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PAPER
Chinese Spelling Correction Based on Knowledge Enhancement
and Contrastive Learning

Hao WANG† ,††a), Yao MA† ,††b), Nonmembers, Jianyong DUAN† ,††c), Member, Li HE† ,††,
and Xin LI† ,††, Nonmembers

SUMMARY Chinese Spelling Correction (CSC) is an important natural
language processing task. Existing methods for CSC mostly utilize BERT
models, which select a character from a candidate list to correct errors in
the sentence. World knowledge refers to structured information and rela-
tionships spanning a wide range of domains and subjects, while definition
knowledge pertains to textual explanations or descriptions of specific words
or concepts. Both forms of knowledge have the potential to enhance a
model’s ability to comprehend contextual nuances. As BERT lacks suf-
ficient guidance from world knowledge for error correction and existing
models overlook the rich definition knowledge in Chinese dictionaries, the
performance of spelling correction models is somewhat compromised. To
address these issues, within the world knowledge network, this study injects
world knowledge from knowledge graphs into the model to assist in correct-
ing spelling errors caused by a lack of world knowledge. Additionally, the
definition knowledge network in this model improves the error correction
capability by utilizing the definitions from the Chinese dictionary through
a comparative learning approach. Experimental results on the SIGHAN
benchmark dataset validate the effectiveness of our approach.
key words: Chinese spelling correction, contrastive learning, knowledge
graph, world knowledge, definition knowledge

1. Introduction

Chinese spelling correction (CSC) aims to detect and correct
spelling errors in texts [1]. CSC has many practical applica-
tions in daily life, such as in online searches, where search
engines automatically correct input text errors, and when
users receive error suggestions while using Chinese input
methods.

Many existing research works have employed BERT [2]
to tackle the task of CSC, yielding significant achievements.
World knowledge encompasses structured information and
relationships across various fields and subjects. According
to the research conducted by Zhang et al. [11] and our obser-
vations, it has been found that in Chinese spelling correction
methods based on BERT, approximately 39% of uncorrected
results are attributed to a lack of world knowledge. De-
spite BERT’s ability to learn some common sense and back-
ground knowledge through statistical patterns, the absence of
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Table 1 Examples of Chinese spelling errors. The words in red are
incorrect, and the words in blue are correct.

world knowledge can hinder its effectiveness in correcting er-
rors that require reasoning and comprehension abilities. As
shown in Table 1, in the sentence “ ”
(The famous landmark of Egypt is the golden tower.), lacking
guidance from world knowledge, the model might not correct
“ ” (the golden tower) to “ ” (the Pyramids).

Many researchers have recognized that Chinese pronun-
ciation and character forms contain abundant knowledge that
can guide spelling correction models. These efforts intro-
duce multimodal information into the task of CSC, address-
ing errors arising from similar pronunciation and character
forms. However, these approaches overlook the significance
of definition knowledge within Chinese dictionaries. As a
result, they may fail to correct errors that necessitate a deeper
understanding of the context for accurate correction. Defi-
nition knowledge refers to the explanatory statements about
words or characters found in dictionaries. These explana-
tory statements provide descriptions of a word’s meaning,
usage, category, and attributes. Introducing the definition
knowledge from dictionaries can assist models in better un-
derstanding the meanings of words and characters. For in-
stance, in the sentences “ ” (He is the owner
of the office) and “ ” (He is the office direc-
tor), the characters “ (owner)” and “ (director)”
have similar pronunciations, and both “ ” and “ ” can
be associated with “ ” A pre-trained language model might
struggle to determine the correct correction due to these sim-
ilarities. However, based on the definitions in the dictionary,
“ (owner)” is defined as “the person who receives guests
(in contrast to ‘guest’),” while “ (director)” is defined as
“a job title, the principal person in charge of a department or
organization.” Guided by definition knowledge, the model
is more likely to associate “ (director)” with “
(office)” in this context.

