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SUMMARY Chinese Spelling Correction (CSC) is an important natural 

language processing task. Existing methods for CSC mostly utilize BERT 

models, which select a character from a candidate list to correct errors in 

the sentence. World knowledge refers to structured information and 

relationships spanning a wide range of domains and subjects, while 

definition knowledge pertains to textual explanations or descriptions of 

specific words or concepts. Both forms of knowledge have the potential to 

enhance a model's ability to comprehend contextual nuances. As BERT 

lacks sufficient guidance from world knowledge for error correction and 

existing models overlook the rich definition knowledge in Chinese 

dictionaries, the performance of spelling correction models is somewhat 

compromised. To address these issues, within the world knowledge 

network, this study injects world knowledge from knowledge graphs into 

the model to assist in correcting spelling errors caused by a lack of world 

knowledge. Additionally, the definition knowledge network in this model 

improves the error correction capability by utilizing the definitions from 

the Chinese dictionary through a comparative learning approach. 

Experimental results on the SIGHAN benchmark dataset validate the 

effectiveness of our approach. 

key words: Chinese Spelling Correction, Contrastive Learning, 

Knowledge Graph, world knowledge, definition knowledge 

1. Introduction 

Chinese spelling correction (CSC) aims to detect and 

correct spelling errors in texts [1]. CSC has many practical 

applications in daily life, such as in online searches, where 

search engines automatically correct input text errors, and 

when users receive error suggestions while using Chinese 

input methods. 

 Many existing research works have employed BERT 

[2] to tackle the task of CSC, yielding significant 

achievements. World knowledge encompasses structured 

information and relationships across various fields and 

subjects. According to the research conducted by Zhang et 

al. [11] and our observations, it has been found that in 

Chinese spelling correction methods based on BERT, 

approximately 39% of uncorrected results are attributed to 

a lack of world knowledge. Despite BERT's ability to learn 

some common sense and background knowledge through 

statistical patterns, the absence of world knowledge can 

hinder its effectiveness in correcting errors that require 

reasoning and comprehension abilities. As shown in Table 

1, in the sentence "埃及的著名景点金子塔" (The famous 

landmark of Egypt is the golden tower.), lacking guidance 

from world knowledge, the model might not correct "金子

塔" (the golden tower) to "金字塔" (the Pyramids). 

Table 1  Examples of Chinese Spelling Errors. The words in red are 

incorrect, and the words in blue are correct. 
Wrong 埃及的著名景点金子塔。 

The famous landmark of Egypt is the golden tower. 

Correct 埃及的著名景点金字塔。 

The famous landmark of Egypt is the Pyramids. 

Wrong 他是办公室主人。 

He is the owner of the office. 

Correct 他是办公室主任。 

He is the office director. 

 Many researchers have recognized that Chinese 

pronunciation and character forms contain abundant 

knowledge that can guide spelling correction models. 

These efforts introduce multimodal information into the 

task of CSC, addressing errors arising from similar 

pronunciation and character forms. However, these 

approaches overlook the significance of definition 

knowledge within Chinese dictionaries. As a result, they 

may fail to correct errors that necessitate a deeper 

understanding of the context for accurate correction. 

Definition knowledge refers to the explanatory statements 

about words or characters found in dictionaries. These 

explanatory statements provide descriptions of a word's 

meaning, usage, category, and attributes. Introducing the 

definition knowledge from dictionaries can assist models in 

better understanding the meanings of words and characters. 

For instance, in the sentences "他是办公室主人" (He is 

the owner of the office) and "他是办公室主任" (He is the 

office director), the characters "主人(owner)" and "主任

(director)" have similar pronunciations, and both "人" and "

任" can be associated with "主" A pre-trained language 

model might struggle to determine the correct correction 

due to these similarities. However, based on the definitions 

in the dictionary, "主人(owner)" is defined as "the person 

who receives guests (in contrast to 'guest')," while "主任

(director)" is defined as "a job title, the principal person in 

charge of a department or organization." Guided by 

definition knowledge, the model is more likely to associate 

"主任(director)" with "办公室(office)" in this context.  

 In response to the above question, we have developed 
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a CSC method based on knowledge graphs and contrastive 

learning. In essence, to enable the model to acquire world 

knowledge, we have designed a world knowledge network 

that incorporates world knowledge from the knowledge 

graph into sentences through the construction of a 

knowledge tree. To prevent injecting excessive knowledge 

that could introduce knowledge noise and lead to a shift in 

the original sentence's meaning, we introduce relative 

positioning and visible matrices to constrain the influence 

of external knowledge. Next, we have devised a correction 

network that integrates information from Chinese 

characters, glyph, and pinyin using various embedding and 

masking strategies. Furthermore, to better utilize the 

definitions from the Chinese dictionary, we have designed a 

definition knowledge network. This network employs a 

comparative learning approach to create positive and 

negative example pairs that include the definition 

knowledge.  By training the model on these example pairs, 

we enable it to address errors that are difficult to correct 

solely based on phonetic and morphological information. 

