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PAPER
Stochastic Dual Coordinate Ascent for Learning Sign Constrained
Linear Predictors

Yuya TAKADA†, Rikuto MOCHIDA†, Miya NAKAJIMA†, Syun-suke KADOYA††, Daisuke SANO†††,
and Tsuyoshi KATO†, Nonmembers

SUMMARY Sign constraints are a handy representation of domain-
specific prior knowledge that can be incorporated to machine learning. This
paper presents new stochastic dual coordinate ascent (SDCA) algorithms
that find the minimizer of the empirical risk under the sign constraints.
Generic surrogate loss functions can be plugged into the proposed algorithm
with the strong convergence guarantee inherited from the vanilla SDCA.
The prediction performance is demonstrated on the classification task for
microbiological water quality analysis.
key words: sign constraints, convex optimization, stochastic dual coor-
dinate ascent, empirical risk minimization, microbiological water quality
analysis.

1. Introduction

Machine learning problems for linear prediction are of-
ten formulated as an empirical risk minimization (ERM)
problem [9]. Let 𝒙1, . . . , 𝒙𝑛 be input vectors in R𝑑 , let
𝜙1, . . . , 𝜙𝑛 : R → R be convex loss functions, and let 𝜆
be a positive regularization constant. The ERM problem
discussed in this paper is described as follows:

min 𝑃(𝒘) wrt 𝒘 ∈ R𝑑 ,

where 𝑃(𝒘) :=
𝜆

2
∥𝒘∥2 +

1
𝑛

𝑛∑
𝑖=1

𝜙𝑖(⟨𝒘, 𝒙𝑖⟩).
(1)

Support vector machines (SVM) are recovered if we set the
loss functions to the hinge loss 𝜙𝑖(𝑠) = max(0, 1−𝑦𝑖𝑠) where
𝑦𝑖 ∈ {±1} are the class labels. Setting the loss functions to
the log loss 𝜙𝑖(𝑠) = log(1 + exp(−𝑦𝑖𝑠)), logistic regression is
obtained. With 𝑦𝑖 continuous labels, setting the square error
loss function 𝜙𝑖(𝑠) = 1

2 (𝑦𝑖 − 𝑠)2 yields the ridge regression.
Recently, Tajima et al. [29] constrained the signs of the

weights 𝒘 to the linear SVM algorithm, and demonstrated
the effectiveness of the sign constraints in the application
to a biological sequence classification. The sign constraints
are given to some of coefficients in the weight vector 𝒘 =
[𝑤1, . . . , 𝑤𝑑]⊤. For some pre-defined subset of indices I≥ ⊆
[𝑛], where [𝑛] := {1, . . . , 𝑛}, the non-negative constraints
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𝑤ℎ ≥ 0 are given for every ℎ ∈ I≥ , and for another pre-
defined subset I≤ ⊆ ([𝑛] \ I≥), the non-positive constraints
𝑤ℎ ≤ 0 are given for every ℎ ∈ I≤ .

The sign constraints explicitly avoid violation of the
prior knowledge for the directions of correlations between
features and class labels. Negative weight coefficients 𝑤ℎ are
undesired if positive correlation between the ℎth features and
the class label is known in advance. Nevertheless, without
the sign constraints, a portion of coefficients 𝑤ℎ can be nega-
tive, which degrades the generalization performance. Simi-
larly, positive weight coefficients are unfavorable if negative
correlation to the class label is known in advance. Posing
the sign constraints prevent the coefficients from falling into
such an unfavorable region.

In this paper, we present new optimization algorithms
for the sign-constrained ERM problems. The proposed algo-
rithms solve a dual problem instead of minimizing the primal
objective directly, which enables us to use a clear termination
criterion which is the difference between the primal objective
and the dual objective values. When the difference between
the primal objective and the dual objective values is below a
threshold, the primal objective gap is ensured to be smaller
than the threshold. Tajima et al. employed the Frank-Wolfe
algorithm [13] for a slightly different problem in which their
algorithm is specialized to the sign-constrained ERM based
on the classical non-smooth hinge loss function. The pro-
posed algorithms are based on the stochastic dual coordinate
ascent (SDCA) framework [27] to solve the sign-constrained
ERM formulated with smooth loss functions, where being
smooth means having a Lipschitz-continuous gradient. An
attractive property of the proposed algorithms is a theoreti-
cal guarantee that ensures the exponential convergence [24]
upper-bounding the number of iterations to attain a suffi-
ciently small sub-optimality.

Besides the aforementioned work reported by Tajima et
al., a large potential of this kind of prior knowledge suitable
to the sign constraints may exist in many applications but may
not have been discovered so far. For example, in the domain
of water engineering, numerous prior studies, excluding [16],
have overlooked this valuable reservoir of knowledge, de-
spite the well-established associations between various water
quality metrics and microbiological concentrations. Micro-
biological water quality datasets often exhibit limited size
due to the considerable expenses associated with data collec-
tion. It has been observed that typical water quality metrics
utilized in previous studies (e.g. [16]) are indeed associated
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with microbiological concentrations in water. Nevertheless,
these associations tend to be weak, which can result in con-
trasting correlations within a small dataset. Kato et al. [16]
reported the effectiveness of incorporating sign constraints
in regression tasks. In this study, our algorithm was applied
to binary classification tasks for microbiological water qual-
ity analysis to demonstrate the power of the sign constraints.

This paper is organized as follows. Related work is dis-
cussed in the next section. In Section 3, the learning problem
with the sign constraints is formulated and its dual problem
is described. After the general SDCA framework is intro-
duced in Section 4, the implementations of SDCA iterations
for the sign constrained learning problem are presented in
Section 5. The experimental results for runtime comparison
and the application to microbiological water quality analy-
sis are reported in Section 6, followed by the last section
concluding this paper.

2. Related work

The sign constraints have been used widely in regression
and classification. Readers familiar with machine learning
may recognize the sign constrained regression as one of the
important components of the non-negative matrix factoriza-
tion [5], [8], [18], [21], [30]. Besides it, the sign constrained
least square estimation is applied to widespread applica-
tions including non-negative image restoration [11], [19],
[28], [31], face representation [10], [14], microbial analy-
sis [3], pathogenic water quality analysis [16], image super-
resolution [6], spectral analysis [33], tomographic imag-
ing [23], and sound source localization [22]. For classi-
fication, Tajima et al. [29] developed the sign-constrained
support vector machines. Fernandes et al. [7] studied other
loss functions in a different formulation, which penalizes
the weights violating prior knowledge instead of posing sign
constraints. For the square error loss function, computa-
tionally stable and fast optimization algorithms are avail-
able [2], [17], [20]. For the hinge loss function, Tajima et
al. developed a Frank-Wolfe optimization algorithm [13].
Meanwhile, without sign constraints, there are many sta-
ble optimization algorithms for generic empirical risk min-
imization [4], [15], [25], [26], [32]. However, to the best of
our knowledge, algorithms for optimizing with generic loss
functions under sign constraints have not been studied well
so far.

