FP-SLIC [14] adopts
a strategy of reducing the number of iterations. By limit-
ing the iterations to just 2 times and implementing a fully
pipelined FPGA architecture, the system’s processing delay
for an image with a resolution of 481x321 reaches 3.86 ms.
However, this delay still does not meet the requirement of
ultra-low delay applications, and the reduction of iteration
times comes at the cost of robustness. Additionally, as the
number of iterations increases, there is a substantial rise
in both hardware resource utilization and processing delay.
Further research is needed to develop a high frame rate and
ultra-low delay system for SLIC superpixel segmentation.

3. Proposed Method

3.1 Grid Sample Based Temporal Iteration

The comparisons between the structure of SLIC and the
proposed system are shown in Fig. 1. In SLIC method, initial
superpixel centers are obtained by sampling image pixels at
a regular grid. The grid size is determined based on the
image size and the desired number of superpixels. In the
assignment step, each pixel searches in a limited region.
The distances to the superpixel centers within this region
are calculated. The distance metric combines both CIELAB
color and proximity Euclidean distance. Pixels are assigned
to the superpixel with the smallest distance. Once every pixel
is assigned to superpixels, superpixel centers are recalculated
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Fig. 1 Comparisons between the structure of SLIC and proposed method. (a) Original SLIC structure;
(b) Proposed structure.

in the update step. Assignment and update steps operate
iteratively to obtain the final output result. To reach the high
frame rate and ultra-low delay, iteration is a critical problem.

The proposed grid sample based temporal iteration is
illustrated in Fig. 1 (b). By exploiting the high similarity be-
tween adjacent frames in high frame rate video, the iterations
are distributed across the temporal domain. The proposed
structure utilizes the output of the previous frame as input for
the process of the current frame. The output of the previous
frame serves as the penultimate iteration result, while the
output of the current frame is obtained through only a single
iteration processing.

The utilization of temporal iteration enables the
achievement of ultra-low delay; however, it introduces insta-
bility to the superpixels due to the absence of initialization
information. This instability becomes especially apparent
when the camera moves. It causes the superpixels at the edge
of the image to either lose or gain pixels. Moreover, camera
movement causes certain superpixels to vanish, while others
grow significantly larger than the expected size. To address
this issue, grid sample initialization is added to temporal it-
eration process. The operation is defined by the following
equations.

corcur = λ · corini + (1 − λ) · cortem, (1)
λ = min(A,2A−ε), (2)

A =
⌊����10 × (1 − size

sizeexp
)
����⌋ . (3)

In the equations, corcur , corini , cortem denote the co-
ordinate of the current frame’s input superpixel center, grid
sampled initialization, and the center obtained from the pre-
vious frame’s output, respectively. The multiplication by

10 in the calculation of A is performed to ensure an integer
operation. The variable size represents the number of pixels
contained in the superpixel. sizeexp represents the expected
size. ε is the parameter to control the ratio between the
amount of initialization information and the previous out-
put information. When the size of the current superpixel
is close to the expected size, less initialization information
is added. However, if the size deviates significantly from
the expected size, the inclusion of grid sample initialization
becomes necessary to preserve the stability of the superpixel.

The proposed system takes high frame rate videos as in-
put. With a frame rate of 1000 FPS, the difference between
each adjacent frame is minimal. In the original SLIC algo-
rithm, each pixel searches for the superpixel centers, which
leads to low label consistency in subsequent processing. The
proposed system is inspired by SEEDS to address this issue
and leverages the strong temporal coherence in high frame
rate videos. Instead of processing all pixels, only the bound-
ary pixels of superpixels in the current frame are considered.
To identify the boundary pixels, a 4x4 search block is em-
ployed. If a pixel in the second row and second column has a
different label when compared to its neighboring pixels to the
right or below it, these two pixels are designated as boundary
pixels. The distances between the boundary pixel and these
two superpixel centers are computed in the assignment step.
These boundary pixels are moved to the superpixel with a
smaller distance. By adopting this methodology, the pixels
inside each superpixel remain stationary during processing.
It results in a high label consistency in the proposed system.