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers
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In response to the above question, we have developed
a CSC method based on knowledge graphs and contrastive
learning. In essence, to enable the model to acquire world
knowledge, we have designed a world knowledge network
that incorporates world knowledge from the knowledge graph
into sentences through the construction of a knowledge tree.
To prevent injecting excessive knowledge that could intro-
duce knowledge noise and lead to a shift in the original sen-
tence’s meaning, we introduce relative positioning and visi-
ble matrices to constrain the influence of external knowledge.
Next, we have devised a correction network that integrates in-
formation from Chinese characters, glyph, and pinyin using
various embedding and masking strategies. Furthermore, to
better utilize the definitions from the Chinese dictionary, we
have designed a definition knowledge network. This network
employs a comparative learning approach to create positive
and negative example pairs that include the definition knowl-
edge. By training the model on these example pairs, we
enable it to address errors that are difficult to correct solely
based on phonetic and morphological information.

2. Related Work

2.1 Chinese Spelling Correction

Early research methods for CSC often followed a process of
error detection, candidate generation, and candidate selec-
tion [3]. These methods primarily employed unsupervised
language models and rule-based approaches for error detec-
tion and correction [4]. Some approaches treated Chinese
text correction as a text labeling problem and incorporated
Conditional Random Fields (CRF) and Hidden Markov Mod-
els (HMM) into the correction models [5]. Certain methods
utilized n-gram statistical language models [6], [7], where
a character was considered a spelling error if its probabil-
ity of appearing in an n-gram language model was below a
predefined threshold.

Recently, deep learning has been applied to CSC tasks.
Wang et al. [8] utilized a bidirectional Long Short-Term
Memory (LSTM) as the framework for their correction
model. Hong et al. [9] introduced FASpell, which employs a
Seq2Seq model with BERT as the encoder. In this approach,
the language model is used as a candidate word generator, and
a confidence-similarity curve is used to select the best candi-
date words. Guo et al. [10] proposed GAD, which involves a
global attention decoder method and a confusion set-guided
replacement strategy for pretraining BERT. Zhang et al. [11]
introduced Soft-Masked-Bert, which uses a GRU-based er-
ror detection network to calculate spelling error probabili-
ties. Based on these error probabilities, BERT is used to
correct errors. However, pre-trained language models like
BERT only consider the semantic features of characters, ig-
noring their visual and phonetic features. Cheng et al. [12]
introduced the SpellGCN model using Graph Convolutional
Networks (GCN) [13]. This model combines embeddings of
characters with similar pronunciation and shape and lever-
ages BERT to model dependencies between characters. Liu

et al. [14] proposed PLOME, which incorporates a confu-
sion set-based masking strategy and introduces phonetic and
stroke information. MDCSpell [24] is a multi-task detector-
corrector framework that employs BERT to capture the vi-
sual and phonetic features of each character in the original
sentence. These works acknowledge the guiding role of
phonetic and visual information for CSC models, but they
overlook the instructive role of world knowledge in spelling
correction. Additionally, they do not take into account the
potential utilization of rich definition knowledge from the
Chinese dictionary for the correction task.

2.2 Contrastive Learning

Contrastive learning is an unsupervised learning method
whose objective is to establish a representation learning
model by capturing the similarities and differences between
samples. This is achieved by pulling semantically similar
samples closer together in the embedding space, while push-
ing semantically dissimilar samples farther apart, thereby
acquiring meaningful representations. Contrastive Learning
has found wide applications in the field of computer vision,
and in recent years, it has gradually garnered substantial at-
tention in the domain of natural language processing. For
instance, prior research in natural language processing has
employed contrastive learning to generate improved word
embeddings [15] and sentence embeddings [16]. Recently,
with the dominance of Transformer-based models in natu-
ral language processing tasks, contrastive learning has also
been utilized to train Transformer models [17]. This pa-
per adopts the principles of contrastive learning to enable
the CSC model to better absorb definition knowledge from
dictionaries.

3. Methodology

3.1 Problem Formulation

The CSC task can be formally represented as follows: Given
a text sequence X = {x1, x2, . . . , xn}, which may potentially
contain spelling errors, where n represents the total number
of characters in the input text, the model aims to replace
incorrect words or characters within the sequence X with
their correct counterparts. The resulting output is a corrected
text sequence Y = {y1, y2, . . . , yn}.