3. Primal and dual problems

The goal of this work is to develop an optimization algorithm
for the following constrained ERM problem:

min 𝑃(𝒘) wrt 𝒘 ∈ R𝑑 ,
subject to ∀ℎ ∈ I≥ , 𝑤ℎ ≥ 0,

∀ℎ ∈ I≤ , 𝑤ℎ ≤ 0,
(2)

The index sets I≥ and I≤ are assumed to be designed so that

I≥ ∪ I≤ ⊆ [𝑑] and I≥ ∩ I≤ = ∅. (3)

The remaining index set I0 := [𝑑] \ (I≥ ∪ I≤) may be non-
empty. Typically, the index of the bias term is included in I0.
As previously discussed in Section 1, the sign constraints can
be tailored based on prior knowledge. If we have advance
knowledge that the ℎth feature 𝑥ℎ in the positive class tends
to be larger than in the negative class, we can apply a non-
negative constraint to 𝑤ℎ, and conversely, if the opposite
relationship holds.

Hereinafter, we do not assume any non-positive con-
straints within the algorithmic description, as non-positive
constraints can be effectively converted into non-negative
constraints. This transformation involves negating the fea-
tures 𝑥ℎ,𝑖 for ℎ ∈ I≤ (i.e., 𝑥ℎ,𝑖 ← −𝑥ℎ,𝑖), where 𝑥ℎ,𝑖 repre-
sents the ℎth component in the 𝑖th input vector for training,
denoted as 𝒙𝑖 ∈ R𝑑 . After the learning process, the corre-
sponding weight 𝑤ℎ is negated to reestablish weights that
satisfy 𝑤ℎ ≤ 0.

Denoting the feasible region byS, the constrained prob-
lem in (2) can be rewritten as

min 𝑃(𝒘) wrt 𝒘 ∈ S ⊆ R𝑑 . (4)

To expressS simply, we use 𝝈 ∈ {1, 0}𝑑 where its ℎth entry
is given by 𝜎ℎ = 1 for ℎ ∈ I≥ and 𝜎ℎ = 0 for ℎ ∈ I0. Then,
the primal feasible region can be re-expressed as

S := {𝒘 ∈ R𝑑 | ∀ℎ ∈ [𝑑], 𝜎ℎ𝑤ℎ ≥ 0}. (5)

The optimization algorithm is based on SDCA framework
that maximizes the Fenchel dual of the primal objective
function. The Fenchel dual [1], say 𝐷 : R𝑛 → R̄, where
R̄ := R ∪ {±∞}, is expressed as

𝐷(𝜶) := − 1
2𝜆𝑛2

𝝅
(

𝑛∑
𝑖=1

𝛼𝑖𝒙𝑖

)2

− 1
𝑛

𝑛∑
𝑖=1

𝜙∗𝑖 (−𝛼𝑖), (6)

where 𝜶 := [𝛼1, . . . , 𝛼𝑛]⊤ ∈ R𝑛 is a dual variable vector,
𝜙∗𝑖 : R → R̄ is the convex conjugate of 𝜙𝑖 , and 𝝅(𝒗) :=
𝒗 − max(0,−𝝈 ⊙ 𝒗). Therein, the operator ⊙ represents the
Hadamard product. The vector-valued function 𝝅 : R𝑑 →
R𝑑 is the projection operator onto S. If we denote by 𝜋ℎ(𝒗)
the ℎth entry of 𝝅(𝒗), it holds that 𝜋ℎ(𝒗) = 0 if ℎ ∈ I≥ and
𝑣ℎ ≤ 0; otherwise 𝜋ℎ(𝒗) = 𝑣ℎ. The derivation of the dual
function 𝐷(𝜶) is given in Appendix A.

Once the maximizer of 𝐷(𝜶), denoted by 𝜶★ :=[
𝛼★

1 , . . . , 𝛼
★
𝑛

]⊤, is found, the optimal solution to the primal
problem (4) can be recovered by

𝒘★ =
1
𝜆𝑛

𝝅

[
𝑛∑
𝑖=1

𝛼★
𝑖 𝒙𝑖

]
. (7)

The loss function 𝜙𝑖 is assumed to be 1/𝛾-smooth (i.e.
∇𝜙𝑖 is 1/𝛾-Lipschitz continuous). For example, the log loss
is 0.25-smooth. The quadratic hinge loss defined as

𝜙𝑖(𝑠) :=
1
2

(max{0, 1 − 𝑦𝑖𝑠})2 (8)
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and the smoothed hinge loss defined as

𝜙𝑖(𝑠) :=

{
1−2𝑦𝑖𝑠

2 for 𝑠 < 0,
1
2 (max{0, 1 − 𝑦𝑖𝑠})2 for 𝑠 ≥ 0

(9)

are both 1-smooth. The convex conjugates of (1/𝛾)-smooth
convex functions are a 𝛾-strongly convex function [12]. That
is, ∀𝜂 ∈ [0, 1],

𝜂𝜙∗𝑖 (−𝑢) + (1 − 𝜂)𝜙∗𝑖 (−𝛼)

≥ 𝜙∗𝑖 (−𝜂𝑢 − (1 − 𝜂)𝛼) +
𝛾

2
(𝑢 − 𝛼)2(1 − 𝜂)𝜂.

(10)

The SDCA framework uses the above inequality rearranged
as

𝜙∗𝑖 (−𝛼) − 𝜙∗𝑖 (−𝛼 − 𝜂(𝑢 − 𝛼))

≥ (𝜙∗𝑖 (−𝛼) − 𝜙∗𝑖 (−𝑢))𝜂 +
𝛾

2
(𝑢 − 𝛼)2(1 − 𝜂)𝜂.

(11)

4. SDCA framework

SDCA updates only one randomly selected entry in the dual
variable vector 𝜶 at every iteration. Let 𝑖 be the index of
the selected entry in 𝜶. Denote by Δ𝛼 the difference of
the randomly selected entry from the previous value: 𝛼(𝑡)

𝑖 :=
𝛼(𝑡−1)
𝑖 +Δ𝛼. For 𝑖′ ∈ [𝑛]\{𝑖}, the values of the dual variables

are unchanged (i.e. 𝛼(𝑡)
𝑖′ := 𝛼(𝑡−1)

𝑖′ ). Let

�̄�(𝑡) :=
1
𝜆𝑛

𝑛∑
𝑖′=1

𝛼(𝑡)
𝑖′ 𝒙𝑖′ . and

𝒘(𝑡) := 𝝅
[
�̄�(𝑡)] . (12)

Once Δ𝛼 is determined in each iteration, this vector �̄�(𝑡) can
be updated with 𝑂(𝑑) costs, which can be seen by

�̄�(𝑡) =
𝛼(𝑡−1)
𝑖 + Δ𝛼

𝜆𝑛
𝒙𝑖 +

1
𝜆𝑛

𝑛∑
𝑖′∈[𝑛]\{𝑖}

𝛼(𝑡−1)
𝑖′ 𝒙𝑖′

= �̄�(𝑡−1) +
Δ𝛼
𝜆𝑛

𝒙𝑖 .

