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PAPER
Agent Allocation-Action Learning with Dynamic Heterogeneous
Graph in Multi-Task Games

Xianglong LI†, Yuan LI†a), Jieyuan ZHANG†, Xinhai XU†, and Donghong LIU†b), Nonmembers

SUMMARY In many real-world problems, a complex task is typically
composed of a set of subtasks that follow a certain execution order. Tradi-
tional multi-agent reinforcement learning methods perform poorly in such
multi-task cases, as they consider the whole problem as one task. For such
multi-agent multi-task problems, heterogeneous relationships i.e., subtask-
subtask, agent-agent, and subtask-agent, are important characters which
should be explored to facilitate the learning performance. This paper pro-
poses a dynamic heterogeneous graph based agent allocation-action learning
framework. Specifically, a dynamic heterogeneous graph model is firstly
designed to characterize the variation of heterogeneous relationships with
the time going on. Then a multi-subgraph partition method is invented to
extract features of heterogeneous graphs. Leveraging the extracted features,
a hierarchical framework is designed to learn the dynamic allocation of
agents among subtasks, as well as cooperative behaviors. Experimental
results demonstrate that our framework outperforms recent representative
methods on two challenging tasks, i.e., SAVETHECITY and Google Re-
search Football full game.
key words: dynamic heterogeneous graph, allocation-action learning,
multi-task games

1. Introduction

Great progress has been made in the domain of multi-agent
reinforcement learning in recent years [1]–[4]. Most works
concentrate on solving a single task by learning the coop-
erative behaviours of agents. However, many real-world
problems often consist of a set of subtasks, which should be
completed by the cooperation of agents. For example, fire-
fighting [5] involves subtasks like water supply and fire con-
trol. Firefighters need to be distributed to subtasks and then
they collaborate to accomplish all subtasks in accordance
with the fire-fighting procedure. The multi-agent multi-task
game requires coordination among multiple agents, which
involves two intertwined problems. One is that agents should
be dynamically assigned to subtasks. The other one is that
how the policy of each subtask is learned with dynamically
assigned agents.

Designing strategies for dynamically allocating agents
to complete subtasks poses significant challenges in a multi-
agent multi-task game. Firstly, the game state changes dy-
namically over time, and the relationships between subtasks
are complex and changeable. This complexity increases the
difficulty of finding an effective agent allocation scheme.
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Secondly, the decision-making of agents is not only influ-
enced by collaborative relationships within allocated sub-
tasks but also by dynamic changes in the external states of
the subtasks. Some works [5]–[8] propose a layered ap-
proach to solve the above problems, in which the upper layer
is agent allocation and the lower layer is agent execution.
For example, the work [9] learns a centralized controller to
coordinate decentralized agents into different teams, where
each agent in the team executes independently based on local
observations. The work [10] leverages task structure decom-
posability to reduce the learning space by allowing agents
to form local groups, enabling targeted attention to specific
subtasks and achieving superior performance. However, they
only consider the cooperation of agents within subtasks,
overlooking the collaboration among agents across differ-
ent subtasks. Additionally, relationships among subtasks,
agents, and subtask-agent interactions are not fully explored.
This limitation hinders inter-agent coordination and prevents
valuable insights into the agent’s learning process.

To illustrate such relationships, we provide an example
which is shown in Fig. 1. There are two subtasks i.e., left-
wing subtask and penalty-area subtask, with which players
work collaboratively to score a goal. For player 2, to make a
good decision, he should first pay attention to players within
the same subtask, i.e., player 1, player 3, player 4. Strong
relationships between player 2 and the three players should
be established. Meanwhile, player 2 should judge the overall
situation in the playground, which means information about
the two subtasks should be considered. Relationships for
the two subtasks and for player 2 with the left-wing subtask
should be established. Further, player 2 should also keep
an eye on players in the left-wing subtask to decide which

Fig. 1 Different cooperative relationships in a soccer game.

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers



LI et al.: AGENT ALLOCATION-ACTION LEARNING WITH DYNAMIC HETEROGENEOUS GRAPH IN MULTI-TASK GAMES
1041

direction he should run. Relationships between player 2 and
player 5, 6, 7 should be established. Therefore, building a
relationship graph among subtasks and agents will be ben-
eficial for the learning of making decisions for each player.
How to construct and utilize such graph to facilitate the
learning of agent allocation and actions is the main problem
considered in our study.