3.2 Model

As illustrated in Fig. 1, the model primarily consists of three
components. The dashed box depicted in the lower left cor-
ner represents the world knowledge network, the dashed box
in the upper left corner outlines the correction network, and
the dashed box in the upper right corner represents the defini-
tion knowledge network. The input sequence at the bottom is
passed through the world knowledge network, incorporating
knowledge from the knowledge graph. The resulting tensor
from the correction network is then fed into the definition
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Fig. 1 Overview of our model.

knowledge network. The green circles denote positive ex-
amples, while the red circles represent negative examples.
Using the contrastive learning approach, the loss Ldk is prop-
agated back to the correction network, ultimately yielding the
output sequence at the top. ⊕ stands for vector addition.

3.2.1 World Knowledge Network

World knowledge involves various facts, relationships, con-
cepts, and rules, which can provide the model with a richer
understanding of semantics and background information.
In this module, we concatenate entity-relation triples from
the knowledge graph with entities in the input sentence
to construct a knowledge tree that contains the input se-
quence and relationship triples. This enables the model to
learn world knowledge and enhance its ability to correct er-
rors. To elaborate, given a sentence S = {w1, w2, . . . , wn}
and a knowledge graph KG, where each token in sentence
S is from the vocabulary set V (i.e., wi ∈ V), KG in-
cludes numerous relation triples R = (wi,rj, wk), with rj
representing the relation in the triple. Through knowl-
edge injection, the sentence tree T is derived as follows:
T = {w1, . . . , wi{(ri1, wi1), . . . , (ri j, wi j)}, . . . , wn}.

Traditional BERT models can only handle sequential
sentence inputs and cannot directly process sentence trees.
Converting a sentence tree directly into a sequence would
result in the loss of structural information inherent in the sen-
tence tree. We ingeniously retain the structural information
of the sentence tree during the conversion process using two
different forms of position indices. As illustrated in Fig. 2,
circles represent nodes in the sentence tree, with entities
inside. The black numbering represents absolute position
indices, assigned to nodes in the sentence tree following a
preorder traversal. These absolute position indices guide the

Fig. 2 Illustration of sentence tree structure.

generation of the visible matrix. The red numbering corre-
sponds to relative position indices, where different branches
of the same node in the sentence tree share the same index.
This approach helps recover the structural information lost
in the absolute position indices.

Due to the potential risk of altering the original sen-
tence’s meaning through excessive knowledge injection, we
have constrained the depth of the knowledge tree to 1. This
is mainly because when the depth of the sentence tree is not
restricted to 1, entities in the sentence tree are likely to itera-
tively derive branches based on the triplets in the knowledge
graph. As a result, the sentence tree becomes exception-
ally complex, and redundant knowledge may even alter the
original meaning of the sentence, leading to a decrease in
the correction performance. Simultaneously, we employ a
visible matrix to control the visibility between main tokens
and branch tokens, effectively mitigating the issues caused
by knowledge noise. The visible matrix is defined as follows:

Mi j =

{
0, wi ⇔ wj

−∞, wi ⇎ wj
(1)

Where wi ⇔ wj indicates that tokens wi and wj are
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Fig. 3 Illustration of fusion layer. ⊗ denotes vector concatenation, ×
stands for vector matrix multiplication, Wf denotes the learnable matrix.

in the same branch, and wi ⇎ wj indicates that wi and
wj are not in the same branch. Here, i and j represent
absolute position indices. Specifically, tokens on the main
trunk of the sentence tree are mutually visible only with
other tokens on the main trunk. Tokens at cross-nodes are
visible to both the main trunk and branches, while tokens on
branches are visible only to tokens at cross-nodes and other
tokens on the same branch. This approach prevents tokens on
different branches from accessing each other’s information,
thus preserving the original sentence’s semantics.

3.2.2 Correction Network

This paper employs a pre-trained Mask-Transformer Encoder
as the backbone of the correction network. To enable the
pre-trained model to learn the similarities between Chinese
characters, pinyin (pronunciation), and glyph (visual shape),
we fuse the char embeddings, glyph embeddings, and pinyin
embeddings of the input text.