(13)

For the simplicity of notation, we here shall drop the super-
script (𝑡 − 1), to denote

𝒘 := 𝒘(𝑡−1), 𝒗0 := �̄�(𝑡−1), and 𝜶 := 𝜶(𝑡−1). (14)

It is ideal to choose the maximizer of the function:

𝐽0
𝑡 (Δ𝛼) := 𝐷(𝜶 + Δ𝛼𝒆𝑖) − 𝐷(𝜶)

=
𝜆

2
∥𝝅 [𝒗0]∥2 −

𝜆

2

𝝅 [
𝒗0 +

Δ𝛼
𝜆𝑛

𝒙𝑖

]2

+
1
𝑛

(
𝜙∗𝑖 (−𝛼) − 𝜙∗𝑖 (−𝛼 − Δ𝛼)

) (15)

where 𝒆𝑖 is the unit vector with 𝑖th entry one. Since
Δ𝛼 is still in the argument of 𝜙∗𝑖 , finding the optimal Δ𝛼 is
complicated in general. To obtain a closed-form update rule,
the range of Δ𝛼 is restricted such that

Algorithm 1: SDCA algorithm for maximizing
𝐷(𝜶).
1 begin
2 Choose 𝜶(0) s.t. 𝜶(0) ∈ dom(−𝐷);
3 for 𝑡 := 1 to 𝑇 do
4 Pick 𝑖 randomly from {1, . . . , 𝑛};
5 𝜂𝑡 ∈ argmax

𝜂∈[0,1]
𝐽1
𝑡 (𝜂);

6 𝜶(𝑡) := 𝜶(𝑡−1) − (∇𝜙(
〈
𝒘(𝑡−1), 𝒙𝑖

〉
) + 𝛼(𝑡−1)

𝑖 )𝜂𝑡𝒆𝑖 ;
7 Compute �̄�(𝑡) and 𝒘(𝑡);
8 end
9 end

𝜂 := − Δ𝛼
𝛼𝑖 + ∇𝜙(⟨𝒘, 𝒙𝑖⟩)

∈ [0, 1] (16)

if 𝛼𝑖 +∇𝜙(⟨𝒘, 𝒙𝑖⟩) ̸= 0; otherwise Δ𝛼 := 0. Hereinafter, we
discuss only the non-trivial case of 𝑢 := −∇𝜙(⟨𝒘, 𝒙𝑖⟩) ̸= 𝛼𝑖 ,
where 𝛼𝑖 is the 𝑖th entry in 𝜶(𝑡−1). Then, Δ𝛼 = 𝑞𝜂 where
𝑞 := 𝑢 − 𝛼𝑖 . Let

𝒗𝑞 :=
𝑞

𝜆𝑛
𝒙𝑖 . (17)

By applying the inequality (11), 𝐽0
𝑡 (𝑞𝜂) is bounded from

below as

𝐽0
𝑡 (𝑞𝜂) =

𝜆

2
∥𝝅 [𝒗0]∥2 −

𝜆

2
𝝅 [

𝒗0 + 𝜂𝒗𝑞
]2

+
1
𝑛
(𝜙∗(−𝛼𝑖) − 𝜙∗(−𝛼𝑖 − 𝑞𝜂))

≥ 𝜆

2
∥𝝅 [𝒗0]∥2 −

𝜆

2
𝝅 [

𝒗0 + 𝜂𝒗𝑞
]2

+ 𝑎offs𝜂
2 + 𝑏offs𝜂 =: 𝐽1

𝑡 (𝜂)

(18)

where

𝑎offs := −𝑞
2𝛾

2𝑛
, and

𝑏offs :=
𝜙∗(−𝛼) − 𝜙∗(−𝑢) + 0.5𝑞2𝛾

𝑛
.

(19)

The lower bound 𝐽1
𝑡 is more amenable than 𝐽0

𝑡 because no
loss function appears in 𝐽1

𝑡 any more. The SDCA for learning
under sign constraints is summarized in Algorithm 1. The
exponential convergence of SDCA is still guaranteed even if
𝐽1
𝑡 is maximized instead of 𝐽0

𝑡 [27].

Theorem 1: Let 𝑅 := max𝑖∈[𝑛]∥𝒙𝑖 ∥, ℎ(𝑡)
P := 𝑃(𝒘(𝑡))−𝑃(𝒘★)

and ℎ(𝑡)
D := 𝐷(𝜶★) − 𝐷(𝜶(𝑡)). For any 𝜖P > 0, it holds that

E
[
ℎ(𝑡)

P

]
≤ 𝜖P if Algorithm 1 is run for

𝑡 ≥ 𝜆𝑛𝛾 + 𝑅2

𝜆𝛾
log

(
ℎ(0)

D
𝜖P

𝜆𝑛𝛾 + 𝑅2

𝜆𝛾

)
. (20)

The proof of this theorem is given in Appendix B. The
bound of the vanilla SDCA algorithm is essentially same as
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the above bound. In the original bound presented in [27],
ℎ(0)
𝐷 is replaced to 1 by assuming that 𝜶(0) = 0 and 𝜙𝑖(0) ≤ 1.

In [27], an idea for using the hot-starting is discussed. This
idea can also be applied to the proposed algorithm. In this
case, the initial dual variables may be non-zero with high
probability.

In the next section, how to implement Line 5 in Algo-
rithm 1 shall be discussed.

5. Implementations for SDCA iteration

In this section, an algorithm for finding the maximizer of
𝐽1
𝑡 (𝜂) is presented. A key ingredient found in this study is the

fact that 𝐽1
𝑡 is a piecewise concave quadratic function. This

finding enabled us to develop efficient algorithms for the up-
date rule. Below, an explicit form of the piecewise quadratic
function shall be presented (Subsection 5.1), followed by de-
scriptions of two algorithms to find the maximizer of 𝐽1

𝑡 (𝜂)
(Subsections 5.2 and 5.3).

5.1 Piecewise quadratic form

Denote by 𝑣ℎ,0 and 𝑣ℎ,𝑞 the ℎth entries of 𝒗0 and 𝒗𝑞 , re-
spectively. Let I0 := {ℎ ∈ [𝑑] | 𝜎ℎ = 0}. Define 𝜽 :=[
𝜃1, . . . , 𝜃𝑑𝑡 , 𝜃𝑑𝑡+1

]⊤ such that 0 = 𝜃1 < · · · < 𝜃𝑑𝑡+1 = 1
where 𝜃1, . . . , 𝜃𝑑𝑡 , 𝜃𝑑𝑡+1 are the elements of a set Θ ⊂ R
such as Card[Θ] = 𝑑𝑡 + 1 defined as

Θ :={0, 1} ∪ {𝜃 ∈ (0, 1)
| ∃ℎ ∈ I≥ s.t. 𝑣ℎ,0 = −𝜃𝑣ℎ,𝑞 ̸= 0}. (21)

The element 𝜃𝑘 for 𝑘 ∈ {2, . . . , 𝑑𝑡 } is the position at which
for some ℎ ∈ I≥ the affine function 𝜂 ↦→ 𝑣ℎ,0 + 𝜂𝑣ℎ,𝑞 crosses
the horizontal axis. Figure 1 shows a numerical exam-
ple of the affine functions where 𝑑 = 3, I≥ = {1, 2, 3},
𝒗0 = [0.5, 0.75,−0.5]⊤, and 𝒗𝑞 = [0.5,−1, 1]⊤. From
the definition of Θ, we have 𝑑𝑡 = 3, 𝜃1 = 0, 𝜃2 = 0.5,
𝜃3 = 0.75, and 𝜃4 = 1. It is observed that the affine function
𝜂 ↦→ 𝑣3,0 + 𝜂𝑣3,𝑞 crosses the horizontal axis at 𝜂 = 𝜃2, and
the affine function 𝜂 ↦→ 𝑣2,0 + 𝜂𝑣2,𝑞 crosses the horizontal
axis at 𝜂 = 𝜃3.