In this paper, we propose an agent allocation-action
learning framework based on the construction of the dy-
namic heterogeneous graph, which enables the effective
exploration of different relationships in multi-agent multi-
subtask games. Multi-subtasks are typically carried out in
accordance with a specific process, and one common method
for task decomposition is the utilization of the Behavior Tree
(BT), a widely adopted tool. The considered multi-agent
multi-subtask problem has two key characters, i.e., subtasks
are not active all the time and heterogeneous relationships
should be properly modelled. To characterize the variation
of relationships with the time going on, we construct a dy-
namic heterogeneous graph with agent-agent, subtask-agent,
subtask-subtask edges. Two types of nodes, i.e., active sub-
task nodes and agent nodes, are involved in the graph. For
extracting features of the heterogeneous graph, we design
a multi-subgraph partition method which divide the hetero-
geneous graph to three different subgraphs. We employ the
graph attention network model on each subgraph to calculate
weights on different edges and aggregate node features ac-
cording to the weights. With generated features, we design
a hierarchical framework for learning both agent allocation
policy and action policy.

Finally, we conduct extensive experiments to evalu-
ate our framework on two challenging benchmarks, i.e.,
SAVETHECITY [5] and Google Research Football full
game. We compare the proposed method with some re-
cent representative baselines. With introduced the heteroge-
neous graph and feature extraction mechanism, our method
performs better than other hierarchical learning methods.
Compared to the typical multi-agent method, i.e. QMIX,
our method shows great advantages on multi-task problems,
gaining much better performance. We also make some abla-
tion studies to show the effectiveness of each component of
the proposed framework.

2. Related Work

In this section we delve into some recent hierarchical meth-
ods used for learning agent allocation and strategies, show
how they handle such problems, and point out differences
with our work.

The multi-agent multi-task problem was proposed in
[11], which makes a formal analysis of the taxonomy of
agent-task allocation in multi-robot systems. Some hierar-
chical methods have been proposed for this problem. The
work [6] introduces a hierarchical method for which the up-
per layer is the task allocation and the lower layer is the
task execution. The task allocation is solved by heuristic
algorithms, while the task execution is solved by a coordi-

nated reinforcement learning algorithm. The work [12] in-
troduces a learning-based approach for task allocation, which
assumes pre-existing subtask execution policies. However,
these works fail to simultaneously learn the agent allocation
policy and the task execution policy.

For learning in both layers, the work [5] introduces a
general learning method for addressing diverse multi-agent
subtasks, where each subtask is presumed to be independent,
and each agent only focuses on the assigned subtask. Some
works consider to use value decomposition based methods
to enhance cooperation of agents in different subtasks. The
work [7] learns to group agents into different roles which ex-
ecute different subtasks. A mix network is used to strengthen
cooperative behaviors of all agents. The work [8] involves
training a general cooperative decentralized policy to im-
prove teamwork among agents by teaching them different
skills. However, the subtask information is not utilized dur-
ing the learning process. The work [13] proposes a hierar-
chical multi-agent allocation-action learning framework for
multi-subtask games, which including allocation learning
and action learning, which could allocate agents to differ-
ent subtasks as well as compute the action for each agent in
real-time. However, these works ignore the impact of the
relationship between subtasks, between agents, and between
agents and subtasks on agent allocation and action execution.

3. Background

3.1 Heterogeneous Graph Neural Network

Heterogeneous graphs [14] allow for the representation of
complex relationships and interactions between entities
in various applications, including recommendation sys-
tems [15], social networks [16], knowledge graphs [17], and
biology [18]. A heterogeneous graph is defined as a tuple
G = (V,E,TV ,TE ) with a node set V , an edge set E , a node
type set TV , and an edge type set TE . Each node v is as-
signed a node type. Each edge connects two nodes (u, v)
where u, v ∈ V , and each edge e ∈ E is assigned an edge
type. Each heterogeneous graph has multiple node and edge
types such that |TV |+ |TE | > 2. Different types of nodes and
edges have attribute representations of varying dimensions.
Heterogeneous graph neural networks (HGNs) [19], [20] are
designed to process and extract features from heterogeneous
graphs. HGNs acquire node embedding by aggregating and
propagating information across diverse node types and their
relationships, which enables the extraction of comprehensive
semantic information and relational patterns. Subsequently,
HGNs utilize the node embedding for tasks like node clas-
sification, link prediction, and graph-level prediction. For
nodes in a heterogeneous graph, the node embedding can be
calculated using the following Eq. (1):

hk
v = AGGREGATEk

(
hk−1
u ,∀u ∈ N(v)