Specifically, the execution of char embedding is similar
to token embedding used in BERT but operates at the char-
acter granularity. We utilize three types of Chinese fonts:
XingKai, FangSong, and LiShu. Each font is instantiated as
a 24× 24 image with floating-point pixels ranging from 0 to
255. The resulting 24×24×3 vector is flattened and fed into
an FC layer to obtain the output glyph embedding. To obtain
the pinyin sequence, we utilize an open-source phonetics
package. Tonal symbols representing the character’s tone
are added to the end of each character’s pinyin sequence.
The pinyin sequence is then processed using a CNN model
with a width of 2, followed by max-pooling, to derive the
final pinyin embedding.

As illustrated in Fig. 3, we concatenate the char em-
bedding, glyph embedding, and pinyin embedding to form a
three-dimensional vector. The fusion layer maps this vector
to a one-dimensional representation using a FC layer. The
resulting fusion embedding is then added to the relative-
position embedding mentioned in the previous section and
input into the Encoder.

We utilize a masking method different from that of
BERT. Specifically, BERT uses the [MASK] token for ran-
dom masking, wherein approximately 15% of the tokens
are replaced with the special [MASK] token. During pre-
training, the model endeavors to predict these masked to-
kens, aiming to learn contextual information and relation-
ships among vocabulary items. According to the research

by Liu et al. [22], approximately 83% of Chinese spelling
errors are caused by the misuse of phonetically similar char-
acters, while 48% are due to the misuse of visually similar
characters. Therefore, in most cases, we mask characters
that are phonetically similar based on their findings. We
mask a total of 15% of tokens in the corpus. Among these,
60% are masked using characters from the confusion set that
are phonetically similar. This trains the model to predict
the original character based on the pinyin of easily confused
Chinese characters. Another 15% are masked using visu-
ally similar characters from the confusion set, allowing the
model to recover the original character based on visually
similar glyphs. An additional 15% are masked using the
[MASK] token, training the model to restore the masked
character based on contextual information. Finally, 10% of
characters are randomly selected and masked, training the
model to correct characters from randomly occurring errors.

In order to incorporate the structured information of the
sentence tree into BERT while preventing alterations in the
original semantic meaning, we employ a mask-self-attention
mechanism combined with a visible matrix to restrict the
self-attention region. The mask-self-attention can be for-
mally described as follows:

Qt,K t,V t = ht−1Wq, ht−1Wk, ht−1Wv (2)

St = so f tmax

(
Qt K tT

+ M
√

dk

)
(3)

ht = StV t (4)

Where Wq,Wk,Wv are trainable model parameters.
ht represents the hidden state of the t-th mask-self-attention.
M is the visible matrix. dk is a scaling factor. In summary,
if wj and wk are not in the same branch of the sentence tree,
they are considered invisible to each other. The value at the
corresponding position in the visible matrix becomes nega-
tive infinity, causing Mjk to set the attention score St

jk
to 0.

This implies that the hidden state of wj does not contribute
to wk .

Ultimately, after passing through the correction net-
work, the probability of the i-th token predicting a character
in the given sentence X is defined as:

Pc (yi = j |X) = So f tmax (Whi + b) [ j] (5)

Where Pc(yi = j |X) represents the conditional prob-
ability that the i-th character xi in the input sentence X is
predicted as the j-th character in the vocabulary V . hi sig-
nifies the output tensor of the last hidden layer of xi after
passing through the correction network. W ∈ Rn×768 and
b ∈ Rn are the parameters trained by the model, where n is
the size of the vocabulary.

3.2.3 Definition Knowledge Network

Definition knowledge provides relevant information about
word meanings, usages, and more, enabling the model to
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better infer within the context. Previous research has pre-
dominantly focused on enhancing CSC by utilizing phonetic
and visual characteristics. However, the rich conceptual
information within the Chinese dictionary has been over-
looked. In this aspect, we apply the abundant definition
knowledge from the Chinese dictionary to the CSC model
using a contrastive learning approach. Specifically, leverag-
ing the idea of contrastive learning, we construct a positive
sample (do, dp) and N negative samples

(
do, dn

i

)N
i=1 for the

original sentence. Here, do represents the erroneous word
or character in the input sentence, and negative samples are
acquired from the structured Chinese dictionary D based on
do.