Let us define index sets, for 𝑘 ∈ [𝑑𝑡 ],

H𝑘 := I0 ∪ {ℎ ∈ I≥ |
2𝑣ℎ,0 + (𝜃𝑘 + 𝜃𝑘+1)𝑣ℎ,𝑞 > 0}. (22)

In the case of the example depicted in Figure 1, the index
sets are H1 = {1, 2}, H2 = {1, 2, 3}, and H3 = {1, 3}, from
the definition (22). For ℎ ∈ H𝑘 ∩ I≥ , the affine functions
𝜂 ↦→ 𝑣ℎ,0 + 𝜂𝑣ℎ,𝑞 are over the horizontal axis. Namely, it
holds that

∀𝜂 ∈ (𝜃𝑘 , 𝜃𝑘+1), ∀ℎ ∈ H𝑘 , 𝑣ℎ,0 + 𝜂𝑣ℎ,𝑞 > 0, (23)

which leads to ∀𝜂 ∈ (𝜃𝑘 , 𝜃𝑘+1),

[𝝅(𝒗0 + 𝜂𝒗𝑞)]ℎ =

{
𝑣ℎ,0 + 𝜂𝑣ℎ,𝑞 for ℎ ∈ H𝑘 ,

0 for ℎ ̸∈ H𝑘
(24)

-0.2 0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

Fig. 1 Example of affine functions 𝜂 ↦→ 𝑣ℎ,0 + 𝜂𝑣ℎ,𝑞 .

where [𝝅(𝒗0 + 𝜂𝒗𝑞)]ℎ is the ℎth entry in the 𝑑-dimenstional
vector 𝝅(𝒗0 +𝜂𝒗𝑞). The vector 𝜽 and the setsH𝑘 for 𝑘 ∈ [𝑑𝑡 ]
result in a piecewise quadratic expression for the function
𝐽1
𝑡 :

∀𝜂 ∈ [𝜃𝑘 , 𝜃𝑘+1], 𝐽1
𝑡 (𝜂) = 𝑎𝑘𝜂

2 + 𝑏𝑘𝜂 (25)

where 𝑎𝑘 and 𝑏𝑘 are given by

𝑎𝑘 = 𝑎offs −
𝜆

2
∑
ℎ∈H𝑘

𝑣2
ℎ,𝑞 , and

𝑏𝑘 = 𝑏offs − 𝜆
∑
ℎ∈H𝑘

𝑣ℎ,𝑞𝑣ℎ,0.
(26)

5.2 𝑂(𝑑2) implementation

Due to the concavity and the differentiability of 𝐽1
𝑡 , one of

the maximizers of 𝐽1
𝑡 (𝜂), denoted by 𝜂★, can be found as

follows.

• If ∇𝐽1
𝑡 (0) = 𝑏1 ≤ 0, then 𝜂★ = 0;

• if ∇𝐽1
𝑡 (1) = 2𝑎𝑑𝑡+1 + 𝑏𝑑𝑡+1 ≥ 0, then 𝜂★ = 1;

• otherwise, there exists 𝑘★ ∈ [𝑑𝑡 ] such that the interval
[𝜃𝑘★ , 𝜃𝑘★+1] contains a maximizer 𝜂★ = −0.5𝑏𝑘★/𝑎𝑘★ .

The interval index 𝑘★ in the third case (i.e. 2𝑎𝑑𝑡+1 + 𝑏𝑑𝑡+1 <
0 < 𝑏1) can be found by checking every interval, because
it holds that ∇𝐽1

𝑡 (𝜃𝑘★) ≥ 0 ≥ ∇𝐽1
𝑡 (𝜃𝑘★+1) due to the dif-

ferentiability of 𝐽1
𝑡 . Combining this discussion and the

aforementioned observations, each iteration of SDCA can
be implemented as follows.

1. Pick 𝑖 ∈ [𝑛] at random; 𝑂(1).
2. Compute 𝒗0 and 𝒗𝑞; 𝑂(𝑑).
3. Determine Θ; 𝑂(𝑑).
4. Sort the elements in Θ; 𝑂(𝑑 log 𝑑).
5. ComputeH𝑘 for 𝑘 ∈ [𝑑𝑡 ]; 𝑂(𝑑2).
6. Compute coefficients (𝑎𝑘 , 𝑏𝑘) for 𝑘 ∈ [𝑑𝑡 ]; 𝑂(𝑑2).
7. Find the maximizer 𝜂★; 𝑂(𝑑).
8. Δ𝛼 = 𝑞𝜂★; 𝑂(1).
9. Compute �̄�(𝑡) by (13); 𝑂(𝑑).

This implementation enables each iteration to run within
𝑂(𝑑2) computational cost. The most heavy steps in this
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implementation are the step computing index sets H𝑘 (i.e.
Step 5) and the step computing coefficients 𝑎𝑘 , 𝑏𝑘 (i.e. Step
6), both of which pays 𝑂(𝑑2) cost. These time complex-
ities are derived as follows. Observe that the number of
pieces of the piecewise quadratic function is bounded as
𝑑𝑡 ≤ Card(I≥) + 2 ≤ 𝑑 + 2 = 𝑂(𝑑). For 𝑘 ∈ [𝑑𝑡 ], each H𝑘

is computed with 𝑂(𝑑) time since H𝑘 ⊆ [𝑑]. Hence, it is
proved that the time complexity of Step 5 is 𝑂(𝑑2). Since
Card(H𝑘) = 𝑂(𝑑), computation of 2𝑑𝑡 (= 𝑂(𝑑)) coefficients,
𝑎1, 𝑏1, . . . , 𝑎𝑑𝑡 , 𝑏𝑑𝑡 , using (26) consumes𝑂(𝑑2) cost in total.

Meanwhile, we found another algorithm that cut down
the time complexity to a linear cost if ignoring the loga-
rithmic term. The linear-time algorithm shall be presented
below.