2. Related Work 

2.1 Chinese Spelling Correction 

Early research methods for CSC often followed a process 

of error detection, candidate generation, and candidate 

selection [3]. These methods primarily employed 

unsupervised language models and rule-based approaches 

for error detection and correction [4]. Some approaches 

treated Chinese text correction as a text labeling problem 

and incorporated Conditional Random Fields (CRF) and 

Hidden Markov Models (HMM) into the correction models 

[5]. Certain methods utilized n-gram statistical language 

models [6]-[7], where a character was considered a spelling 

error if its probability of appearing in an n-gram language 

model was below a predefined threshold. 

 Recently, deep learning has been applied to CSC tasks. 

Wang et al. [8] utilized a bidirectional Long Short-Term 

Memory (LSTM) as the framework for their correction 

model. Hong et al. [9] introduced FASpell, which employs 

a Seq2Seq model with BERT as the encoder. In this 

approach, the language model is used as a candidate word 

generator, and a confidence-similarity curve is used to 

select the best candidate words. Guo et al. [10] proposed 

GAD, which involves a global attention decoder method 

and a confusion set-guided replacement strategy for 

pretraining BERT. Zhang et al. [11] introduced Soft-

Masked-Bert, which uses a GRU-based error detection 

network to calculate spelling error probabilities. Based on 

these error probabilities, BERT is used to correct errors. 

However, pre-trained language models like BERT only 

consider the semantic features of characters, ignoring their 

visual and phonetic features. Cheng et al. [12] introduced 

the SpellGCN model using Graph Convolutional Networks 

(GCN) [13]. This model combines embeddings of 

characters with similar pronunciation and shape and 

leverages BERT to model dependencies between characters. 

Liu et al. [14] proposed PLOME, which incorporates a 

confusion set-based masking strategy and introduces 

phonetic and stroke information. MDCSpell [24] is a multi-

task detector-corrector framework that employs BERT to 

capture the visual and phonetic features of each character in 

the original sentence. These works acknowledge the 

guiding role of phonetic and visual information for CSC 

models, but they overlook the instructive role of world 

knowledge in spelling correction. Additionally, they do not 

take into account the potential utilization of rich definition 

knowledge from the Chinese dictionary for the correction 

task. 

2.2 Contrastive Learning 

Contrastive learning is an unsupervised learning method 

whose objective is to establish a representation learning 

model by capturing the similarities and differences between 

samples. This is achieved by pulling semantically similar 

samples closer together in the embedding space, while 

pushing semantically dissimilar samples farther apart, 

thereby acquiring meaningful representations. Contrastive 

Learning has found wide applications in the field of 

computer vision, and in recent years, it has gradually 

garnered substantial attention in the domain of natural 

language processing. For instance, prior research in natural 

language processing has employed contrastive learning to 

generate improved word embeddings [15] and sentence 

embeddings [16]. Recently, with the dominance of 

Transformer-based models in natural language processing 

tasks, contrastive learning has also been utilized to train 

Transformer models [17]. This paper adopts the principles 

of contrastive learning to enable the CSC model to better 

absorb definition knowledge from dictionaries. 

3. Methodology 

3.1 Problem Formulation 

The CSC task can be formally represented as follows: 

Given a text sequence X = {x1, x2, ..., xn}, which may 

potentially contain spelling errors, where n represents the 

total number of characters in the input text, the model aims 

to replace incorrect words or characters within the 

sequence X with their correct counterparts. The resulting 

output is a corrected text sequence Y = {y1, y2, ..., yn}. 

3.2 Model 

As illustrated in Figure 1, the model primarily consists of 

three components. The dashed box depicted in the lower 

left corner represents the world knowledge network, the 

dashed box in the upper left corner outlines the correction 

network, and the dashed box in the upper right corner 
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represents the definition knowledge network. The input 

sequence at the bottom is passed through the world 

knowledge network, incorporating knowledge from the 

knowledge graph. The resulting tensor from the correction 

network is then fed into the definition knowledge network. 

The green circles denote positive examples, while the red 

circles represent negative examples. Using the contrastive 

learning approach, the loss Ldk is propagated back to the 

correction network, ultimately yielding the output sequence 

at the top. ⊕ stands for vector addition. 

 

 
Fig. 1  Overview of our model. 

