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Machine Learning-based System for Heat-Resistant Analysis of Car
Lamp Design

Hyebong CHOI†a), Member, Joel SHIN†, Jeongho KIM†, Samuel YOON†, Hyeonmin PARK†, Hyejin CHO††,
and Jiyoung JUNG†††, Nonmembers

SUMMARY The design of automobile lamps requires accurate esti-
mation of heat distribution to prevent overheating and deformation of the
product. Traditional heat resistant analysis using Computational Fluid Dy-
namics (CFD) is time-consuming and requires expertise in thermofluid
mechanics, making real-time temperature analysis less accessible to lamp
designers.

We propose a machine learning-based temperature prediction system
for automobile lamp design. We trained our machine learning models
using CFD results of various lamp designs, providing lamp designers real-
time Heat-Resistant Analysis. Comprehensive tests on real lamp products
demonstrate that our prediction model accurately estimates heat distribution
comparable to CFD analysis within a minute. Our system visualizes the
estimated heat distribution of car lamp design supporting quick decision-
making by lamp designer. It is expected to shorten the product design
process, improving the market competitiveness.
key words: automobile lamp, heat-resistant analysis, temperature predic-
tion, machine learning

1. Introduction

Heat-resistant analysis is a critical step in designing an au-
tomobile lamp. It helps determine whether the proposed
design will be able to withstand the high temperatures gen-
erated by the lamp’s bulb. By conducting this analysis,
designers can identify potential issues and make necessary
adjustments to ensure the final product meets the desired
specifications and performs as intended. Conducting heat-
resistant analysis prior to creating a prototype or product can
save time and money by identifying potential issues and al-
lowing for modifications to be made to the design before it
goes into production.

In industry, heat-resistant analysis is primarily per-
formed based on computational fluid dynamics (CFD),
which utilizes the Navier-Stokes equations, nonlinear partial
differential equations that describe fluid motion with viscos-
ity [1]. CFD uses numerical methods such as finite differ-
ence, finite volume, or finite element methods to discretize
and solve the Navier-Stokes equations, which describe the
motion of viscous fluids. The solution of these equations al-
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lows for the analysis of fluid flow and heat transfer problems
in various engineering applications [2], [3], [4]. Generat-
ing 3D input grids for analysis, performing CFD-based heat-
resistant analysis, and verification using specialized software
require the assistance of thermal-fluid experts and can take
several days. This process will be repeated as many as nec-
essary to validate various design elements and can cause
significant delays in the design process of car lamps.

Machine learning is a technique used to develop intel-
ligent systems that find patterns and make predictions by
combining data and statistical modeling. Typically, a large
amount of data is used to train a model, which is then used to
make predictions on unseen datasets. The prediction model
can be trained with numerous CFD analysis results for vari-
ous car lamp designs, producing accurate estimations of heat
distribution comparable to CFD analysis. This approach en-
ables designers to verify their own designs in real-time with-
out the assistance of an expert, improving the efficiency of
the design process.

In this study, we propose a machine learning-based sys-
tem for predicting the thermal performance of automotive
lamps. The proposed system first learns from a large amount
of CFD analysis results for various lamp designs. The trained
prediction model is then used to provide real-time temper-
ature analysis results for new lamp designs and design pa-
rameters. The system provides an interface for designers
to easily input design parameters such as bulb Wattage and
item materials without the need for expert knowledge of heat
transfer theory or specialized CFD programs. This elimi-
nates the need for complex processes such as re-generating
a 3D grid for analysis programs where the prediction model
directly operates on CATIA models provided by the designer.
Through this approach, designers can perform cost-effective
evaluations of various design parameters by performing ma-
chine learning-based thermal analysis in the pre-review stage
for CFD-based analysis. We have also used downsampling
techniques to address the data imbalance problem where the
majority of the data points in the training data are in the
low-temperature range, while the high-temperature range,
which is more critical for heat-resistant analysis, has rela-
tively lower number of data points. This improved the scala-
bility of the system, and we have verified the accuracy of the
temperature prediction within a 7% error range compared to
the results of CFD analysis.