5.3 𝑂(𝑑 log 𝑑) implementation

Here, another algorithm that exactly maximizes 𝐽1
𝑡 (𝜂) with

respect to 𝜂 ∈ [0, 1] is presented. The theoretical time com-
plexity of the algorithm given in Subsection 5.2 is 𝑂(𝑑2),
whereas the time complexity of the algorithm presented be-
low is reduced to 𝑂(𝑑 log 𝑑). Defining

H𝑘,in := H𝑘 \ H𝑘−1 and H𝑘,out := H𝑘−1 \ H𝑘

(27)

allows us to recursively express the coefficients of the piece-
wise quadratic functions as ∀𝑘 ≥ 2,

𝑎𝑘 := 𝑎𝑘−1 −
𝜆

2
∑

ℎ∈H𝑘,out

𝑣2
ℎ,𝑞 +

𝜆

2
∑

ℎ∈H𝑘,in

𝑣2
ℎ,𝑞 ,

𝑏𝑘 := 𝑏𝑘−1 − 𝜆
∑

ℎ∈H𝑘,out

𝑣ℎ,𝑞𝑣ℎ,0 + 𝜆
∑

ℎ∈H𝑘,in

𝑣ℎ,𝑞𝑣ℎ,0,

(28)

To use (28) to compute 𝑎𝑘 and 𝑏𝑘 , the setsH𝑘,in andH𝑘,out
as well as H1 are required beforehand. The set H1 can
be obtained within 𝑂(𝑑) by checking whether one of the
following three conditions is satisfied:

(i) ℎ ∈ I0; (ii) 𝑣ℎ,0 > 0;
(iii) 𝑣ℎ,0 = 0 and 𝑣ℎ,𝑞 > 0.

(29)

Namely, if ℎ ∈ [𝑑] satisfies one of the three above conditions,
then ℎ ∈ H1; otherwise ℎ ̸∈ H1. We now discuss how to
compute H𝑘,in and H𝑘,out. To this end, we first compute
𝜃◦ℎ := − 𝑣ℎ,0

𝑣ℎ,𝑞
for all ℎ ∈ I≥ . The (𝑑𝑡−1) end points 𝜃2, . . . , 𝜃𝑑𝑡

are then obtained by sorting the values of 𝜃◦ℎ, eliminating
the values outside the open interval (0, 1), and excluding
duplicate values. During the process for computing 𝜽 , the
sets H𝑘,in and H𝑘,out for 𝑘 ∈ {2, . . . , 𝑑𝑡 } can be computed
simultaneously as

H𝑘,in =
{
ℎ ∈ I≥

�� 𝜃𝑘 = 𝜃◦ℎ, 𝑣ℎ,𝑞 > 0
}
, and

H𝑘,out =
{
ℎ ∈ I≥

�� 𝜃𝑘 = 𝜃◦ℎ, 𝑣ℎ,𝑞 < 0
}
.

(30)

From these discussions, the 𝑂(𝑑2) implementation given in

Table 1 Features and sign constraints for four datasets. Check-marked
features are contained in the corresponding dataset. Sign constraints were
given as described in the rightmost column where ‘≥ 0’and ‘≤ 0’means
the non-negative and non-positive constraints, respectively.

Feature Sapporo NY top NY bottom Indian Constraint
WT ✓ ≥ 0
pH ✓ ✓ ✓ ≤ 0
EC ✓ ✓ ✓ ✓
DO ✓ ✓ ✓ ✓ ≤ 0
SS ✓ ≥ 0

BOD ✓ ✓ ✓ ✓
TN ✓ ≥ 0
TP ✓ ≥ 0
FR ✓ ≤ 0
TC ✓ ✓ ✓ ≥ 0

Nitro ✓ ≥ 0

Subsection 5.2 can be modified as follows.

1. Pick 𝑖 ∈ [𝑛] at random; 𝑂(1).
2. Compute 𝒗0 and 𝒗𝑞; 𝑂(𝑑).
3. ComputeH1; 𝑂(𝑑).
4. Compute 𝜃◦ℎ for ℎ ∈ I≥ ; 𝑂(𝑑).
5. Compute (H𝑘,in, H𝑘,in) and 𝜃𝑘 for 𝑘 ∈ [𝑑𝑡 ]; 𝑂(𝑑 log 𝑑).
6. Compute coefficients (𝑎𝑘 , 𝑏𝑘) for 𝑘 ∈ [𝑑𝑡 ]; 𝑂(𝑑).
7. Find the maximizer 𝜂★; 𝑂(𝑑).
8. Δ𝛼 = 𝑞𝜂★; 𝑂(1).
9. Compute �̄�(𝑡) by (13); 𝑂(𝑑).

Step 5 takes 𝑂(𝑑 log 𝑑) cost for sorting 𝜃◦ℎ because the num-
ber of values to be sorted is Card(I≥) = 𝑂(𝑑). The compu-
tational cost for Line 6 is 𝑂(𝑑) since the relationship

𝑑𝑡⋃
𝑘=2
H𝑘,in ⊆ I+ ⊆ [𝑑] and

𝑑𝑡⋃
𝑘=2
H𝑘,out ⊆ I+ ⊆ [𝑑]

(31)

leads to the fact that an upper bound of the number of the
total terms in (28) for all 𝑘 ∈ {2, . . . , 𝑑𝑡 } is 4𝑑. Thus, it can
be shown that each iteration of SDCA can be done within
𝑂(𝑑 log 𝑑) computation.

6. Experiments

6.1 Pattern recognition performance

We conducted experiments to demonstrate the effects of the
sign constraints on the pattern recognition performance. For
a pattern recognition task, we selected the microbiological
water quality analysis. We used four water quality datasets
named Sapporo, NY top, NY bottom, and Indian. The dataset
Sapporo was provided in the supplement of [16], and con-
tained 𝑛tot := 177 examples, each consisting of a target vari-
ate E.coli and nine feature variates WT, pH, EC, DO, SS,
BOD, TN, TP, and FR, where the abbreviations are referred
to [16]. The task was to predict whether E.coli exceeds
500 MPN or not. Then, 88 positive examples and 89 nega-
tive examples were obtained. NY top, NY bottom and Indian
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Fig. 2 Prediction performance on Sapporo dataset. The solid curves
indicate the accuracies of predictors optimized under sign constraints, and
the dashed curves are those the accuracies when sign constraints are not
employed. The markers of the squares, the upward-pointing triangles, and
the downward-pointing triangles represents the smoothed hinge loss, the
quadratic hinge loss, and the log loss, respectively.

Fig. 3 Prediction performance on NY top dataset.

Fig. 4 Prediction performance on NY bottom dataset.

were provided by kaggle.com. The three datasets contain
534, 523, and 896 examples, respectively. Each example has
a target variate FC and five feature variates. The positive
and negative class variates, respectively, were given to FC

Fig. 5 Prediction performance on Indian dataset.

Table 2 Average number of pieces in the piecewise quadratic func-
tion 𝐽1

𝑡 : [0, 1]→ R.

1st 2nd 3rd 4th 5th
𝑑 epoch epoch epoch epoch epoch

1,000 10.21 2.49 1.78 1.69 1.48
3,163 31.88 2.44 1.63 1.08 0
10,000 97.83 1.28 0.2 0 0
31,623 293.44 1 0 0 0
100,000 960.93 1 0 0 0

over and below the median, to pose a binary classification
problem. The sign constraints were imposed as described
in Table 1. Three loss functions, the smoothed hinge loss,
the quadratic hinge loss, and the log loss, were examined.
For each loss function, the conventional learning and the
sign-constrained learning were performed. Then, six linear
predictors were obtained in total. Accuracy (i.e. the sum
of true positives and true negatives over the size of testing
dataset) was used for the performance criterion. The number
of training examples, 𝑛, was varied from 5 to 100. The 𝑛
examples were picked at random from each dataset in a strat-
ified manner. The 𝑛 examples were fed to the six learning
methods to get six predictors. The remaining (𝑛tot − 𝑛) ex-
amples were used for testing. This procedure was repeated
200 times.