3.2.1 World Knowledge Network 

World knowledge involves various facts, relationships, 

concepts, and rules, which can provide the model with a 

richer understanding of semantics and background 

information. In this module, we concatenate entity-relation 

triples from the knowledge graph with entities in the input 

sentence to construct a knowledge tree that contains the 

input sequence and relationship triples. This enables the 

model to learn world knowledge and enhance its ability to 

correct errors. To elaborate, given a sentence S = {w1, w2, ..., 

wn} and a knowledge graph KG, where each token in 

sentence S is from the vocabulary set V (i.e., wi ∈ V), KG 

includes numerous relation triples R = (wi, rj, wk), with rj 

representing the relation in the triple. Through knowledge 

injection, the sentence tree T is derived as follows: T = 

{w1, ..., wi{(ri1, wi1), ..., (rij, wij)}, ..., wn}. 

 Traditional BERT models can only handle sequential 

sentence inputs and cannot directly process sentence trees. 

Converting a sentence tree directly into a sequence would 

result in the loss of structural information inherent in the 

sentence tree. We ingeniously retain the structural 

information of the sentence tree during the conversion 

process using two different forms of position indices. As 

illustrated in Figure 2, circles represent nodes in the 

sentence tree, with entities inside. The black numbering 

represents absolute position indices, assigned to nodes in 

the sentence tree following a preorder traversal. These 

absolute position indices guide the generation of the visible 

matrix. The red numbering corresponds to relative position 

indices, where different branches of the same node in the 

sentence tree share the same index. This approach helps 

recover the structural information lost in the absolute 

position indices. 

 
Fig. 2  Illustration of Sentence Tree Structure. 

 Due to the potential risk of altering the original 

sentence's meaning through excessive knowledge injection, 

we have constrained the depth of the knowledge tree to 1. 

This is mainly because when the depth of the sentence tree 

is not restricted to 1, entities in the sentence tree are likely 
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to iteratively derive branches based on the triplets in the 

knowledge graph. As a result, the sentence tree becomes 

exceptionally complex, and redundant knowledge may 

even alter the original meaning of the sentence, leading to a 

decrease in the correction performance. Simultaneously, we 

employ a visible matrix to control the visibility between 

main tokens and branch tokens, effectively mitigating the 

issues caused by knowledge noise. The visible matrix is 

defined as follows: 

𝑀𝑖𝑗 = {
0, 𝑤𝑖 ⇔ 𝑤𝑗

−∞, 𝑤𝑖 ⇎ 𝑤𝑗
(1) 

 Where 𝑤𝑖 ⇔ 𝑤𝑗 indicates that tokens 𝑤𝑖  and 𝑤𝑗  are in 

the same branch, and 𝑤𝑖 ⇎ 𝑤𝑗  indicates that 𝑤𝑖  and 𝑤𝑗  are 

not in the same branch. Here, i and j represent absolute 

position indices. Specifically, tokens on the main trunk of 

the sentence tree are mutually visible only with other 

tokens on the main trunk. Tokens at cross-nodes are visible 

to both the main trunk and branches, while tokens on 

branches are visible only to tokens at cross-nodes and other 

tokens on the same branch. This approach prevents tokens 

on different branches from accessing each other's 

information, thus preserving the original sentence's 

semantics. 

3.2.2 Correction Network 

This paper employs a pre-trained Mask-Transformer 

Encoder as the backbone of the correction network. To 

enable the pre-trained model to learn the similarities 

between Chinese characters, pinyin (pronunciation), and 

glyph (visual shape), we fuse the char embeddings, glyph 

embeddings, and pinyin embeddings of the input text.  

 
Fig. 3  Illustration of fusion layer. denotes vector concatenation，×

stands for vector matrix multiplication, Wf  denotes the learnable matrix. 

 Specifically, the execution of char embedding is 

similar to token embedding used in BERT but operates at 

the character granularity. We utilize three types of Chinese 

fonts: XingKai, FangSong, and LiShu. Each font is 

instantiated as a 24×24 image with floating-point pixels 

ranging from 0 to 255. The resulting 24×24×3 vector is 

flattened and fed into an FC layer to obtain the output 

glyph embedding. To obtain the pinyin sequence, we utilize 

an open-source phonetics package. Tonal symbols 

representing the character's tone are added to the end of 

each character's pinyin sequence. The pinyin sequence is 

then processed using a CNN model with a width of 2, 

followed by max-pooling, to derive the final pinyin 

embedding. 

 As illustrated in Figure 3, we concatenate the char 

embedding, glyph embedding, and pinyin embedding to 

form a three-dimensional vector. The fusion layer maps this 

vector to a one-dimensional representation using a FC layer. 

The resulting fusion embedding is then added to the 

relative-position embedding mentioned in the previous 

section and input into the Encoder.  