Copyright © 200x The Institute of Electronics, Information and Communication Engineers
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2. Related Work

2.1 Thermal Resistance Analysis in Car Lamp Design

Computational fluid dynamics (CFD) calculates mass con-
servation equations, momentum equations, and energy equa-
tions related to fluid flow using computers through numerical
discretization and various algorithms [1]. CFD is a nu-
merical model that approximates phenomena such as fluid
flow, heat transfer, and related chemical reactions through
computer-based simulation [5]. Heat treatment analyses
utilizing CFD take into account crucial factors present in
the actual heat treatment process, including phenomena like
boiling, to ensure accurate computational results [6], [7], [8].

Thermal resistance analysis in car lamp design process
primarily relies on Navier-Stokes equations in CFD, which
are nonlinear partial differential equations that describe the
flow of viscous fluids. CFD methods are known for their
high accuracy in temperature estimation and their ability to
examine a wide range of design specifications [6].

However, it requires a considerable amount of time
to perform CFD-based thermal analyses in the design pro-
cess. Experts typically need several days to generate a three-
dimensional input grid, execute and validate the simulations,
and perform iterative analyses to verify different design el-
ements. Lamp designers often encounter challenges in per-
forming the analysis independently, as it requires assistance
from thermal fluid theory and analysis program experts. In
the industry, reducing the time spent on the product devel-
opment process is a pivotal factor in sustaining business
competitiveness. Therefore, reducing the time required for
thermal analyses in lamp design can make a substantial im-
pact.

Hai Guo [9] proposed a deep learning-based tempera-
ture prediction model to prevent aging or damage in Perma-
nent Magnet Synchronous Motors (PMSM). PH Gunawan, D
Munandar [10] utilized Long Short-Term Memory (LSTM)
to predict air temperature changes in Indonesia, considering
its diverse climate conditions. Lee [11] developed an al-
gorithm that computes heat distribution in car lamp design
using complex physical formulas. However, due to com-
putational complexity, the analysis has been performed on
a simplified box-shaped lamp design rather than real lamp
design.

We propose a machine learning-based temperature pre-
diction system for thermal analyses as an alternative to CFD.
This system enables designers to independently verify var-
ious design factors and obtain visualized real-time analysis
results.

2.2 Ensemble Algorithm

The ensemble method is a learning algorithm that combines
a set of weak learners to achieve an accurate prediction model
by reducing bias and variance of the model [12]. It collects
results from multiple predictors and integrates the result to

produce the final answer.
There are three main ensemble learning methods: bag-

ging, boosting and stacking. Bagging, short for Bootstrap
Aggregating, is an ensemble method that improves the accu-
racy and stability of predictive models [13]. It generates mul-
tiple subsets of the training data through random sampling
with replacement, trains separate models on these subsets,
and combines their predictions to make the final prediction.
By training models on different subsets of the data and aggre-
gating their predictions, bagging helps to reduce overfitting,
increase robustness, and improve generalization. Random
Forest is the most well-known algorithm where bagging is
applied to decision tree model [14].

Boosting aims to improve the performance of weak or
base models by combining them into a strong predictive
model. Unlike bagging, which trains models independently,
boosting trains models sequentially. Each subsequent model
focuses on the instances that were misclassified by previ-
ous models. In this way, boosting puts more emphasis on
difficult-to-predict instances, allowing the models to learn
from their mistakes and improve over iterations. The final
prediction is made by aggregating the predictions of all the
models. Boosting algorithms include Adaboost[15], Cat-
boost[16], XGBoost[17], and LightGBM[18]. They have
shown capability in capturing complex patterns and improve
prediction accuracy.

Stacking, also known as stacked generalization, com-
bines the predictions of multiple individual models to obtain
a more accurate and robust model [19]. Unlike traditional
ensemble methods that rely on simple averaging or voting,
stacking involves training a meta-model that learns to com-
bine the predictions of the base models. The base models
are trained on the original data, while the meta-model is
trained on the predictions made by the base models. Stack-
ing leverages the strengths of different models and can cap-
ture complex relationships in the data, resulting in improved
predictive performance [20].

In this study, we used the CV(cross-validation)-based
stacking ensemble algorithm to estimate the temperature and
heat distribution of car lamp design. This improves the
accuracy of estimation and avoids overfitting problem.

2.3 Data Re-sampling

Data re-sampling plays a crucial role in addressing imbal-
anced datasets, where one class or a range of values is signif-
icantly underrepresented compared to the others. Training
with imbalanced datasets can lead to biased model perfor-
mance in supervised learning. Re-sampling techniques aim
to balance the data distribution and improve model perfor-
mance.