)
(1)

Here, hk
v represents the embedding of node v at the k-th

layer, N(v) denotes the set of neighboring nodes of v, and
hk−1
u represents the embedding of node u at the (k-1)-th layer.
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AGGREGATEk is the aggregation function for the k-th layer,
used to aggregate the embedding information of neighboring
nodes. Common forms of aggregation functions include
average pooling, max pooling, or attention mechanisms.

3.2 Multi-Agent Reinforcement Learning

We consider a multi-agent game that can be modeled as
a Markov decision process [21]. It be represented the tu-
ple ⟨N,S,A,R,P⟩, where N = {1,2, . . . ,N} is the set of
agents. S =

{
St
}T
t=0 is the environment state where St is the

state at time t and T is the maximum time steps. A = {Ai}Ni=0
represents the action space for all agents. R : S × A → R
is the reward function. P = {Pa

ss′ | s, s′ ∈ S,a ∈ A} is
the state transition function, and Pa

ss′ gives the probability
from state s to state s′ if the action a is taken. A popular
solution approach for multi-agent games is the value decom-
position based MARL method [7], [21]. Each agent i is
equipped with an individual neural network that calculates
the agent’s specific state-action value Qi , which represents
the expected cumulative future rewards when taking a spe-
cific action a ∈ Ai in a given state s. During the training
process, the global state-action value Qtot is computed as a
function of the individual values Qi of all agents to enhance
cooperative behaviors of all agents. Currently, various al-
gorithms have been proposed to investigate the relationship
between Qtot and Qi . For example, the summation approach
utilized in VDN [22] and the employment of a mixing net-
work in QMIX [23]. The entire neural network is updated
using the TD-loss, as represented in (2), where R is the imme-
diate reward obtained after taking action a in the current state.
The discount factor γ balances the importance of current and
future rewards, while s′ denotes the next state achieved after
taking action a. The term maxa′ Qtot (s′,a′) represents the
target Q-value, indicating the maximum Q-value action a′ in
the next state s′. On the other hand, Qtot (s,a) represents the
current estimate of the global state-action value provided by
the model.

loss = R + γmaxa′ Qtot (s′,a′) − Qtot (s,a) (2)

3.3 Behavior Trees

Thanks to the modularity and reactivity of BTs [24]–[26],
they serve as organizational structures for multiple subtasks
in complex tasks. BTs provide an intuitive way to describe
the behavior of an agent and support the decomposition,
execution, and decision-making of complex tasks. A BT
consists of a series of nodes, with each node representing a
specific behavior or control structure. The nodes in a BT can
be classified into three main types: Action, Condition, and
Control Nodes. Action nodes represent concrete actions or
operations, such as moving, attacking, or turning on lights.
Condition nodes determine the execution path based on the
satisfaction of certain conditions. Control Nodes are used to
organize and control the execution order and conditions of

other nodes. The common types of control flow nodes are
Sequence, Fallback, and Parallel. A BT decomposes tasks
into a series of subtasks and representing them as nodes in a
behavior tree [27], the execution flow of tasks can be better
organized and managed. For example, subtasks that need
to be executed in sequence are organized through Sequence
nodes. Selection nodes can organize subtasks with prior-
ity. Parallel nodes are suitable for situations where multiple
subtasks need to be executed simultaneously.

4. Methodology

In this section, we present a dynamic heterogeneous graph
based agent allocation-action learning framework (DyHG-
3A) for multi-agent multi-task game. In the following, We
first introduce the overall design of our framework. Then we
detail three important components of our framework, i.e.,
the dynamic heterogeneous graph construction, the hetero-
geneous graph attribute embedding and the agent allocation-
action Learning. Finally, the training of DyHG-3A is intro-
duced.

4.1 Overall Design of DyHG-3A

The architecture of DyHG-3A contains three modules as
shown in Fig. 2.