 We utilize a masking method different from that of 

BERT. Specifically, BERT uses the [MASK] token for 

random masking, wherein approximately 15% of the tokens 

are replaced with the special [MASK] token. During pre-

training, the model endeavors to predict these masked 

tokens, aiming to learn contextual information and 

relationships among vocabulary items. According to the 

research by Liu et al. [22], approximately 83% of Chinese 

spelling errors are caused by the misuse of phonetically 

similar characters, while 48% are due to the misuse of 

visually similar characters. Therefore, in most cases, we 

mask characters that are phonetically similar based on their 

findings. We mask a total of 15% of tokens in the corpus. 

Among these, 60% are masked using characters from the 

confusion set that are phonetically similar. This trains the 

model to predict the original character based on the pinyin 

of easily confused Chinese characters. Another 15% are 

masked using visually similar characters from the 

confusion set, allowing the model to recover the original 

character based on visually similar glyphs. An additional 

15% are masked using the [MASK] token, training the 

model to restore the masked character based on contextual 

information. Finally, 10% of characters are randomly 

selected and masked, training the model to correct 

characters from randomly occurring errors.  

 In order to incorporate the structured information of 

the sentence tree into BERT while preventing alterations in 

the original semantic meaning, we employ a mask-self-

attention mechanism combined with a visible matrix to 

restrict the self-attention region. The mask-self-attention 

can be formally described as follows: 

𝑄𝑡 , 𝐾𝑡 , 𝑉𝑡 = ℎ𝑡−1𝑊𝑞 , ℎ𝑡−1𝑊𝑘, ℎ𝑡−1𝑊𝑣 (2) 

 

𝑆𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑡  𝐾𝑡ᵀ

+ 𝑀

√𝑑𝑘

) (3) 

ℎ𝑡 = 𝑆𝑡𝑉𝑡 (4) 

Where Wq, Wk, Wv are trainable model parameters. 

ℎ𝑡represents the hidden state of the t-th mask-self-attention. 

M is the visible matrix. 𝑑𝑘 is a scaling factor. In summary, 

if wj and wk  are not in the same branch of the sentence tree, 

they are considered invisible to each other. The value at the 
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corresponding position in the visible matrix becomes 

negative infinity, causing Mjk to set the attention score 𝑆𝑗𝑘
𝑡  

to 0. This implies that the hidden state of wj does not 

contribute to wk. 

 Ultimately, after passing through the correction 

network, the probability of the i-th token predicting a 

character in the given sentence X is defined as: 

 

𝑃𝑐(𝑦𝑖 = 𝑗|𝑋) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊ℎ𝑖 + 𝑏)[𝑗] (5) 

  

Where 𝑃𝑐(𝑦𝑖 = 𝑗|𝑋)  represents the conditional 

probability that the i-th character xi in the input sentence X 

is predicted as the j-th character in the vocabulary V. hi 

signifies the output tensor of the last hidden layer of xi after 

passing through the correction network. W∈ℝn×768 and b∈
ℝn are the parameters trained by the model, where n is the 

size of the vocabulary. 

3.2.3 Definition Knowledge Network 

Definition knowledge provides relevant information about 

word meanings, usages, and more, enabling the model to 

better infer within the context. Previous research has 

predominantly focused on enhancing CSC by utilizing 

phonetic and visual characteristics. However, the rich 

conceptual information within the Chinese dictionary has 

been overlooked. In this aspect, we apply the abundant 

definition knowledge from the Chinese dictionary to the 

CSC model using a contrastive learning approach. 

Specifically, leveraging the idea of contrastive learning, we 

construct a positive sample (𝑑𝑜, 𝑑𝑝)  and N negative 

samples (𝑑𝑜 , 𝑑𝑖
𝑛)𝑖=1

𝑁  for the original sentence. Here, 𝑑𝑜 

represents the erroneous word or character in the input 

sentence, and negative samples are acquired from the 

structured Chinese dictionary D based on 𝑑𝑜. 

 For positive sample 𝑑𝑝 and negative sample 𝑑𝑛  of 

length l, we use the encoder Ed to map them into a 

sequence of representations, obtaining 𝑒𝑝  and {𝑒𝑖
𝑛}  . The 

encoder employed is BERT. For the original sentence 𝑑𝑜, 

we utilize the encoder Ec from the correction network for 

encoding, resulting in the sentence representation 𝑒 o. 

Formally expressed as: 

𝑒𝑜 = 𝐸𝑐(𝑑𝑜) (6) 

𝑒𝑝 = 𝐸𝑑(𝑑𝑝) (7) 

𝑒𝑖
𝑛 = 𝐸𝑑(𝑑𝑖

𝑛) (8) 

When fine-tuning the CSC model using definition 

knowledge from the dictionary, we start by considering an 

original sentence 𝑥𝑜  = " 今 天 田 七 不 错 " and its 

corresponding target sentence xg = "今天天气不错". We 

tokenize the target sentence using a segmentation tool, 

resulting in " 今天 /天气 /不错 ". Consequently, we 

determine the error position s where " 天 气 " occurs 

incorrectly in the original sentence. Next, we locate the 

concept explanation for "天气" in the dictionary, which 

serves as the positive sample dp. Simultaneously, we select 

N different concept explanations from the dictionary as 

negative samples {di
n}. In cases where a single concept has 

multiple explanations, we devise a simple retriever to 

calculate the vector similarity between the target sentence 

and the vectors representing the definitions in the 

dictionary. This allows us to retrieve the most contextually 

relevant concept explanation for use as positive and 

negative samples in the contrastive learning process. 