Oversampling is a commonly used technique in data
resampling. It involves increasing the number of instances
in the minority class to match the number of instances in
the majority class. ROSE and SMOTE are well-known over-
sampling methods. Random Oversampling(ROSE) method
is a sampling technique for solving binary classification data
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imbalance problems. ROSE provides a unified framework
to address model estimation and accuracy issues simulta-
neously, with the advantage of reducing the risk of overfit-
ting.[21]

The Synthetic Minority Oversampling Technique
(SMOTE) is a statistical method that generates synthetic
examples by interpolating between neighboring instances of
the minority class [22]. SMOTE is applied when analyz-
ing classes with insufficient representative values [23]. It is
less likely to cause overfitting compared to random oversam-
pling and helps to preserve information without reducing the
dataset size, unlike undersampling.

Downsampling, on the other hand, is a technique used to
address data imbalance by extracting meaningful data from
a myriad of data. The advantages of downsampling are that
it improves computational efficiency by reducing the size of
the dataset, reduces storage space by reducing the amount of
data, and reduces noise in the data.[24].

In thermal resistance analysis, we attempt to estimate a
continuous variable, temperature of each data point. There
are significantly larger portion of data points in a low tem-
perature range whereas less than 5% of data points are near
to or exceeding the temperature limit of the lamp materi-
als. To address this imbalance and focus on the crucial high
temperature range, we applied downsampling to the training
dataset. The random reduction of low temperature range
data points allows for greater emphasis on the high temper-
ature range, which is critical for assessing the lamp design’s
ability to withstand heat. It also drastically cuts down the
computation cost and time in training models.

3. Methodology

3.1 Data Description

This study primarily focuses on utilizing machine learning to
create a predictive model for estimation of heat distribution
of automobile lamp designs. To train this model, Compu-
tational Fluid Dynamics (CFD) temperature analysis results
obtained from actual lamp designs of 11 real car models
serve as the primary data source. For the reliability of the
predictive model, we have generated various analysis cases
altering design parameters such as voltage of bulbs and ma-
terial color for each car lamp design. The total number of
analysis cases created is 526 from the 11 unique car models
for model training.

We trained the predictive model mainly on the CFD
analysis result of rear lamp design. The rear lamp design is
further divided into two categories: single bulb and double
bulb configurations. We restricted the scope of our pre-
diction models within these two types of configurations for
simplicity even though there are more design options that
contain more than 2 bulbs in a lamp design. Depending on
its function, a single bulb can be lighted or two bulbs can be
turned on simultaneously in a thermal resistance analysis of
lamp design.

Single Lamp Double Lamp
Housing 25,846 27,017
Reflector 17,215 19,636

Inner Lens 15,184 13,099
Outer Lens 12592 13,757
Heat Plate 2,317 3,674

Table 1 Average number of data points for each lamp item

A rear lamp design consists of 5 parts: housing frame,
inner lens, outer lens, reflector, and heat plate. Table 1 shows
the average number of data points of each part in single and
double lamp configuration. The data points represent tem-
perature measured at intervals of 3 mm in the Cartesian co-
ordinate system. On average, the housing frame, the largest
part of lamp contains the highest number of coordinate data
points. The heat plate, the smaller part, has the fewest data
points.

Variable Description Variable Description

Spec Ambient
Temperature
of Housing

mean: 53.66
sd: 19.75
min: 25
max: 85

Ambient
Temperature
of Lens

mean: 53.66
sd: 19.75
min: 25
max: 85

Function

STOP(298 / 56%)
TAIL(10 / 2%)
T/STOP(152 / 30%)
T/SIG(10 / 2%)
B/UP(54 / 10%)

HDT

mean: 132.93
sd: 28.8
min: 91
max: 360

Bulb
On Time

mean: 22.04
sd: 26.65
min: 5
max: 60

Off Time

mean: 3.02
sd: 7.84
min: 0
max: 55

Wattage

mean: 23.5
sd: 11.98
min: 5
max: 38

Bulb Type Single Bulb(207 / 40%)
Double Bulb(317 / 60%)

Bulb Center
Coordinate

3D Position Center Co-
ordinates of the Bulb in
the Lamp

Lighting
Conditions

Continuous(398 / 76%)
Discontinuous(126 / 24%)