(1) Dynamic Heterogeneous Graph Construction mod-
ule: The detailed execution process of multiple subtasks is
organized through a BT, each agent (red circle) needs be as-
sociated with a certain activated subtask (green triangle). A
dynamic heterogeneous graph is constructed to characterize
relations among subtasks, among agents and subtask-agent.

(2) Heterogeneous Graph Attribute Embedding mod-
ule: An embedding mechanism is designed to extract fea-
tures from different node attributes of dynamic heteroge-
neous graphs. (GAA)t , (GSS)t , and (GSA)t represent the
agent subgraph, the subtask subgraph, and the subtask-agent
subgraph at time step t, respectively. Then different GAT
networks are used to aggregate distinct node attributes. For
the subtask-agent subgraph, two different Multilayer Percep-
trons (MLPs) are set up to unify the node feature dimensions.

(3) Agent Allocation-Action Learning module: This
module facilitates the allocation of agents to specific sub-
tasks, enabling efficient action execution. It consists of
two architectures: the agent allocation learning network
and the agent action learning network. The input of the
agent allocation learning network includes the observation
oti = (HA)ti ⊕ (HAA)ti for each agent and the attribute matrix
X t = xt1, . . . , x

t
j for all subtasks at the time step t, where

xtj = (HS)tj ⊕ (HSS)tj , and ⊕ denotes the concatenation oper-
ation.

4.2 Dynamic Heterogeneous Graph Construction

Let us consider a multi-agent multi-task problem in which
there are M subtasks and N agents, which is modeled as a
heterogeneous graph G = (V,E,TV ,TE ). V represents the
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Fig. 2 The overall framework of DyHG-3A.

set of agents and active subtasks. There are three types of
undirected edges in E , i.e., subtask-subtask edges signifying
collaboration relationships among subtasks, subtask-agent
edges denoting agents cooperating to complete a certain
subtask, and agent-agent edges representing collaboration
between agents. At time step t, the heterogeneous graph is
represented by Gt . V t = V t

S

∪
VA is the set of heteroge-

neous nodes in which V t
S

is the set of active subtask nodes
and VA is the set of agent nodes. Note that V t

S
varies with

the time as activate status of the subtask always changes.
E t = {E t

SS
,E t

AA
,E t

SA
} is the set of heterogeneous edges in

Gt , where E t
SS

, E t
AA

and E t
SA

represent the sets of subtask-
subtask edges, agent-agent edges, and subtask-agent edges,
respectively. The dynamic heterogeneous graph construc-
tion process is shown in Algorithm 1, which is named as
DyHGC. The input is the current time step t, the subtask set

M and the agent set N . The output is a heterogeneous graph
at time step t. Initially, V t

S
and E t are set to be empty while

VA is set to be N (step 1). If a subtask m is activated, it is
added to the V t

S
(Steps 3–4). Meanwhile, edges between sub-

task m and all agent nodes are established, which are added
to the set E t

SA
(Steps 5–6). Additionally, if parallel subtasks

are detected between any two subtasks, edges are established
and added to E t

SS
(Steps 7–9). For any two agent node, we

mainly focus on adjacent agents. In a large-scale multi-agent
environment, not all agents need to interact with each other
because the number of agents is large and the distance be-
tween some agents may be extremely large. Therefore, we
establish an edge when the Euclidean distance between them
is smaller than a predefined threshold d (Steps 10–13). Fi-
nally, we obtain a heterogeneous graph with active nodes and
generated edges at time step t.

4.3 Heterogeneous Graph Attribute Embedding

Utilizing the heterogeneous graph Gt at time step t, the
main task of heterogeneous graph attribute embedding is to
capture heterogeneous node relationship information. We
introduce a multi-subgraph partition method that uses the
attention model to capture the heterogeneity attributes. Ac-
cording to the edge type, Gt is decomposed into three types
of subgraphs, i.e., agent subgraph (GAA)t , subtask sub-
graph (GSS)t , and subtask-agent subgraph (GSA)t . For each
subgraph, we utilize Graph Attention Network (GAT) [28]
model to learn the attention weights of each node’s neighbor-
hoods and generate new latent representations by aggregating
the attributes of these important neighborhoods. The atten-
tion weight coefficient of node pair (z, z′) can be calculated
as:

I tz,z′ = So f tmax(
exp

(
σ
(
W ·

[
at
z ∥at

z′
] ))

∑
k∈N t

z
exp

(
σ
(
W ·

[
at
z ∥at

k

] )) ) (3)
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where at
z represents the attribute vector of node z, W is the

parameterized weight vector of the attention function, and
N t
z is the sampled neighbors of node z at time step t. σ repre-

sents the LeakyReLU activation function, and ∥ denotes the
operation of concatenation, subsequently normalized by the
Softmax function. After that, aggregating the neighbors’ la-
tent embedding with calculated attention weight coefficients,
we can obtain the final attribute representation of node i for
the subgraph type and the time step t as:

(Hz)t = σ
©«
∑
z′∈N t

z

I tz,z′ · at
z
ª®¬ (4)

where (Hz)t is the aggregated attribute embedding of node
z at the current time step t.

Subtask Subgraph Attribute Embedding The atten-
tion attribute embedding for the subtask subgraph aims to
learn attention weights for two subtask nodes and gener-
ate a new latent attribute representation by aggregating the
attributes of the subtask neighborhoods. The attribute of
subtask node j ∈ V t

S
is denoted by xtj ∈ Rds , where ds

represents the subtask attribute dimension. For (GSS)t
at time step t, the final attribute representation of sub-
task node j calculated by Eqs. (3) and (4) is denoted by
(HSS)tj . To obtain stable and effective attribute represen-
tations, we utilize the GAT model with multi-head mecha-
nisms. Specifically, we employ k independent GAT mod-
els in parallel and concatenate the learned features to ob-
tain the output embedding. Consequently, the multi-head
attention representation of subtask node j can be calcu-
lated as (HSS)tj = Concat((HSS)1j , . . . , (HSS)kj ). After ap-
plying the multi-head GAT models, we obtain a set of sub-
task node attribute representations for (GSS)t , denoted as
{(HSS)t1, . . . , (HSS)t|V t

S |
; (HSS)tj ∈ Rds }.

Agent Subgraph Attribute Embedding The agent
subgraph attention attribute embedding plays a crucial role
in capturing collaborative attributes among different agents.
The attribute of agent node i ∈ VA is denoted by oti ∈ Rda ,
where da represents the agent attribute dimension. For
(GAA)t at time step t, the final attribute representation
of agent node i calculated by Eqs. (3) and (4) is denoted
by (HAA)ti . After applying the multi-head GAT mod-
els, we obtain sets of agent node attribute representations
{(HAA)t1, . . . , (HAA)t|VA |; (HAA)ti ∈ Rda }.

Subtask-Agent Subgraph Attribute Embedding The
subtask-agent subgraph attention attribute embedding en-
ables the capture of heterogeneous attributes between sub-
tasks and agents. Note that subtask nodes and agent nodes
have distinct dimensional attributes, making the direct ag-
gregation of heterogeneous neighbor information infeasible.
We begin by using two non-linear transformation networks to
map the initial attributes of subtask nodes and agent nodes
to the same feature space. It can be described by Eq. (5),
where WS , WA, bS , and bA are the shared learnable weight
matrices and bias vectors.

xtj = σ(WS · xtj + bS); oti = σ(WA · oti + bA); (5)

Then, in (GSA)t , the attention weights coefficient be-
tween subtasks and agents are separately calculated using
Eq. (3). Note that the neighborhood nodes for subtask node
j consist of the set of agent nodes, while for agent node i,
the neighborhood nodes consist of the set of subtask nodes.
Subsequently, node attributes are aggregated through Eq. (4),
with the aggregated attributes of agent nodes denoted as
(HA)tj , and the aggregated attributes of subtask nodes de-
noted as (HS)tj . After applying the multi-head GAT mod-
els, we obtain sets of attribute representations for subtask
nodes and agent nodes, denoted as {(HS)t1, . . . , (HS)t|V t

S |
}

and {(HA)t1, . . . , (HA)t|VA |}, respectively, for (GSA)t .
Finally, the attribute embeddings of subtask nodes

and agent nodes are denoted as xtj = (HSS)tj ∥(HS)tj and
oti = (HAA)ti ∥(HA)ti , respectively. These embeddings will be
utilized in the agent allocation-action learning module.