 The formula for calculating the similarity between 

positive and negative samples and the original sample in 

this paper can be formalized as follows: 

𝑓𝑑(𝑒𝑜, 𝑒𝑝, 𝑠) = 𝑐𝑜𝑠(𝑎𝑣𝑔(𝑒𝑜[𝑠, 𝑠 + 𝑤]), 𝑎𝑣𝑔(𝑒𝑝)) (9) 

𝑓𝑑(𝑒𝑜, 𝑒𝑖
𝑛, 𝑠) = 𝑐𝑜𝑠(𝑎𝑣𝑔(𝑒𝑜[𝑠, 𝑠 + 𝑤]), 𝑎𝑣𝑔(𝑒𝑖

𝑛)) (10) 

Where cos(a, b) calculates the cosine distance 

between vectors a and b, 𝑒𝑜[𝑠, 𝑠 + 𝑤] represents the vector 

of the phrase within the index range from s to s+w of the 

erroneous character, where s+w≤l, and avg() denotes the 

mean pooling operation. 

3.2.4 Loss 

We define the loss function of the correction network as: 

𝐿𝑐 = − ∑ 𝑙𝑜𝑔𝑃𝑐(𝑦𝑖|𝑋)

𝑁

𝑖=1

(11) 

 We define the loss function of the definition 

knowledge network based on contrastive learning as: 

 

𝐿𝑑𝑘 = −𝑙𝑜𝑔
𝑓𝑑(𝑒𝑜, 𝑒𝑝, 𝑠)

𝑓𝑑(𝑒𝑜, 𝑒𝑝, 𝑠) + ∑ 𝑓𝑑(𝑒𝑜, 𝑒𝑖
𝑛 , 𝑠)𝑁

𝑖=1

(12) 

  

Where 𝐿𝑐  is the training objective of the correction 

network, 𝐿𝑑𝑘  is the training objective of the definition 

knowledge network, and 𝑓𝑑  is the representation 

measurement function for definition knowledge in the 

dictionary. In a batch, all sentences have a length of l, and 

the s-th character represents the one with the spelling error. 

 The learning process of our model involves 

optimizing the correction network and the contrastive 

learning module. The final loss function is represented as: 

 

𝐿 = 𝜆1𝐿𝑐 + 𝜆2𝐿𝑑𝑘 (13) 

  

 We believe that the loss Lc of the correction network 

and the loss Ldk of the definition knowledge network 

contribute equally to the overall performance of the model. 

Therefore, we set the weights λ1 and λ2 for the two losses to 

be 1. 
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4. Experiments 

4.1 Datasets 

In this study, we utilized the official training data from 

SIGHAN and pseudo data generated by Wang et al. [8] as 

the training set. Extensive testing was conducted on 

SIGHAN13 [19], SIGHAN14 [20], and SIGHAN15 [4]. 

Table 2 presents detailed information regarding the training 

and testing data, where sent_num, avg_len, and errors_num 

respectively indicate the number of sentences, average 

length, and the count of errors in the dataset. We 

incorporated knowledge into the model through the triplet 

relationships from the Chinese knowledge graph CN-

DBpedia [21]. CN-DBpedia, curated and maintained by 

Fudan University, is a comprehensive domain-agnostic 

structured encyclopedia knowledge graph, encompassing 

millions of entities and relationships. To enhance the 

guidance provided by the original knowledge graph, we 

filtered out triplet pairs where entity names were less than 2 

characters in length or contained special characters. After 

this processing, approximately 5.17 million entity 

relationship triplets were retained. 

Table 2  Experimental Training and Testing Data Statistics. 
Train Set sent_num avg_len errors_num 

SIGHAN13 700 41.8 343 

SIGHAN14 3,437 49.6 5,122 

SIGHAN15 2,338 31.3 3,037 

Wang271K 271,329 42.6 381,962 

Total 277,804 42.6 390,464 

Test Set sent_num avg_len errors_num 

SIGHAN13 1,000 74.3 1,224 

SIGHAN14 1,062 50.0 771 

SIGHAN15 1,100 30.6 703 

Total 3,162 50.9 2,698 

 

4.2 Experiment Setup 

In this experiment, the correction network consists of 12 

Transformer layers with 12 attention heads, each having a 

vector dimension of 768. The training batch size is set to 32, 

and the number of epochs is set to 10. The learning rate is 

set to 5e-5. We utilized the PyTorch training framework 

and employed the NVIDIA GeForce RTX 3090 GPU 

equipment. 