The averages of the 200 accuracies obtained for the
four water quality datasets were plotted against the size of
the training dataset, say 𝑛, in Figure 2, Figure 3, Figure 4,
and Figure 5, respectively. For all four datasets and all three
loss functions, the sign constraints improved the prediction
performance. In particular, the improvement was more sig-
nificant when training examples were fewer. Sign constraints
represent a sort of the domain-specific prior knowledge, and
explicitly prevent the learning from violating the prior knowl-
edge. Without sign constraints, when the sample size is
small, the signs of weights in linear predictors may often be
flipped from the true signs of correlations between the fea-
tures and the class label. The improvement of the general-
ization performance must be the effect of the sign constraints
that avoided the inversion of the weight signs.
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Fig. 6 Runtime for one epoch.

6.2 Runtimes of 𝑂(𝑑 log 𝑑) and 𝑂(𝑑2) algorithms

The two algorithms, presented in Subsections 5.2 and 5.3,
were implemented with Cython 3.0.0a11 and run on a Linux
machine equipped with Core i7-12700K and two 16GB
DDR4 SDRAM. Feature vectors were generated with uni-
form distribution 𝑈(−1, 1) and normalized. Binary class
labels were generated at random with equal probabilities.
The size of training examples was fixed to 𝑛 = 500. The
number of features was varied from 𝑑 = 103 to 105.

Figure 6 shows the runtimes consumed in one epoch.
In conflict with the theoretical analysis, the two algo-
rithms seemed to have the same time complexity, and the
𝑂(𝑑2) algorithm always ran faster than the 𝑂(𝑑 log 𝑑) al-
gorithm. To analyze why the inconsistency between the
theory and the actual runtime happened, the numbers of
pieces in the piecewise quadratic functions 𝐽1

𝑡 (𝜂), say 𝑑𝑡 ,
were counted, where we set 𝑑𝑡 = 0 after the convergence
(𝑃(𝒘(𝜶(𝑡)))−𝐷(𝜶(𝑡)) < 10−6). The average numbers within
each epoch were reported in Table 2. It was observed that the
average numbers of pieces were around 1% of the number
of features at the first epoch, and were less than 2.5 after the
first epoch. It suggested that the actual number of pieces
was much smaller than the number of features. Neverthe-
less, in our theoretical analysis, we used 𝑑𝑡 = 𝑂(𝑑) which
is based on a loose bound 𝑑𝑡 ≤ Card(I≥) ≤ 𝑑, resulting
in the theoretical time complexity 𝑂(𝑑2) for the implemen-
tation presented in Subsection 5.2. The difference of the
upper bound from the actual number of pieces yielded the
inconsistency between the theory and the actual runtime.

6.3 Convergence performance

To assess the rapid convergence of the proposed SDCA
algorithm, we conducted convergence analysis on three dis-
tinct datasets: Magic04, Segment, and Waveform. We then
compared the performance of our algorithm with projected
stochastic gradient descent (PSGD), updating the solution
using the equation 𝒘(𝑡+1) := 𝝅(𝒘(𝑡) − 𝜂∇𝑃(𝒘(𝑡))), where 𝜂
represents the step size.

The dataset characteristics are as follows: Magic04
contains 19,024 examples with 10 features, Segment has
2,310 examples with 19 features, and Waveform comprises
5,000 examples with 21 features. We experimented with

various step sizes for PSGD, specifically 𝜂 = 100, 𝜂 = 10−1,
𝜂 = 10−2, and 𝜂 = 10−3. The regularization constant was
set to 𝜆 = 1/𝑛. In our optimization process, we employed
the log-loss function 𝜙𝑖 . We imposed non-negative con-
straints on half of the randomly selected features and non-
positive constraints on the remaining half. Objective er-
rors were monitored at each iteration. It is worth noting
that assessing the true primal objective error 𝑃(𝒘★) is of-
ten impractical due to its unknown nature. To approximate
this error, we executed the proposed algorithm and evalu-
ated the dual objective value at the 1000th iteration, denoted
as 𝑇 ′. While 𝐷(𝜶(𝑇 ′)) may slightly underestimate the true
minimal primal objective value, we considered the quantity
𝑃(𝒘) − 𝐷(𝜶(𝑇 ′)) for assessing the primal objective error. In
all the experiments we report, we consistently observed that
𝑃(𝒘(𝑇 ′)) − 𝐷(𝜶(𝑇 ′)) remained below 10−7 when using the
proposed algorithm, ensuring that the absolute difference
between the true and approximate primal objective errors
was bounded by 10−7.

In Figure 7, we present three panels that illustrate the
evolution of primal objective errors throughout multiple
epochs for the datasets Magic04, Segment, and Waveform.
The proposed algorithm achieved an accuracy of 10−5 after
approximately 1.9, 2.7, and 3.7 epochs for the respective
datasets. In contrast, PSGD did not reach this level of ac-
curacy when using step sizes of 𝜂 = 100 and 𝜂 = 10−3 for
any of the datasets, due to step sizes being excessively large
and small, respectively. With a step size of 𝜂 = 10−2, PSGD
eventually attained the 10−5 accuracy level, but only after a
considerable number of epochs ―– 429, 306, and 536 for
the three datasets, respectively. These numbers of epochs
were over 100 times greater than those needed by the pro-
posed algorithm. Moreover, with a step size of 𝜂 = 10−1,
PSGD reached the 10−5 accuracy level after 79 and 109
epochs for Magic04 and Segment, respectively. However,
for Waveform, PSGD did not achieve this accuracy level even
after more than 103 epochs. These findings strongly support
the conclusion that the proposed algorithm converges to the
optimal solution significantly faster than PSGD.

In our implementation, the average time per epoch for
the proposed algorithm across the three datasets is 0.488,
0.0556, and 0.146 seconds, respectively. In comparison,
PSGD averages 0.141, 0.0231, and 0.0428 seconds per
epoch. While the per-epoch computation time of our al-
gorithm exceeds that of PSGD, it compensates by requiring
significantly fewer epochs to achieve an accurate solution.
This efficiency results in a reduced overall time to reach an
accurate solution compared to PSGD.
7. Conclusions

In this paper, new algorithms for ERM under the sign con-
straints were presented. Tajima et al. developed the Frank-
Wolfe optimization algorithm for learning SVM under sign
constraints. The algorithm developed in this study extends
the class of ERM problems so that an arbitrary smooth and
convex loss function can be employed. The optimization
algorithm is based on the SDCA framework, which inherits
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(a) Magic04 (b) Segment (c) Waveform

Fig. 7 Convergence behaviors on three datasets. Black solid curve: proposed algorithm, dashed
curves: PSGD. Red, blue, green and yellow dash curves are obtained with step sizes 100, 10−1, 10−2,
10−3, respectively.

a favorable property that guarantees the exponential con-
vergence which is superior to the convergence rate of the
Frank-Wolfe algorithm. The effects of the sign constraints
on the pattern recognition were demonstrated with simula-
tion experiments on microbiological water quality analysis
using real-world data. Actual runtimes of the two SDCA
algorithms developed in this study were compared, which
suggested that the simpler 𝑂(𝑑2) algorithm runs fast enough
compared to the 𝑂(𝑑 log 𝑑) algorithm.