For positive sample dp and negative sample dn of length
l, we use the encoder Ed to map them into a sequence of rep-
resentations, obtaining ep and {eni }. The encoder employed
is BERT. For the original sentence do, we utilize the encoder
Ec from the correction network for encoding, resulting in the
sentence representation eo. Formally expressed as:

eo = Ec(do) (6)
ep = Ed(dp) (7)
eni = Ed

(
d n
i

)
(8)

When fine-tuning the CSC model using definition
knowledge from the dictionary, we start by considering an
original sentence xo = “ ” and its corre-
sponding target sentence xg = “ ”. We tok-
enize the target sentence using a segmentation tool, resulting
in “ ”. Consequently, we determine the
error position s where “ ” occurs incorrectly in the orig-
inal sentence. Next, we locate the concept explanation for
“ ” in the dictionary, which serves as the positive sample
dp . Simultaneously, we select N different concept explana-
tions from the dictionary as negative samples {dn

i }. In cases
where a single concept has multiple explanations, we devise
a simple retriever to calculate the vector similarity between
the target sentence and the vectors representing the defini-
tions in the dictionary. This allows us to retrieve the most
contextually relevant concept explanation for use as positive
and negative samples in the contrastive learning process.

The formula for calculating the similarity between pos-
itive and negative samples and the original sample in this
paper can be formalized as follows:

fd (eo, ep, s) = cos(avg (eo[s, s + w]) ,avg (ep)) (9)
fd

(
eo, eni , s

)
= cos

(
avg (eo[s, s + w]) ,avg

(
eni

) )
(10)

Where cos(a, b) calculates the cosine distance between
vectors a and b, eo[s, s+w] represents the vector of the phrase
within the index range from s to s + w of the erroneous
character, where s + w ≤ l, and avg() denotes the mean
pooling operation.

3.2.4 Loss

We define the loss function of the correction network as:

Lc = −
N∑
i=1

logPc (yi |X) (11)

We define the loss function of the definition knowledge
network based on contrastive learning as:

Ldk = −log
fd (eo, ep, s)

fd (eo, ep, s) +
N∑
i=1

fd
(
eo, eni , s

) (12)

Where Lc is the training objective of the correction net-
work, Ldk is the training objective of the definition knowl-
edge network, and fd is the representation measurement
function for definition knowledge in the dictionary. In a
batch, all sentences have a length of l, and the s-th character
represents the one with the spelling error.

The learning process of our model involves optimizing
the correction network and the contrastive learning module.
The final loss function is represented as:

L = λ1Lc + λ2Ldk (13)

We believe that the loss Lc of the correction network and
the loss Ldk of the definition knowledge network contribute
equally to the overall performance of the model. Therefore,
we set the weights λ1 and λ2 for the two losses to be 1.

4. Experiments

4.1 Datasets

In this study, we utilized the official training data from
SIGHAN and pseudo data generated by Wang et al. [8]
as the training set. Extensive testing was conducted on
SIGHAN13 [19], SIGHAN14 [20], and SIGHAN15 [4]. Ta-
ble 2 presents detailed information regarding the training and
testing data, where sent_num, avg_len, and errors_num re-
spectively indicate the number of sentences, average length,
and the count of errors in the dataset. We incorporated
knowledge into the model through the triplet relationships
from the Chinese knowledge graph CN-DBpedia [21]. CN-
DBpedia, curated and maintained by Fudan University, is

Table 2 Experimental training and testing data statistics.
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Table 3 Experimental results of the model on SIGHAN13, SIGHAN14, and SIGHAN15 test datasets.

a comprehensive domain-agnostic structured encyclopedia
knowledge graph, encompassing millions of entities and re-
lationships. To enhance the guidance provided by the origi-
nal knowledge graph, we filtered out triplet pairs where en-
tity names were less than 2 characters in length or contained
special characters. After this processing, approximately 5.17
million entity relationship triplets were retained.

4.2 Experiment Setup

In this experiment, the correction network consists of 12
Transformer layers with 12 attention heads, each having a
vector dimension of 768. The training batch size is set to 32,
and the number of epochs is set to 10. The learning rate is
set to 5e-5. We utilized the PyTorch training framework and
employed the NVIDIA GeForce RTX 3090 GPU equipment.