4.3 Baseline Models 

BERT [25]: Fine-tuning BERT directly using spelling 

correction training data to adapt it for the Chinese spelling 

correction task. 

SpellGCN [12]: By combining GCN and BERT, the 

information from the confusion set is incorporated into the 

model to model the relationships between characters within 

the confusion set. 

DCN [26]: A phonetic-enhanced candidate generator is 

proposed, which introduces a dynamic linking network to 

establish dependencies and utilizes this network to score 

and search for the optimal path. 

GAD [10]: The global attention decoder is utilized to learn 

the overall relationships between potential correct input 

characters and candidate incorrect character candidates, 

acquiring rich global contextual information, and 

effectively alleviating the impact of local erroneous context 

information. 

MLM-phonetics [18]: During pre-training, mask words 

with speech features and phonetically similar 

pronunciations, integrating speech features into the 

language model. 

4.4 Evaluation Metrics 

In this study, to evaluate the spelling correction 

performance of the CSC model, recall, precision, and F1 

score are employed as evaluation metrics to assess the 

experimental results. The F1 score is used to 

comprehensively consider both accuracy and recall, serving 

as a benchmark to gauge the effectiveness of the model. 

4.5 Main Results 

Table 3 presents the experimental results of our approach 

on the SIGHAN13, SIGHAN14, and SIGHAN15 test sets, 

with the best results highlighted in bold. By comparing 

with multiple models, it can be observed that our model 

achieves the best F1 scores in both detection and correction 

on all three datasets.  

Specifically, when using BERT alone for correction, 

the model relies solely on contextual semantics and 

overlooks other supportive information inherent to the 

Chinese language. On the SIGHAN15 dataset, our method 

outperforms the pure BERT-based approach with 

improvements of 4.8% and 6.1% in F1 scores for sentence-

level detection and correction, respectively. Furthermore, 

compared to the GAD model utilizing global attention 

decoding, our approach shows improvements of 3% and 

4.1% in detection and correction F1 scores, respectively. 

This is attributed to the fact that the world knowledge 

network not only provides more guiding information to the 

model but also the utilization of mask-self-attention 

mitigates the issue of excessive knowledge injection, thus 

affirming the effectiveness of incorporating world 

knowledge and employing mask-self-attention. 

 MLM-phonetics only considered incorporating 

phonetic features into the model. In comparison, our 

approach yielded improvements of 0.7% and 2% in 

detection and correction F1 scores on the SIGHAN15 

dataset, surpassing the results of using MLM-phonetics 
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directly for error correction. While SpellGCN focused 

solely on the visual and phonetic similarities within 

Chinese characters, neglecting the definition knowledge 

from dictionaries, our approach achieved gains of 3.2% and 

3.6% over SpellGCN in detection and correction F1 scores, 

respectively. This is attributed to the fact that definition 

knowledge dissects the underlying meanings of words, 

enabling the model to better align with the context for error 

correction. This demonstrates that incorporating not only 

multi-modal knowledge such as phonetics and character 

shapes but also adding definitional knowledge from 

dictionaries can indeed guide the improvement of error 

correction model performance. 

Table 3  Experimental results of the model on SIGHAN13, SIGHAN14, and SIGHAN15 test datasets. 

Dataset Method 

Detection Level Correction Level 

P R F1 P R F1 

SIGHAN13 

BERT 85.0% 77.0% 80.8% 83.0% 75.2% 78.9% 

SpellGCN 80. 1% 74. 4% 77. 2% 78. 3% 72. 7% 75. 4% 

DCN 86. 8% 79. 6% 83. 0% 84. 7% 77. 7% 81. 0% 

GAD 85.7% 79.5% 82.5% 84.9% 78.7% 81.6% 

MLM-phonetics 82.0 % 78.3% 80.1 % 79.5 % 77.0 % 78.2 % 

Ours 87.6% 80.5% 83.9% 85.2% 79.5% 82.3% 

 BERT 64.5% 68.6% 66.5% 62.4% 66.3% 64.3% 

SIGHAN14 

SpellGCN 65. 1% 69. 5% 67. 2% 63. 1% 67. 2% 65. 3% 

DCN 67. 4% 70. 4% 68. 9% 65. 8% 68. 7% 67. 2% 

GAD 66.6% 71.8% 69.1% 65.0% 70.1% 67.5% 

MLM-phonetics 66.2 % 73.8 % 69.8% 64.2 % 73.8 % 68.7% 

Ours 71.7% 70.1% 70.9% 69.5% 69.7% 69.6% 

SIGHAN15 

BERT 74.2% 78.0% 76.1% 71.6% 75.3% 73.4% 

SpellGCN 74. 8% 80. 7% 77. 7% 72. 1% 77. 7% 75. 9% 

DCN 77. 1% 80. 9% 79. 0% 74. 5% 78. 2% 76. 3% 

GAD 75.6% 80.4% 77.9% 73.2% 77.8% 75.4% 

MLM-phonetics 77.5 % 83.1 % 80.2% 74.9 % 80.2% 77.5% 

Ours 79.1% 82.7% 80.9% 77.9% 81.2% 79.5% 

 