Lamp

Item

Housing(524 / 25%)
Reflector(524 / 25%)
Inner Lens(410 / 20%)
Lens(524 / 25%)
Heat Plate(91 / 5%)

Raw
Material Color

White(3 / 0.1%)
Gray(267 / 13%)
Yellow(410 / 20%)
Red(632 / 30%)
Black(806 / 40%)
Clear(91 / 4%)

External
Surface
Absorption
Coefficient

mean: 0.37
sd: 0.34
min: 0.06
max: 0.89

Internal
Surface
Absorption
Coefficient

mean: 0.37
sd: 0.34
min: 0.08
max: 0.9

Heat Plate Not Exist(323 / 62%)
Exist(201 / 38%) Hole Not Exist(234 / 45%)

Exist(290 / 55%)

LED Not Exist(122 / 23%)
Exist(402 / 77%)

Table 2 Dataset description

In thermal resistance analysis in car lamp design, there
are three types of factors that possibly affect the heat distribu-
tion. The factors consist of experiment specification(Spec),
bulb characteristics(Bulb), and lamp design factors(Lamp)
as illustrated in Table 2

Firstly, the experiment specification is the test condi-
tion required by client that includes ambient temperature
and heat deflection temperature (HDT). Those factors spec-
ify the experimental condition that the actual lamp products
are to pass. Variables illustrate the experimental environ-
ment setting and the function, as well as the heat deflec-
tion temperature (HDT) of the lamp. “Ambient temp hsg”
and “ambient temp lens” denote the ambient temperature
surrounding the housing frame and lens of the lamp. The
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“Function” variable represents the lamp’s functions that can
be used in different driving situation including “stop”, “turn
signal”, and “tail”. “HDT” implies the temperature limit that
lamp material can endure, in other words, the heat deflection
temperature.

As the second type of factors are related to the lamp
bulbs. They are fundamental characteristics of the bulb
within a lamp. This includes bulb center position (in 𝑥,
𝑦, and 𝑧 coordinate), wattage, bulb type (single or double),
bulb lighting conditions (continuous or non-continuous), and
on/off interval.

Variable Description

𝑋 data point position in 𝑥-coordinate

𝑌 data point position in 𝑦-coordinate

𝑍 data point position in 𝑧-coordinate

Temperature

(Celsius degree)

Temperature derived from CFD Analysis

mean: 86.274

sd: 37.04

max: 359.854

min: 4.407

Table 3 Coordinate Dataset description

The wattage variable is crucial as it determines the
brightness of the lamp as well as amount of heat gener-
ated from the bulb. The bulb center position is typically the
hottest point in the lamp where heat is transferred throughout
the lamp.

Lastly, there are lamp design factors. The variable
“item” implies the components of the lamp including hous-
ing, reflector, inner lens, outer lens, and heat plate. “Heat
plate” is a binary variable indicating the presence of a heat
plate, which functions to dissipate the generated heat. Vari-
ables “Hole” and “LED” indicate the presence of a heat
release hole or LED module. The designer may add a heat-
release hole and a heat plate to reduce the excessive heat.
The “Raw material color” variable is the color of the mate-
rial for the lamp item which determines its absorption coeffi-
cient meaning how much the item surface absolves the heat.
The “Surface Absorption Coefficient” variable, categorized
as the Interior/Exterior Surface Absorption Coefficient, is
the absorption coefficient of the surface.

With CFD-based analysis, temperature of lamp items
are estimated at every 3 mm interval. Those estimated
temperatures are collected as training dataset described in
Table 3. This temperature-coordinate dataset contains CFD-
analyzed temperatures “temp c” and their corresponding 𝑥,𝑦,
and 𝑧 coordinates. The coordinate dataset is combined with
the dataset of lamp design specification in Table 2. For
double lamp configuration, two different bulbs generate si-
multaneously light and heat in the lamp. As illustrated in
Figure 1, variables related to the two different bulbs are put
together and joined with the temperature-coordinate dataset.