4.3 Baseline Models

BERT [25]: Fine-tuning BERT directly using spelling cor-
rection training data to adapt it for the Chinese spelling cor-
rection task.
SpellGCN [12]: By combining GCN and BERT, the infor-
mation from the confusion set is incorporated into the model
to model the relationships between characters within the
confusion set.
DCN [26]: A phonetic-enhanced candidate generator is pro-
posed, which introduces a dynamic linking network to es-
tablish dependencies and utilizes this network to score and
search for the optimal path.
GAD [10]: The global attention decoder is utilized to learn

the overall relationships between potential correct input char-
acters and candidate incorrect character candidates, acquir-
ing rich global contextual information, and effectively alle-
viating the impact of local erroneous context information.
MLM-phonetics [18]: During pre-training, mask words with
speech features and phonetically similar pronunciations, in-
tegrating speech features into the language model.

4.4 Evaluation Metrics

In this study, to evaluate the spelling correction performance
of the CSC model, recall, precision, and F1 score are em-
ployed as evaluation metrics to assess the experimental re-
sults. The F1 score is used to comprehensively consider
both accuracy and recall, serving as a benchmark to gauge
the effectiveness of the model.

4.5 Main Results

Table 3 presents the experimental results of our approach
on the SIGHAN13, SIGHAN14, and SIGHAN15 test sets,
with the best results highlighted in bold. By comparing with
multiple models, it can be observed that our model achieves
the best F1 scores in both detection and correction on all
three datasets.

Specifically, when using BERT alone for correction,
the model relies solely on contextual semantics and over-
looks other supportive information inherent to the Chinese
language. On the SIGHAN15 dataset, our method outper-
forms the pure BERT-based approach with improvements
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Fig. 4 Effect of knowledge tree with different depth on error correction
performance.

of 4.8% and 6.1% in F1 scores for sentence-level detec-
tion and correction, respectively. Furthermore, compared
to the GAD model utilizing global attention decoding, our
approach shows improvements of 3% and 4.1% in detection
and correction F1 scores, respectively. This is attributed
to the fact that the world knowledge network not only pro-
vides more guiding information to the model but also the
utilization of mask-self-attention mitigates the issue of ex-
cessive knowledge injection, thus affirming the effectiveness
of incorporating world knowledge and employing mask-self-
attention.

MLM-phonetics only considered incorporating pho-
netic features into the model. In comparison, our approach
yielded improvements of 0.7% and 2% in detection and cor-
rection F1 scores on the SIGHAN15 dataset, surpassing the
results of using MLM-phonetics directly for error correction.
While SpellGCN focused solely on the visual and phonetic
similarities within Chinese characters, neglecting the defi-
nition knowledge from dictionaries, our approach achieved
gains of 3.2% and 3.6% over SpellGCN in detection and
correction F1 scores, respectively. This is attributed to the
fact that definition knowledge dissects the underlying mean-
ings of words, enabling the model to better align with the
context for error correction. This demonstrates that incor-
porating not only multi-modal knowledge such as phonetics
and character shapes but also adding definitional knowledge
from dictionaries can indeed guide the improvement of error
correction model performance.

To demonstrate the rationality of setting the depth of
the tree to 1, we explored the F1 scores of the model on three
datasets under different tree depths. As shown in Fig. 4, it is
evident that as the tree depth increases, the F1 scores of the
model decrease on all three datasets. We believe that when
the tree depth is greater, the external knowledge carried by
the knowledge tree becomes more complex and excessive
injection of knowledge can alter the original meaning of
the sentence, thus leading to a decrease in the correction
performance.

4.6 Ablation Study

We conducted ablation experiments on the SIGHAN15

Table 4 Presents the results of ablation experiments on the world knowl-
edge network and the definition knowledge network on the SIGHAN15 test
dataset. WK represents the world knowledge module, and DK represents
the definition knowledge module.

dataset to investigate the roles of the two crucial modules
in our approach. As shown in Table 4, when world knowl-
edge guidance is not used, we observe a decrease of 0.6%
and 0.4% in the F1 values for both detection and correction
performance, respectively. This indicates that incorporating
world knowledge indeed enhances the performance of the
correction model. When the definition knowledge network
based on contrastive learning is removed, the model’s de-
tection and correction performance show a larger decrease
of 1.1% and 0.7%, respectively, compared to the removal of
world knowledge. This demonstrates the significant impact
of the definition knowledge from the Chinese dictionary on
the correction model. Moreover, when both world knowl-
edge and definition knowledge are simultaneously removed,
the model’s detection and correction capabilities decrease by
1.6% and 1.5%, respectively. Nevertheless, the performance
is still superior to directly using the BERT model for CSC.
This confirms the substantial contributions of the two types
of knowledge introduced in our approach to the improvement
of experimental results.