To demonstrate the rationality of setting the depth of 

the tree to 1, we explored the F1 scores of the model on 

three datasets under different tree depths. As shown in 

Figure 4, it is evident that as the tree depth increases, the 

F1 scores of the model decrease on all three datasets. We 

believe that when the tree depth is greater, the external 

knowledge carried by the knowledge tree becomes more 

complex and excessive injection of knowledge can alter the 

original meaning of the sentence, thus leading to a decrease 

in the correction performance. 

 

 
Fig. 4  Effect of knowledge tree with different depth on error correction 

performance. 

4.6 Ablation Study 

We conducted ablation experiments on the SIGHAN15 

dataset to investigate the roles of the two crucial modules 

in our approach. As shown in Table 4, when world 

knowledge guidance is not used, we observe a decrease of 

0.6% and 0.4% in the F1 values for both detection and 

correction performance, respectively. This indicates that 

incorporating world knowledge indeed enhances the 

performance of the correction model. When the definition 

knowledge network based on contrastive learning is 

removed, the model's detection and correction performance 

show a larger decrease of 1.1% and 0.7%, respectively, 

compared to the removal of world knowledge. This 

demonstrates the significant impact of the definition 

knowledge from the Chinese dictionary on the correction 

model. Moreover, when both world knowledge and 

definition knowledge are simultaneously removed, the 

model's detection and correction capabilities decrease by 

1.6% and 1.5%, respectively. Nevertheless, the 

performance is still superior to directly using the BERT model 

for CSC. This confirms the substantial contributions of the two 

types of knowledge introduced in our approach to the 
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improvement of experimental results. 

 To investigate the impact of our hybrid masking 

approach and mask-self-attention method on our correction 

network, we conducted experiments while keeping other 

settings unchanged, except for changing the masking 

strategy to match that of BERT. From the results in Table 5, 

we observe that the model's performance in both detection 

and correction aspects decreases by 1.4% and 1.7%, 

respectively. This is because our hybrid masking approach 

forces the model to learn more information about Chinese 

characters' phonetics and shapes compared to using only 

the [MASK] masking strategy. When we remove mask-

self-attention, the structural information of the sentence 

tree becomes disordered, causing a change in the original 

semantics of the sentence. The model struggles to capture 

contextual information effectively, leading to a significant 

performance drop. Thus, both of the aforementioned 

strategies play a crucial role in the effectiveness of our 

approach. 

 To validate the impact of glyph embedding and pinyin 

embedding on the overall performance of our model, we 

removed glyph embedding and pinyin embedding 

separately and observed the changes in F1 scores on the 

SIGHAN15 dataset. As shown in Table 6, We found that 

the absence of either embedding led to a varying degree of 

decline in both error detection and error correction 

performance of the model. This indicates that the combined 

use of these embeddings can enhance the error correction 

ability of the model more effectively. 

Table 4  Presents the results of ablation experiments on the World 

Knowledge Network and the Definition Knowledge Network on the 

SIGHAN15 test dataset. WK represents the world knowledge module, and 

DK represents the definition knowledge module. 

Method 

Detection Level Correction Level 

P R F1 P R F1 

Ours 79.1% 82.7% 80.9% 77.9% 81.2% 79.5% 

Ours-WK 78.9% 81.8% 80.3% 77.4% 80.8% 79.1% 

Ours-DK 78.8% 80.9% 79.8% 77.1% 80.6% 78.8% 

Ours-WK-

DK 

78.1% 80.5% 79.3% 76.0% 80.1% 78.0% 

BERT 74.2% 78.0% 76.1% 71.6% 75.3% 73.4% 

Table 5  Shows the results of ablation experiments on the Correction 

Network on the SIGHAN15 test dataset. 

Method 

Detection Level Correction Level 

P R F1 P R F1 

Ours 79.1% 82.7% 80.9% 77.9% 81.2% 79.5% 

Using only 

[mask] for 

masking 

77.9% 81.2% 79.5% 76.4% 79.3% 77.8% 

Without using 

mask-self-

attention. 