We expect that a significant untapped reservoir of pre-
existing knowledge, amenable to sign constraints, holds
promise for numerous applications but remains yet to be
fully explored. Tajima et al. identified a viable application
in the realm of bioinformatics [29], while Kato et al. dis-
covered its utility in the field of water engineering [16]. In
this paper, we revisited the water engineering problem to
exemplify the efficacy of sign constraints. Subsequent re-
search endeavors will involve exploring additional domains
amenable to sign constraints.

Appendix A: Deriving the dual function

Lemma 1: ∀𝒗 := [𝑣1, . . . , 𝑣𝑑]⊤ ∈ R𝑑 ,

inf
𝒘∈S
∥𝒘 − 𝒗∥2 − ∥𝒗∥2 = −∥𝝅(𝒗)∥2. (A· 1)

Proof of Lemma 1: Denote by R≥ the set of non-negative
real numbers. We have

min
𝑤ℎ∈R

(𝑤ℎ − 𝑣ℎ)2 − 𝑣2
ℎ = −𝑣2

ℎ (A· 2)

for ℎ ∈ I0, and

min
𝑤ℎ∈R≥

(𝑤ℎ − 𝑣ℎ)2 − 𝑣2
ℎ = −(𝑣ℎ −max{0,−𝑣ℎ})2

(A· 3)

for ℎ ∈ I≥ . Hence,

LHS of (A· 1) =
∑
ℎ∈I0

min
𝑤ℎ∈R

(𝑤ℎ − 𝑣ℎ)2 − 𝑣2
ℎ

+
∑
ℎ∈I≥

min
𝑤ℎ∈R≥

(𝑤ℎ − 𝑣ℎ)2 − 𝑣2
ℎ

= −
∑
ℎ∈I0

𝑣2
ℎ −

∑
ℎ∈I≥

(𝑣ℎ −max{0,−𝑣ℎ})2

= −∥𝝅(𝒗)∥2 = RHS of (A· 1)
(A· 4)

where LHS and RHS are the abbreviations of left and right
hand sides, respectively.

q.e.d. of Lemma 1

We now derive the dual function in (6). The primal
optimization problem (4) is equivalent to the following con-
strained problem:

min
𝜆

2
∥𝒘∥2 +

1
𝑛

𝑛∑
𝑖=1

𝜙𝑖(𝑧𝑖)

wrt 𝒘 ∈ S, 𝒛 := [𝑧1, . . . , 𝑧𝑛]⊤ ∈ R𝑛

subject to ∀𝑖 ∈ [𝑛], 𝑧𝑖 = ⟨𝒘, 𝒙𝑖⟩ .

(A· 5)

Letting �̄�(𝜶) := (𝜆𝑛)−1 ∑𝑛
𝑖=1 𝒙𝑖𝛼𝑖 , the Lagrangian function

is

𝐿(𝒘, 𝒛,𝜶)

:=
𝜆

2
∥𝒘∥2 +

1
𝑛

𝑛∑
𝑖=1

𝜙𝑖(𝑧𝑖) +
1
𝑛

𝑛∑
𝑖=1

(𝑧𝑖 − ⟨𝒘, 𝒙𝑖⟩)𝛼𝑖

=
𝜆

2
∥𝒘∥2 − 𝜆 ⟨𝒘, �̄�(𝜶)⟩ +

1
𝑛

𝑛∑
𝑖=1
(𝜙𝑖(𝑧𝑖) + 𝛼𝑖𝑧𝑖)

=
𝜆

2

(
∥𝒘 − �̄�(𝜶)∥2 − ∥�̄�(𝜶)∥2

)
+

1
𝑛

𝑛∑
𝑖=1
(𝜙𝑖(𝑧𝑖) + 𝛼𝑖𝑧𝑖) .

(A· 6)

For the convex conjugate of the loss functions 𝜙𝑖 , we have

−𝜙∗𝑖 (−𝛼𝑖) = − sup
𝑧𝑖∈R
(−𝛼𝑖𝑧𝑖 − 𝜙𝑖(𝑧𝑖))

= inf
𝑧𝑖∈R
(𝛼𝑖𝑧𝑖 + 𝜙𝑖(𝑧𝑖)) .

(A· 7)
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The dual function is then obtained as

𝐷(𝜶) = inf
𝒘∈S

inf
𝒛∈R𝑛

𝐿(𝒘, 𝒛,𝜶)

=
𝜆

2
inf
𝒘∈S

(
∥𝒘 − �̄�(𝜶)∥2 − ∥�̄�(𝜶)∥2

)
+

1
𝑛

𝑛∑
𝑖=1

inf
𝑧𝑖∈R
(𝜙𝑖(𝑧𝑖) + 𝛼𝑖𝑧𝑖)

= −𝜆
2
∥𝝅(�̄�(𝜶))∥2 − 1

𝑛

𝑛∑
𝑖=1

𝜙∗𝑖 (−𝛼𝑖)

= − 1
2𝜆𝑛2

𝝅
(

𝑛∑
𝑖=1

𝛼𝑖𝒙𝑖

)2

− 1
𝑛

𝑛∑
𝑖=1

𝜙∗𝑖 (−𝛼𝑖),

(A· 8)

where the third equality follows from Lemma 1 and (A· 7).

Appendix B: Proof of Theorem 1

The proof of Theorem 1 given here mainly follows the
proof technique used for the vanilla SDCA in [27]. The
following lemmas are important ingredients.
Lemma 2: For any 𝒗0, 𝒗𝑞 ∈ R𝑑 and 𝜂 ∈ [0, 1], it holds that

∥𝝅[𝒗0]∥2 − ∥𝝅[𝒗0 + 𝜂𝒗𝑞]∥2

+ 2𝜂
〈
𝝅[𝒗0], 𝒗𝑞

〉
+ 𝜂2∥𝒗𝑞 ∥2 ≥ 0.

(A· 9)

Lemma 3: Let 𝐹(𝑡−1)
𝑖 := 𝜙𝑖(𝑧(𝑡−1)

𝑖 ) + 𝜙∗𝑖 (−𝛼
(𝑡−1)
𝑖 ) +

𝑧(𝑡−1)
𝑖 𝛼(𝑡−1)

𝑖 . It then holds that

ℎ(𝑡−1)
P + ℎ(𝑡−1)

D ≤ 1
𝑛

𝑛∑
𝑗=1

𝐹(𝑡−1)
𝑗 . (A· 10)

Proof of Lemma 2: It suffices to show that ∀ℎ ∈ [𝑛],

𝜋ℎ[𝑣ℎ,0]2 − 𝜋ℎ[𝑣ℎ,0 + 𝜂𝑣ℎ,𝑞]2

+ 2𝜂𝜋[𝑣ℎ,0]𝑣ℎ,𝑞 + 𝜂2𝑣2
ℎ,𝑞 ≥ 0.

(A· 11)

where 𝜋ℎ[𝑣ℎ] := 𝑣ℎ − max{0,−𝜎ℎ𝑣ℎ} for 𝑣ℎ ∈ R, because
the sum of LHS of (A· 11) over ℎ ∈ [𝑛] is equal to LHS of
(A· 9).