To investigate the impact of our hybrid masking ap-
proach and mask-self-attention method on our correction
network, we conducted experiments while keeping other set-
tings unchanged, except for changing the masking strategy to
match that of BERT. From the results in Table 5, we observe
that the model’s performance in both detection and correc-
tion aspects decreases by 1.4% and 1.7%, respectively. This
is because our hybrid masking approach forces the model to
learn more information about Chinese characters’ phonetics
and shapes compared to using only the [MASK] masking
strategy. When we remove mask-self-attention, the struc-
tural information of the sentence tree becomes disordered,
causing a change in the original semantics of the sentence.
The model struggles to capture contextual information ef-
fectively, leading to a significant performance drop. Thus,
both of the aforementioned strategies play a crucial role in
the effectiveness of our approach.

To validate the impact of glyph embedding and pinyin
embedding on the overall performance of our model, we
removed glyph embedding and pinyin embedding separately
and observed the changes in F1 scores on the SIGHAN15
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Table 5 Shows the results of ablation experiments on the correction
network on the SIGHAN15 test dataset.

Table 6 Results of ablation experiments on glyph embedding and pinyin
embedding on SIGHAN15 test dataset. GE represents glyph embedding,
and PE represents pinyin embedding.

dataset. As shown in Table 6, We found that the absence
of either embedding led to a varying degree of decline in
both error detection and error correction performance of
the model. This indicates that the combined use of these
embeddings can enhance the error correction ability of the
model more effectively.

4.7 Case Study

In order to visually demonstrate the impact of incorporat-
ing world knowledge and definition knowledge into the CSC
model, we present the correction results of four cases in
Table 7. During pre-training, ChineseBERT [23] incorpo-
rates the phonetic and character shape information of Chi-
nese characters. Compared to directly using ChineseBERT
for CSC, our model integrates world knowledge and defi-
nition knowledge. From the cases in the table, it can be
observed that due to the identical pronunciation of “
(Mount Heng)” and “ (Mount Heng)” both of which are
well-known mountains in China, but “ (Mount Heng)”
is located in Datong City, Shanxi Province, while “
(Mount Heng)” is situated in Hengyang City, Hunan Prov-
ince. ChineseBERT tends to correct errors into visually
similar characters, but it does not take actual background
knowledge into account. However, when guided by world
knowledge, our model easily identifies that the correct term
in the example should be “ (Mount Heng)” instead of
“ (Mount Heng)”.

After incorporating definition knowledge, by learning
the definitions of “ (eye)” and “ (glasses)” from the
dictionary, the model can understand that “an eye is typically
composed of the cornea, pupil, iris, lens, retina, vitreous
body, etc.,” while “ (glasses)” are “lenses worn on the
eyes to correct vision or protect the eyes.” Based on the key

Table 7 Here are examples of our model’s inputs/outputs, with red indi-
cating spelling errors and blue indicating correct ones.

information “ (pupil)” in the erroneous sentence, it can
be inferred that “ (glasses)” should be corrected to “
(eye)”.

In summary, the method we propose can effectively uti-
lize world knowledge to correct errors that do not align with
the actual context. Adding world knowledge and definition
knowledge can assist the model in better understanding the
true intended meaning of the original sentence.

5. Conclusion

We have introduced a Chinese Spelling Correction model
that effectively leverages world knowledge from a knowledge
graph and definition knowledge from a dictionary. To bet-
ter incorporate these two heterogeneous forms of knowledge
into the model, we have constructed a knowledge tree net-
work to inject world knowledge into sentences. Additionally,
to efficiently utilize the definition knowledge from the dic-
tionary, we have employed a contrastive learning approach,
creating positive and negative example pairs for model fine-
tuning. Results on the SIGHAN dataset demonstrate the pos-
itive guiding significance of our method for Chinese Spelling
Correction tasks. In the future, we will explore the role of
this knowledge in models for Chinese grammar correction.
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