Furthermore, we have extracted additional variables to

Fig. 1 Data Transformation for Double Lamp Configura-
tion

improve the prediction model. We have calculated the Eu-
clidean distance between the coordinate and the bulb cen-
ter position, which can significantly affect the heat transfer.
Equation 1 calculates the Euclidean distance from bulb cen-
ter position to each data points where 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 represent 𝑥, 𝑦,
and 𝑧 coordinates of each data point and 𝑥𝑐, 𝑦𝑐, 𝑧𝑐 are the co-
ordinates of the bulb center position. 𝑥, 𝑦, and 𝑧 coordinate
distances are also introduced to include directional effect of
heat transfer as calculated in Equation 2 where 𝑑𝑥

𝑖
, 𝑑

𝑦

𝑖
, 𝑑𝑧

𝑖
are

distance in each coordinate.

d𝑖 =
√︃
(𝑥𝑖 − 𝑥𝑐)2 + (𝑦𝑖 − 𝑦𝑐)2 + (𝑧𝑖 − 𝑧𝑐)2 (1)

𝑑𝑥𝑖 = 𝑥𝑖 − 𝑥𝑐
𝑑
𝑦

𝑖
= 𝑦𝑖 − 𝑦𝑐

𝑑𝑧
𝑖
= 𝑧𝑖 − 𝑧𝑐

(2)

The volume of lamp design is also an important factor
in determining heat distribution. However, it is too costly
to compute the exact volume of the irregular shape of lamp
design. We simplified the volume approximation by calcu-
lating it as the product of the𝑥, 𝑦, and 𝑧 coordinate ranges for
the lamp design, as shown in Equation 3.

Approx. Volume = (max(𝑥𝑖) − min(𝑥𝑖))×
(max(𝑦𝑖) − min(𝑦𝑖)) × (max(𝑧𝑖) − min(𝑧𝑖))

(3)

3.2 Temperature Prediction Model

3.2.1 CV-based Stacking Ensemble

For accurate estimation of heat distribution, we have em-
ployed Cross-Validation (CV) based stacking ensemble al-
gorithm [25]. The algorithm represents an enhanced version
of the conventional stacking ensemble method, specifically
designed to address the overfitting problem often encoun-
tered with the traditional approach. The conventional stack-
ing ensemble method utilizes the complete prediction values
for modeling, which can be prone to overfitting, especially
with complex or high-dimensional datasets. To tackle the
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Fig. 2 CV-based Stacking Ensemble Overview

problem, the CV-based stacking ensemble algorithm was
suggested. This method begins by dividing the training data
into 𝑘-folds, where 𝑘 represents the number of car cases
in this particular context. Each fold alternates in serving
as a validation set, while the remaining folds comprise the
training set. Contrary to the traditional method, this cyclic
process enables predictions to be made across the entire
training dataset via the CV method, generating Meta Train
Data. This approach mitigates overfitting and improves the
overall performance of the stacking ensemble method.

Figure 2 illustrates the process of the CV based stacking
ensemble algorithm. It shows how the training set is seg-
mented into distinct training and validation folds. Upon this
division, multiple models, denoted as 𝐶1, 𝐶2, ..., 𝐶𝑛 where
𝑛 stands for the number of models, are trained on these
folds. Prediction results, 𝑃1, 𝑃2, ..., 𝑃𝑛, are derived from
each model 𝐶𝑖 across all car cases. These prediction results
collectively form the meta train data, which is less prone
to overfitting as compared to the predictions obtained from
the traditional stacking ensemble method. In the subsequent
phase, the test data is fed into the 𝑘 learning models trained
from 𝑘-folded training data, yielding 𝑘-dimensional data. To
align its format with the meta train data, an average is taken
for the 𝑘-dimensional data. This process is repeated for 𝑛
multiple models, resulting in “stacked” meta train data and
meta test data with 𝑚 columns each. If there are 𝑚 models,
the resulting “stacked” meta train data and meta test data will
each incorporate𝑚 columns. In the final stage, the meta train
data is trained to create a meta learner or the final model.

Final predictions are then generated from the meta test data.

3.2.2 Max Temperature Prediction Model

Although the CV-based Stacking Ensemble algorithm pro-
duces accurate estimation of heat distribution on overall
dataset, the training process is still affected by imbalanced
dataset where the data points in the range of the temper-
ature near to or over the limit (HDT) are relatively scarce
than those of lower temperature range. Imbalanced training
dataset leads the model to be more optimized for learning
in the low-temperature range, which may result in less accu-
rate estimation for the part in high-temperature range that is
crucial in heat resistance analysis.