Additionally, the original SLIC algorithm uses only
color and proximity Euclidean distances in its distance cal-
culation. However, relying solely on the information of
superpixel centers results in less compact superpixels. A
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compactness coefficient is proposed. The proposed distance
metric is formulated as shown in Eq. (4). E represents the
Euclidean distance, Ec is the color Euclidean distance and Ep

is the proximity Euclidean distance. These distances are cal-
culated the same as the original SLIC algorithm. CO refers
to compactness. S and P represent the size and perimeter of
the superpixel. The parameter γ determines the degree of
influence that the compactness coefficient has in the overall
distance calculation.

E = Ec + Ep × CO, (4)

CO = 1 + γ( S
( P4 )2

− 1)2. (5)

The calculation of the compactness coefficient is based
on the ratio of the superpixel’s size to its perimeter divided
by four squared. Dividing by 4 simulates the perimeter of a
square divided by 4, which is equivalent to calculating the
side length of the square. A CO value closer to 1 indicates
a more square-like shape, signifying a higher level of com-
pactness. In this situation, color and proximity distances
contribute equally to the overall distance calculation. How-
ever, as the compactness deviates further from 1, the prox-
imity distance becomes more influential in the final distance
calculation. Because the boundary pixel only moves to the
superpixel with a smaller distance, compactness coefficient
results in more compact superpixels.

3.2 Selective Label Propagation Based Pipeline

In the assignment step, boundary pixels compute distances to
both adjacent superpixel centers and are assigned to the cen-
ter with the smaller distance. To identify boundary pixels,
a 4x4 search block is employed. If the pixel in the second
row and second column has a different label compared to
its neighboring pixels on the right or below it, these two
neighboring pixels are regarded as boundary pixels. Con-
sequently, the pixel in the second row and second column,
the pixel to its right, and the pixel below it may potentially
change their labels during the assignment step. Importantly,
the pixel in the third row is only involved in the computation
for the subsequent line of the image. The delay of distance
calculation is considerably lower than the time required for
transmitting pixels in one line. Therefore, any potential la-
bel change of the pixel in the third row does not adversely
affect the system’s pipeline. However, if the pixel in the third
column undergoes a label change during the current block
calculation, it impacts the computation of the next block.
Waiting for the completion of the current block results in a
long delay. To ensure timely processing of the camera’s pixel
stream and achieve full pipelining in the proposed system, it
is crucial to eliminate the data dependency between adjacent
blocks.

An example of this problem is shown in Fig. 2 to provide
a clearer illustration of this issue. Labels 0 and 1 are used
as examples to represent different labels. Different colors
are employed to provide a clearer visual distinction between

Fig. 2 Example of data dependency between adjacent blocks.

Fig. 3 Conceptual difference. (a) Original boundary pixels movement
calculation; (b) Proposed selective label propagation based pipeline.

these labels. Within the current block n’s 4x4 calculation,
the boundary pixels inside the red lines have the possibility
to move either to the superpixel labeled as 0 or the one
labeled as 1. If the right pixel remains labeled as 1, there
are no boundary pixels in the second row in the next block
n+1 calculation. However, if the right pixel changes to the
label 0, the movement of boundary pixels still needs to be
calculated in the next block n+1 calculation. In summary,
due to the dependency on the current calculation’s results,
the next block requires different computations and yields
distinct results. As a consequence, the next calculation has
to wait for the completion of the current calculation.

The data dependency between adjacent blocks causes
long delays and poses challenges for the timely processing
of high frame rate images. To address this issue, a selective
label propagation based pipeline architecture is proposed.
The conceptual difference is shown in Fig. 3. In each block
calculation, boundary pixels are searched and moved to the
superpixel with a smaller distance. Regardless of the label
obtained from the previous block’s calculation, all possible
label configurations for the second row and second column
of the current block are calculated in parallel. These results
are stored in registers. After completing the calculation of
the previous block, the calculation of the current block is
selected based on the the label of previous one. The labels
for the entire frame are selective based on label propagation
from the first to the last block. The proposed structure is
able to deal with input pixel stream from camera sensing



LI et al.: GRID SAMPLE BASED TEMPORAL ITERATION FOR FULLY PIPELINED 1-MS SLIC SUPERPIXEL SEGMENTATION SYSTEM
519

Fig. 4 Components of the high frame rate and ultra-low delay system for
realworld applications. High frame rate camera is BASLER acA2000-340,
FPGA is Xilinx Zynq UltraScale+ MPSoC ZCU104.