75.3% 79.9% 77.5% 74.1% 76.6% 75.3% 

BERT 74.2% 78.0% 76.1% 71.6% 75.3% 73.4% 

Table 6  Results of ablation experiments on glyph embedding and pinyin 

embedding on SIGHAN15 test dataset. GE represents glyph embedding, 

and PE represents pinyin embedding. 

Method 
Detection Level Correction Level 

P R F1 P R F1 

Ours 79.1% 82.7% 80.9% 77.9% 81.2% 79.5% 

Ours-GE 77.1% 79.3% 78.2% 73.8% 76.2% 75.0% 

Ours-PE 76.8% 79.4% 78.1% 73.3% 77.7% 75.4% 

Ours-GE-PE 75.2% 79.0% 77.1% 72.4% 76.1% 74.2% 

4.7 Case Study 

In order to visually demonstrate the impact of incorporating 

world knowledge and definition knowledge into the CSC 

model, we present the correction results of four cases in 

Table 7. During pre-training, ChineseBERT [23] 

incorporates the phonetic and character shape information 

of Chinese characters. Compared to directly using 

ChineseBERT for CSC, our model integrates world 

knowledge and definition knowledge. From the cases in the 

table, it can be observed that due to the identical 

pronunciation of "恒山(Mount Heng)" and "衡山(Mount 

Heng)" both of which are well-known mountains in China, 

but "恒山(Mount Heng)" is located in Datong City, Shanxi 

Province, while " 衡 山 (Mount Heng)" is situated in 

Hengyang City, Hunan Province. ChineseBERT tends to 

correct errors into visually similar characters, but it does 

not take actual background knowledge into account. 

However, when guided by world knowledge, our model 

easily identifies that the correct term in the example should 

be "恒山(Mount Heng)" instead of "衡山(Mount Heng)". 

Table 7  Here are examples of our model's inputs/outputs, with red 

indicating spelling errors and blue indicating correct ones. 

Error correction guided by world knowledge 

Wrong：兵马车(carriage)位于秦始皇陵以东约两公里处。 

Correct：兵马俑(Terracotta Warriors and Horses)位于秦始皇陵以

东约两公里处。 

ChineseBERT: 兵马车(carriage)位于秦始皇陵以东约两公里处。 

Ours：兵马俑(Terracotta Warriors and Horses)位于秦始皇陵以东

约两公里处。 

Wrong：我们去山西大同游览了蘅(reed)山悬空寺。 

Correct：我们去山西大同游览了恒山(Mount Heng)悬空寺。 

ChineseBERT: 我们去山西大同游览了衡山(Mount Heng)悬空

寺。 

Ours：我们去山西大同游览了恒山(Mount Heng)悬空寺。 

Error correction guided by definition knowledge 

Wrong：铁轨上开来一辆或(or)车。 

Correct：铁轨上开来一辆火车(train)。 

ChineseBERT：铁轨上开来一辆货车(truck)。 

Ours：铁轨上开来一辆火车(train)。 

Wrong：他的眼竟(unexpectedly)很好看，因为他瞳孔周围是蓝

色的。 

Correct：他的眼睛(eye)很好看，因为他瞳孔周围是蓝色的。 

ChineseBERT：他的眼镜(glasses)很好看，因为他瞳孔周围是蓝

色的。 

Ours：他的眼睛(eye)很好看，因为他瞳孔周围是蓝色的。 

 After incorporating definition knowledge, by learning 

the definitions of "眼睛(eye)" and "眼镜(glasses)" from the 

dictionary, the model can understand that "an eye is 
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typically composed of the cornea, pupil, iris, lens, retina, 

vitreous body, etc.," while “眼镜(glasses)”are "lenses worn 

on the eyes to correct vision or protect the eyes." Based on 

the key information " 瞳孔 (pupil)" in the erroneous 

sentence, it can be inferred that "眼镜(glasses)" should be 

corrected to "眼睛(eye)"。 

 In summary, the method we propose can effectively 

utilize world knowledge to correct errors that do not align 

with the actual context. Adding world knowledge and 

definition knowledge can assist the model in better 

understanding the true intended meaning of the original 

sentence. 

5. Conclusion 

We have introduced a Chinese Spelling Correction model 

that effectively leverages world knowledge from a 

knowledge graph and definition knowledge from a 

dictionary. To better incorporate these two heterogeneous 

forms of knowledge into the model, we have constructed a 

knowledge tree network to inject world knowledge into 

sentences. Additionally, to efficiently utilize the definition 

knowledge from the dictionary, we have employed a 

contrastive learning approach, creating positive and 

negative example pairs for model fine-tuning. Results on 

the SIGHAN dataset demonstrate the positive guiding 

significance of our method for Chinese Spelling Correction 

tasks. In the future, we will explore the role of this 

knowledge in models for Chinese grammar correction. 
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