For ℎ ∈ I0 and ℎ ∈ I≥ such that 𝑣ℎ,0 + 𝜂𝑣ℎ,𝑞 ≥ 0 and
𝑣ℎ,0 ≥ 0, LHS of (A· 11) can be rearranged as

𝑣2
ℎ,0 − (𝑣ℎ,0 + 𝜂𝑣ℎ,𝑞)2 + 2𝜂𝑣ℎ,0𝑣ℎ,𝑞 + 𝜂2𝑣2

ℎ,𝑞 = 0.
(A· 12)

For ℎ ∈ I≥ such that 𝑣ℎ,0 + 𝜂𝑣ℎ,𝑞 ≤ 0 and 𝑣ℎ,0 ≥ 0, LHS of
(A· 11) can be rearranged as

𝑣2
ℎ,0 − 0 + 2𝜂𝑣ℎ,0𝑣ℎ,𝑞 + 𝜂2𝑣2

ℎ,𝑞 = (𝑣ℎ,0 + 𝜂𝑣ℎ,𝑞)2 ≥ 0.
(A· 13)

For ℎ ∈ I≥ such that 𝑣ℎ,0 + 𝜂𝑣ℎ,𝑞 ≥ 0 and 𝑣ℎ,0 ≤ 0, LHS of
(A· 11) can be rearranged as

0 − (𝑣ℎ,0 + 𝜂𝑣ℎ,𝑞)2 + 0 + 𝜂2𝑣2
ℎ,𝑞 ≥ 0. (A· 14)

since 0 ≤ 𝑣ℎ,0 + 𝜂𝑣ℎ,𝑞 ≤ 𝜂𝑣ℎ,𝑞 .

q.e.d. of Lemma 2

Proof of Lemma 3: Observe that ∀𝒗 :=
[𝑣1, . . . , 𝑣𝑑]⊤ ∈ R𝑑 ,

∥𝝅[𝒗]∥2 =
∑
ℎ∈I0

𝑣2
ℎ +

∑
ℎ∈I≥

𝜋ℎ[𝑣ℎ]2

≤
∑
ℎ∈I0

𝑣2
ℎ +

∑
ℎ∈I≥

𝑣2
ℎ = ∥𝒗∥2

(A· 15)

and

∥�̄�(𝑡−1)∥2 =

〈
�̄�(𝑡−1),

1
𝜆𝑛

𝑛∑
𝑗=1

𝒙 𝑗𝛼
(𝑡−1)
𝑗

〉
=

1
𝜆𝑛

𝑛∑
𝑗=1

𝑧(𝑡−1)
𝑗 𝛼(𝑡−1)

𝑗 .

(A· 16)

Then, these inequalities lead to

ℎ(𝑡−1)
P + ℎ(𝑡−1)

D = 𝑃(𝝅[𝜶(𝑡−1)]) − 𝐷(𝜶(𝑡−1))

= 𝜆∥𝝅[�̄�(𝑡−1)]∥2 +
1
𝑛

𝑛∑
𝑗=1

𝜙 𝑗 (𝑧(𝑡−1)
𝑗 ) + 𝜙∗𝑗 (−𝛼

(𝑡−1)
𝑗 )

≤ 𝜆∥�̄�(𝑡−1)∥2 +
1
𝑛

𝑛∑
𝑗=1

𝜙 𝑗 (𝑧(𝑡−1)
𝑗 ) + 𝜙∗𝑗 (−𝛼

(𝑡−1)
𝑗 )

=
1
𝑛

𝑛∑
𝑗=1

𝐹(𝑡−1)
𝑗 .

(A· 17)

q.e.d. of Lemma 3

We are now ready to prove Theorem 1. Let 𝑧(𝑡−1)
𝑖 :=〈

𝒘(𝑡−1), 𝒙𝑖
〉
, 𝑢(𝑡−1)

𝑖 := −∇𝜙𝑖(𝑧(𝑡−1)
𝑖 ), 𝑞(𝑡−1)

𝑖 := 𝑢(𝑡−1)
𝑖 − 𝛼(𝑡−1)

𝑖 ,
and 𝛽 := 𝜆𝛾/(𝜆𝑛𝛾 + 𝑅2). Then,

ℎ(𝑡−1)
D − ℎ(𝑡)

D ≥ 𝐽1
𝑡 (𝜂𝑡 ) ≥ 𝐽1

𝑡 (𝑛𝛽)

≥ −2𝜆𝑛𝛽

〈
𝒘(𝑡−1),

𝒙𝑖𝑞
(𝑡−1)
𝑖

𝜆𝑛

〉
− 𝜆𝑛2𝛽2

𝒙𝑖𝑞(𝑡−1)
𝑖

𝜆𝑛

2

+ 𝑎offs𝑛
2𝛽2 + 𝑏offs𝑛𝛽

= 𝛽𝐹(𝑡−1)
𝑖 +

𝛾𝛽(𝑞(𝑡−1)
𝑖 )2

2

(
1 − (𝜆𝑛𝛾 + ∥𝒙𝑖 ∥2)𝛽

𝜆𝛾

)
≥ 𝛽𝐹(𝑡−1)

𝑖 +
𝛾𝛽(𝑞(𝑡−1)

𝑖 )2

2

(
1 − (𝜆𝑛𝛾 + 𝑅2)𝛽

𝜆𝛾

)
= 𝛽𝐹(𝑡−1)

𝑖

(A· 18)

where we have used Lemma 2 to get the third inequality.
Taking the expectation with respect to the randomness for
selection of 𝑖 ∈ [𝑛] at 𝑡th iteration, we obtain

ℎ(𝑡−1)
D − E

[
ℎ(𝑡)

D

]
≥ 𝛽

𝑛

𝑛∑
𝑖=1

𝐹(𝑡−1)
𝑖

≥ 𝛽 ·
(
ℎ(𝑡−1)

P + ℎ(𝑡−1)
D

)
≥ 𝛽 ·max

{
ℎ(𝑡−1)

P , ℎ(𝑡−1)
D

}
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(A· 19)

where the second inequality follows from Lemma 3. This
leads to the bound of the expected primal objective error
with respect to randomness at previous iterations:

E[ℎ(𝑡)
P ] ≤ 𝛽−1E

[
ℎ(𝑡)

D − ℎ(𝑡+1)
D

]
≤ 𝛽−1E

[
ℎ(𝑡)

D

]
≤ 𝛽−1E

[
ℎ(𝑡−1)

D

]
(1 − 𝛽)

≤ 𝛽−1ℎ(0)
D · (1 − 𝛽)𝑡 ≤ 𝛽−1ℎ(0)

D exp
(
−𝛽𝑡

)
.

(A· 20)

Hence, it holds that E[ℎ(𝑡)
P ] ≤ 𝜖P conditioned on

𝛽−1ℎ(0)
D exp

(
−𝛽𝑡

)
≤ 𝜖P. This condition can be rearranged as

𝑡 ≥ 1
𝛽

log

(
ℎ(0)

D

𝜖P𝛽

)
. (A· 21)

q.e.d. of Theorem 1
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