Fig. 5 Hardware structure of the proposed SLIC superpixel segmentation
system.

promptly. It enables a fully pipelined architecture to achieve
ultra-low delay at the same time.

3.3 Hardware Implementation

The proposed system is implemented in the hardware system
depicted in Fig. 4. It comprises an industrial high frame
rate camera and an FPGA. The industrial camera captures
video data and transmits it to FPGA in a pixel stream. The
superpixel segmentation system is implemented in the image
processing core on the FPGA, as illustrated in Fig. 5. The
processing system (PS) is implemented on one chip with
programmable logic. The pixel stream from the camera is
converted into a parallel pixel stream with a frequency of
100 MHz using the camera link receiver. This parallel pixel
stream is the input to the image processing core. The output
result of the image processing core is the label assigned to
each pixel. It is transmitted to PS for further post-processing
via WISHBONE BUS. Additionally, DDR4-SDRAM as an
external memory can be employed for post-analysis.

Details in image processing core will be explained. The
process of converting from RGB to CIELAB involves mul-
tiple divisions and exponential operations. These calcu-
lations demand substantial memory and computational re-
sources in hardware design. In order to avoid these resource-
intensive mathematical computations while still retaining

Fig. 6 Details of boundary pixel move module.

the perceptual lightness channel, YCbCr color space is em-
ployed. Upon receiving the pixel stream from the camera
link receiver, the pixels are converted to YCbCr format for
subsequent processing. Obtain center color module utilizes
the information of the previous frame’s superpixel centers,
which is stored in BRAM. When the coordinates of an input
pixel match those of a center, its color information is saved
for the assignment calculation. To ensure sufficient center
color information, a delay of 20 lines is added to the pixel
stream through a delay module. Within the boundary pixel
move module, the pixel stream undergoes a transformation
into a 4x4 block for the color distance computation. Bound-
ary pixel move module takes as input the coordinates and
color information of the superpixel center, as well as the
superpixel’s size and perimeter from BRAM. Additionally,
a 4x4 block of labels from memory is provided as input to
this module. Within this module, all possible calculations
are performed in parallel. Selective label propagation based
pipeline enables a pipelined boundary pixel move module,
resulting in a fully pipelined hardware structure in the pro-
posed system.

The details within boundary pixel move module are de-
picted in Fig. 6. Within this module, the previous labels of
input pixels are first recorded and the possible label is cal-
culated. By incorporating this information, the 4x4 label
block is turned into two blocks. One represents labels where
changes occur in the second row and second column due to
the previous block calculation, and the other where labels
remain unchanged. These two blocks calculate parallelly
and output the change flag and this block’s label result. The
change flag indicates whether the label in the second row
and third column changes or not. These outputs are stored
in the register. Upon completing computations for the pre-
vious block, the final label result for the current block can
be selectively determined based on the change flag. As a
consequence of the pipelining of boundary pixel move mod-
ule facilitated by the proposal, the output results are likewise
pipelined for subsequent processing steps.

The label results obtained from boundary pixel move
module are stored in the BRAM for label map. A ping-pong
BRAM structure is utilized to enable synchronous reading
of the previous frame’s label map and writing of the cur-
rent frame’s label map. After finishing this frame’s reading
and writing, the functions of these BRAMs are exchanged in
preparation for the next frame. Concurrently, the output label
results are utilized to compute the current frame’s superpixel
center information. The center information is then stored in
BRAM. Upon processing the last pixel of the current frame,
the center information is sent to grid sample initialization
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module. After adding the initialization, the center informa-
tion is then stored in BRAM for the next frame’s processing.
The whole system is fully pipelined in accordance with the
input pixel stream.

4. Experimental Results

4.1 Algorithm Evaluation

4.1.1 Dataset and Evaluation Metrics

Because this paper is primarily focused on the fields of fac-

Fig. 7 Examples of factory assembly line dataset and indoor dataset.
(a) Horizontal translation; (b) Vertical translation; (c) Rotation; (d)
Scale. Horizontal and vertical translation datasets move at 1 pixel/frame;
Rotation dataset rotates at 0.1 degree/frame; Scale dataset scales at
0.001 times/frame.