To compensate this limitation, we separately train a
model that makes prediction on the maximum temperature
of each part of lamp design using XGBoost algorithm. We
provide the estimated maximum temperature to the designer
as well as to the CV-based Stacking Ensemble model for the
estimation of the heat distribution as an input variable to im-
prove the prediction accuracy on the high temperature range.
By incorporating the predicted maximum temperature into
the CV-based Stacking Ensemble model, we were able to
generate more accurate and reliable temperature predictions
for thermal resistance analysis.

3.2.3 Downsampling

Fig. 3 Distribution of Lamp Temperature Before and After
Applying Downsampling

We have down-sampled the training dataset to miti-
gate the data imbalance problem where the majority of data
points are concentrated in the low-temperature range, while
high-temperature data is sparse. The training dataset is di-
vided into two partitions based on temperature: the top 5%
representing high-temperature data and the bottom 95% rep-
resenting low-temperature data. Subsequently, we randomly
sampled 5% of data points from the bottom 95% and con-
catenate them with the top 5%, resulting in a downsized
training dataset that is 1/10 the size of the original.
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As depicted in Figure 3, down-sampling process adjusts
the distribution of data points’ temperature range, leading the
CV-based Stacking Ensemble model to be more optimized
for high temperature range. This adaptation makes the model
more suitable for thermal resistance analysis, where it is crit-
ical to identify which parts of the lamp design may exceed the
temperature limit. Furthermore, it significantly reduces the
training time while enhancing the prediction accuracy of the
high-temperature region without compromising the overall
accuracy of heat distribution estimation. In the next section,
we demonstrate that applying down-sampling method effec-
tively improve the performance of heat resistance analysis
while considerably saving the model training time.

3.3 System Architecture

Fig. 4 System Architectures

Figure 4 shows the architecture of the machine
learning-based heat resistant analysis system. It consists
of two main processes: one that trains temperature predic-
tion model and the other one that perform thermal resistance
analysis for lamp design.

To extract the dataset for training the temperature pre-
diction model, we conducted CFD analysis on various real
car lamp designs. Then, we partitioned the dataset into
two: one for training model and the other for validation.
To address data imbalance, down-sampling was applied to
the training dataset. The training dataset was used to learn
the max temperature prediction model and the CV-based
Stacking Ensemble model, which estimate heat distribution.
These models were then validated using the test dataset.

When utilizing the system for thermal resistance anal-
ysis, designers are required to input various design factors,
such as bulb voltage and materials, along with a CATIA 3D
mesh into the system. The system then generates predictions
for the maximum temperature and heat distribution of the
lamp design. These results are presented through an inter-
active 3D visualization created using the R Shiny package,

allowing designers to assess whether their design meets the
thermal resistance requirements. Additionally, the system
provides real-time analysis results, enabling designers to dy-
namically adjust lamp design factors, modify their design,
and evaluate its performance.

4. Experiments

4.1 Experiment Setting

We have trained and verified the prediction model in the
system environment specified in Table 4. We mainly used R
version 4.2.2 with its machine learning libraries.

System Environment
OS Windows 11 Pro 21H2 Version

CPU 12th Gen Intel(R) Core(TM) i9-12900
GPU NVIDIA GeForce RTX 3090 X 2EA
RAM Samsumg 32GB DDR4 25600 X 4EA

R 4.2.2 Version
Packages h2o 3.34.0.7, lightgbm 3.2.1, xgboost 1.4.1, catboost

1.0.0, randomForest 4.7-1.1, glmnet 4.1-8

Table 4 Experiment environment

As an alternative to CFD-based thermal resistance anal-
ysis, the machine learning-based prediction models are de-
veloped to provide accurate estimations of heat distribution.
We conducted a comparison of two stacking ensemble pre-
diction models with five single models: LightGBM, Xg-
boost, Catboost, RandomForest and Least Absolute Shrink-
age and Selection Operator (Lasso) [26]. The aim was to
prove that the CV-based stacking ensemble models outper-
form other algorithms and are well-suited to heat prediction
in car lamp design.

The models under consideration were: (A) another
stacking ensemble model using nine XGB and nine Light-
GBM (LGBM) base models with an ANN as the final model,
(B) a stacking ensemble model using 18 XGBoost (XGB)
base models and an artificial neural network (ANN) as the
final model, (C) a single Catboost model, (D) a single Ran-
domForest model, (E) a single LightGBM model, (F) a single
XGBoost model, and (G) a single Lasso model. The param-
eters of each model were tuned using grid search to optimize
their performance.