Table 1 Evaluation results on indoor datasets.

Table 2 Evaluation results on factory assembly line datasets.

tory automation and robotics, the experiments are conducted
on both factory assembly line dataset and the indoor scenes
dataset. To simulate the factory assembly line scene, com-
ponent images from the Halcon example images [22] are
used to generate this dataset. To simulate indoor scenes for
robotics, images from the NYUV2 dataset [23] are used.
NYUV2 dataset shows varying indoor scenes of private
apartments and commercial accommodations. The videos
in both datasets have a resolution of 500x340. Each dataset
contains four different motion patterns including horizontal
translation, vertical translation, rotation, and scale change.
Examples of the datasets are shown in Fig. 7.

To evaluate the segmentation results objectively, three
common metrics are used in this paper. Boundary Re-
call (BR) is used to evaluate boundary adherence. Under-
segmentation Error (UE) is used to evaluate leakage or bleed-
ing of a superpixel with groundtruth. Achievable Segmen-
tation Accuracy (ASA) is used to evaluate the upper bound
on the achievable segmentation accuracy using superpixel as
a pre-processing step. Compactness (CO) [24] is employed
to evaluate the visual quality of algorithms. Moreover, label
consistency (LC) [25] is employed to evaluate the stability of
superpixels across consecutive frames in a video sequence.
LC shows how well superpixels track parts of objects, and it
plays a crucial role in subsequent tasks such as classification.
When label consistency is low, it may result in unstable or
flickering classification outcomes [26].

4.1.2 Evaluation Results and Analysis

The evaluation results based on the mentioned evaluation
metrics are presented in Table 1 and Table 2. In the experi-
ments, ε and γ are set to 4. The expected superpixel number
is set to 400. The proposed system maintains comparable
values of BR, UE, and ASA for both datasets when compared
with SLIC. While the boundary pixels move along with the
motion and result in a decrease in CO, the utilization of tem-
poral information in the proposed system leads to an average
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Fig. 8 Quantitative evaluation results. (a) Boundary recall; (b) Under-segmentation error; (c) Achiev-
able segmentation accuracy; (d) Compactness; (e) Label consistency.

Table 3 Comparisons with deep learning algorithms in indoor dataset.

increase of more than 2.4% in LC when compared to SLIC.
To demonstrate the effectiveness of the proposed meth-

ods, comparisons with other well-known algorithms are con-
ducted. Quantitative experiments are performed using the
horizontal translation of the indoor dataset as an exam-
ple. The comparisons between the proposed method and
SLIC, SNIC, SEEDS, LSC, ERS, ETPS are shown in Fig. 8.
Among all the algorithms, ERS shows superior performance
on BR, UE, and ASA. However, due to its global processing
and complex calculations, implementing ERS as an ultra-
low delay system is challenging. As illustrated in the figure,
although the proposed method is designed for an ultra-low
delay system, its performance is comparable to that of other
algorithms. Moreover, the proposed method shows the high-
est performance in terms of label consistency.

Comparisons with deep learning methods are also con-

ducted on indoor datasets. The pre-trained modules from
SCN [9] and AINet [10] are utilized in the experiments. To
ensure fairness, the expected superpixel number of the pro-
posed system is set as 750. Results are shown in Table 3.
Deep learning methods achieve superior segmentation per-
formance at the expense of huge computational amounts
and memory costs. Notably, the proposed method achieves
higher LC when compared to deep learning methods in most
cases.

4.1.3 Ablation Study

To demonstrate the effectiveness of compactness coefficient,
experimental results for different values of γ are presented
in Table 4. These experiments encompass both indoor and
factory assembly line datasets. Horizontal translation is se-
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Table 4 Ablation studies of different influence degrees of compactness coefficient.

Table 5 Hardware performance and resource utilization of the proposed
system.

lected as an illustrative example. Images in indoor datasets
tend to feature more irregular shapes when compared to those
in the factory assembly line dataset. When γ is set to 0, it
signifies the absence of compactness coefficient. When γ is
configured as 4, CO of indoor dataset is improved by 11%. In
contrast, for the factory assembly line dataset, where super-
pixels exhibit more regular shapes, the improvement in CO is
1%. For both datasets, as CO increases, the other evaluation
metrics including UE, ASA, and LC maintain values simi-
lar to those observed in the situation without the use of the
compactness coefficient. These results highlight the supe-
rior performance of the compactness coefficient, particularly
when dealing with superpixels of more irregular shapes.