For the model evaluation, we have used to the Mean Ab-
solute Percentage Error (MAPE) metric that compares the
differences between CFD-computed temperature and model-
estimated temperature of data points. The formula to calcu-
late MAPE is as follows:

MAPE =
100%
𝑛

𝑛∑︁
𝑖=1

���� 𝐴𝑖 − 𝐹𝑖𝐴𝑖

���� (4)

where 𝐹𝑖 is the model-predicted temperature of the car lamp at data
point 𝑖, 𝐴𝑖 is the CFD-computed temperature of the car lamp at
data point 𝑖, and 𝑛 is the number of data points that consist of lamp
design shape.
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In thermal analysis of car lamp design, it is crucial
to ensure that the high-temperature regions do not exceed
the heat resistance limit of the lamp material. To evaluate
the prediction accuracy in the high-temperature regions, we
measured the prediction errors of the top 5% highest tem-
perature points and calculated the “hMAPE” (high MAPE).
The hMAPE is computed as the Mean Absolute Percentage
Error(MAPE) for the data points corresponding to the top
5% highest temperatures.

𝐾-fold cross-validation was employed to evaluate the
performance of the predictive model, where 𝑘 represents the
number of CFD analysis cases for car lamp design. Each
lamp design’s CFD result was treated as a separate fold, with
one case designated as the test data and the remaining cases as
the training data. This method prevents data leakage and bias
when examining the model’s generalization across various
vehicle models. We used the Mean Absolute Percentage
Error as the performance metric, both for all data points
and specifically for the data points within top 5% of highest
temperature range. The metric explains how closely the
model’s predicted temperatures are aligned with the results
of the CFD analysis.

4.2 Performance Analysis

MAPE hMAPE
S.E.D XGB/LGBM 6.90% 5.40%

S.E.D XGB 7.02% 8.03%
CatBoost 7.30% 8.27%

Randomfoest 8.41% 8.41%
LightGBM 9.34% 8.4%
XGBoost 8.85% 10.15%

Lasso 25.45% 13.65%
Table 5 Performance comparison in single-bulb setting

MAPE hMAPE
S.E.D XGB/LGBM 4.25% 2.51%

S.E.D XGB 4.70% 3.39%
CatBoost 6.31% 4.60%

Randomfoest 5.41% 8.95%
LightGBM 7.7% 4.96%
XGBoost 7.06% 4.65%

Lasso 19.15% 10.99%
Table 6 Performance comparison in double-bulb setting

We trained and validated separate prediction models for
two types of rear lamp designs: single-bulb and double-bulb
configurations. Table 5 and Table 6 present a comparison of
temperature prediction accuracy for different models under
each configuration. These tables show the performance of
all data points in the lamp design and the data points within
the top 5% temperature range. In the tables, the model
abbreviations represent the following:

• S.E.D (XGB/LGBM): CV-based stacking ensemble al-
gorithm using nine XGBoost (XGB) and nine Light-
GBM (LGBM) base models with an ANN as the final
model

• S.E.D (XGB): CV-based stacking ensemble model us-
ing 18 XGBoost (XGB) base models and an artificial
neural network (ANN) as the final model

• CatBoost: CatBoost used as a single prediction model
• RF: RandomForest used as a single prediction model
• LGBM: LightGBM used as a single prediction model
• XGB: XGBoost used as a single prediction model
• LASSO: Lasso used as a single prediction model

For both the single-bulb and double-bulb configura-
tions, the Cross-Validation (CV) based stacking ensemble
models, specifically S.E.D (XGB) and S.E.D (XGB/LGBM),
demonstrate superior performance over the individual pre-
diction models for the entire dataset. Notably, the ensem-
ble model that integrates XGBoost with LightGBM (S.E.D
(XGB/LGBM)) achieves the highest prediction accuracy
within the critical high-temperature range, indicating its ef-
fectiveness and robustness for thermal resistance character-
ization. The prediction accuracy in high temperature range
is more crucial for the lamp designer to evaluate their design
whether it can resist the thermal limit of the material.