Nonetheless, it’s important to recognize the existence
of a trade-off between CO and BR. As CO increases, BR
decreases for both datasets. Notably, setting γ to 6 results
in a 3% reduction of BR in the case of the indoor dataset.
This effect will be even more pronounced when dealing with
superpixels exhibiting more irregular shapes. Furthermore,
as γ becomes larger, the improvement in CO becomes less
evident. In scenarios with regular-shaped superpixels, CO
may even decrease with larger values of γ.

4.2 Hardware Evaluation

The effectiveness of the proposed hardware-oriented system
is stated in the previous subsection. The processing speed
and hardware resource utilization are other important issues
because the ultimate target of this work is to develop a high
frame rate and ultra-low delay SLIC superpixel segmentation
system. The hardware synthesis and implementation are
conducted on ZCU104 FPGA board using Vivado 2021.2.
BRAM supports up to 512 superpixels. The results of the
hardware evaluation are presented in Table 5.

For the hardware resource utilization, the BRAM uti-

Fig. 9 Detailed timing flow of the proposed system.

Fig. 10 Comparisons of execution times.

lization percentage exceeds 60% due to the storage of the
whole frame’s label map and superpixel center information.
Additionally, a ping-pong BRAM structure is deployed for
label maps. It causes an increase in BRAM utilization. LUT
serves not only for combinatorial logic calculations but also
for the delay module to receive the pixel stream. As a result,
the LUT utilization reaches 77%.

The processing delay from the sensor input to the whole
frame result output is 0.985 ms/frame. The timing flow of
the proposed system is illustrated in detail in Fig. 9. Obtain
center color module requires a waiting period of 20 lines
to ensure sufficient center color information for the current
frame. It results in a delay of over 50 µs. In grid sample
initialization module, the sequential processing of reading
and writing center information in the BRAM introduces a
delay of 8.23 µs.

The comparisons of execution times between the pro-
posed system and other algorithms are illustrated in Fig. 10.
SLIC, SEEDS, LSC, ERS, and ETPS are all provided by a
superpixel benchmark [27]. The execution time of this work
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Table 6 Comparison of the proposed system with other FPGA imple-
mentations of SLIC algorithm.

is the delay of image processing core. It is from the first-
pixel sensor input to the whole frame result output. Notably,
as the number of superpixels increases, the delay associated
with the grid sample initialization also increases. However,
even when the expected number of superpixels reaches 800,
the delay remains remarkably low at 0.988 ms, and it still
reaches the requirement of under 1 ms. This performance is
significantly faster when compared to other algorithms.

The results presented in Table 6 illustrate the compar-
isons between the proposed system and other FPGA imple-
mentations of SLIC algorithm. By leveraging a temporal
iteration strategy, iterations of SLIC algorithm are separated
into the temporal domain, ensuring an ultra-low delay. The
delay in this work is significantly lower when compared to
other implementations of the SLIC algorithm on FPGA.

5. Conclusion

The system described in this paper is designed for superpixel
segmentation with a high frame rate and low delay. Both the
algorithm and hardware implementation have been presented
in this paper. From an algorithmic perspective, iterations in-
side one image processing are separated into the temporal
domain. Grid sample initialization and compactness coeffi-
cient are proposed for the stability of superpixel. To make
the proposed architecture fully pipelined to reach ultra-low
delay, selective label propagation based pipeline is proposed.
All the possibilities of labels are calculated parallelly, and the
final output results are selected through label propagation.
The experiments prove that the proposed system achieves
a real-time processing speed of 1000 FPS with a delay of
less than 1 ms/frame. Moreover, the system’s performance
remains comparable to other well-known algorithms while
achieving higher LC compared to state-of-the-art methods.
For future work, it is important to further optimize the hard-
ware resource utilization of the proposed method. Since
superpixel segmentation serves as a pre-processing step for
various applications, it is crucial to allocate sufficient re-
sources for subsequent processing stages.
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