Single Lamp Double Lamp
S.E.D (XGB/LGBM) 3.107 sec 1.500 sec

S.E.D (XGB) 3.685 sec 2.082 sec
CatBoost 0.226 sec 0.933 sec

Randomfoest 1.975 sec 2.837 sec
LightGBM 0.009 sec 0.011 sec
XGBoost 0.0845 sec 0.462 sec

Lasso 0.834 sec 1.283 sec

Table 7 Average time spent for estimating heat distribution

In conclusion, the stacking ensemble algorithm using
XGBoost and LightGBM delivers the most accurate estima-
tion of heat distribution, particularly in the high temperature
range. This enables designers to perform robust and reliable
heat resistance analysis. The stacking ensemble models, in-
corporating maximum temperature models and 18 different
types of boosting models, outperform single models, ef-
fectively addressing data imbalance and mitigating the risk
of overfitting, especially in the high-temperature region. As
shown in Table 7, even for complex models such as CV-based
stacking ensemble, the average time spent on estimating heat
distribution is within a few seconds, enabling real-time ther-
mal resistance analysis.

Down-sampling was applied to the training dataset to
emphasize data points in the high temperature range during
model training. The impact of the down-sampling process
is demonstrated in Table 8 and Table 9. Given the imprac-
tical training times without down-sampling, we conducted a
comparison by using a downsized training dataset that was
1/20th the size of the original dataset. The tables compare
the prediction accuracy with MAPE for overall datapoints
and time spent for training models with original and down-
sampled training dataset. They indicate a notable improve-
ment in prediction accuracy as a result of down-sampling,
along with a significant reduction in training time by 4 to
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5 times. It makes our algorithm more scalable without de-
grading overall prediction result which is important as the
volume of training dataset is expected to increase rapidly as
more lamp designs are to be evaluated in the future.

Before
Down-sampling

After
Down-sampling

MAPE S.E.D (XGB) 12.52 % 10.61 %
S.E.D (XGB/LGBM) 12.13 % 10.38 %

Time S.E.D (XGB) 1482.2 sec 367.3 sec
S.E.D (XGB/LGBM) 1379.4 sec 331.8 sec

Table 8 Effect of down-sampling on the single-bulb design

Before
Down-sampling

After
Down-sampling

MAPE S.E.D.XGB 10.73 % 7.25 %
S.E.D (XGB/LGBM) 10.24 % 6.86 %

Time S.E.D (XGB) 5697.7 sec 684.4 sec
S.E.D (XGB/LGBM) 5227.4 sec 648.8 sec

Table 9 Effect of down-sampling on the double-bulb de-
sign

Figure 5 compares the prediction accuracy of single pre-
diction models - artificial neural network (ANN) and Light
Gradient Boosting Machine (LGBM) with CV-based stack-
ing ensemble method on both training and testing datasets.
As we have a limited set of lamp designs to train the model,
it is prudent to select a modeling algorithm which is robust
to the risk of overfitting and, hence, is more generalizable.
The experiments indicate that the ensemble model estimates
the heat distribution on both the training and test datasets
with a lower difference in the error rate (MAPE) compared
to that of single prediction models. In both single-bulb and
double-bulb configurations, the error rate of single predic-
tion models is relatively higher in the test dataset compared
to the error rate on the training dataset. The CV-based
stacking ensemble method effectively mitigates the risk of
overfitting and therefore exhibits the best performance in the
test dataset.

5. Conclusion

As an alternative to the conventional Computational Fluid
Dynamics (CFD) based thermal resistant analysis, we pro-
posed a machine learning-based system for heat-resistant
analysis that accurately estimates the heat distribution of car
lamp designs.

Our system provides real-time predictions of the maxi-
mum temperature and heat distribution of rear lamp designs,
without requiring the assistance from thermofluid mechanics
experts. This enables designers to test various design factors
and significantly reduce development time.

Through comprehensive experiments, we have demon-
strated that our proposed system achieves prediction accu-
racy comparable to CFD-based analysis, with errors within
7% for the single-bulb setting and 5% for the double-bulb
setting. Moreover, our system delivers even more precise

Fig. 5 Effect of Stacking Ensemble Method

results in the high temperature range, which is critical for
thermal resistance analysis. To address data imbalance and
the risk of overfitting, we applied down-sampling techniques
to the temperature prediction models as well as advanced
methods such as CV-based stacking ensemble.

For future work, the system can be extended to support
complex lamp designs with multiple light sources, including
LEDs, beyond the single and double-bulb configurations.
To support such a diverse set of configurations, it would
be necessary to develop a flexible system structure that can
adapt to different design variations and input parameters.
This would enable designers to analyze and evaluate the
thermal resistance of lamps with various lighting setups.
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