4.4 Agent Allocation-Action Learning

Based on the node attribute embedding generated in the pre-
vious section, we introduce a hierarchical mechanism for
learning the dynamic allocation of agents among subtasks,
as well as cooperative behaviors. On the upper layer, a sub-
task allocation module is used to connect an agent network
to a subtask network, i.e., assigning each agent to a certain
subtask. For the lower layer, an action learning module is
designed to compute appropriate actions for each agent with
the allocation result. All active subtask attribute embedding
X t = xt1, x

t
2, . . . , x

t

|V t
S |

are encoded by a neural network to

vectors, i.e., Ut = u1,u2, . . . ,u|V t
S | . Each agent attribute em-

bedding oti are encoded by another neural network and then
multiplied with Ut . The output is the Q-values of all possible
choices of subtasks, i.e., Q̄1, Q̄2, . . . , Q̄ |V t

S | . In the execution
mode, the index corresponds to the maximum value is the
subtask that should be assigned to the agent i. Once a subtask
m is assigned to agent i, each agent attribute embedding oti
will be passed to the input of the subtask network, which then
select a proper action a ∈ A for an agent among all possible
actions, where A is action space. The output of the subtask
network is the vector of Q-values of all actions for agent
i < |VA |, i.e., Qi

1,Q
i
2, . . . ,Q

i
|A | . To combine Q-values of all

agents together, we introduce a neural network f to compute
Qtot , i.e., Qtot = f (Q1

a1,Q
2
a2, . . . ,Q

|VA |
aN

). ai is the action
selected by agent i following the ϵ−greedy principle. We
train our framework end-to-end by optimizing the following
TD-loss function:

Loss = r t + (γ1 max
m′

Q̄(X t+1,ot+1
i ,m

′) − Q̄(X t,oti ,m))

+ (γ2 max
a′

Qtot (ot+1
i ,a

′) − Qtot (oti ,a)) (6)

where γ1 is the discount factor of allocation learning, γ2 is
the discount factor of action learning.
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4.5 The Overall Training

In this section, we describe how heterogeneous graph con-
struct, attribute embedding, and allocation-action learning
work together in our framework. The whole learning pro-
cedure is illustrated in Algorithm 2. Each episode repre-
sents a game round, and L represents the maximum train-
ing episodes. The maximum time steps of the game are
T . For each time step t, getting observations of all agents
Ot = ot1,o

t
2, ·,o

t
|VA | , and attribute of all activate subtasks X t .

Firstly, with Algorithm 1, a heterogeneous graph is con-
structed in Step 5. Then, Steps 6–8 to obtain attribute em-
bedding between two different nodes. In steps 9–10 allocate
agents to complete the subtask. After completing the agent
allocation for each agent, obtain the specific action of each
agent through the subtask network (steps 11–12), and related
samples are generated. Finally, the keyword “UPDATE” in
step 14 is used to control the frequency of updating the neural
networks.

5. Experiments

In this section, we evaluate the performance of our pro-
posed framework DyHG-3A on two challenging environ-
ments, i.e., SAVETHECITY [5] and Google Research Foot-
ball (GRF) [29] full game.

Fig. 3 Left is a snapshot of 20a_20b scenario. Right is the structure of
a BT organization subtasks, where the number represents the index of the
building.

Fig. 4 Two scenarios with different number of subtasks for GRF.

5.1 Scenarios

SAVETHECITY is an environment similar to a “Search-
and-Rescue task [30]” where agents must coordinate fire-
fighting and rebuilding in a burning city. The complete
scenario consists of a 16x16 grid with N agents (circles)
and N + 1 buildings (squares) as shown in Fig. 3 (Left). The
buildings are randomly generated on the map and have a cer-
tain probability of catching fire (red bars) at the start of each
episode, which decreases their “health” (black bars). There
are three types of agents: firefighter (red), builder (blue),
and generalist (green). Firefighters are most effective at ex-
tinguishing fires, while builders excel at repairing damaged
buildings. The generalists have twice the movement speed of
firefighters and builders, and it can prevent further damage to
burning buildings while assisting other agents. We first need
to assign agents to different burning buildings, and then learn
low-level actions to navigate between subtasks and cooperate
to complete the firefighting and building repair subtasks.

Google Research Football GRF simulates a complete
football game with two teams and a ball. Each team is con-
trolled by 11 agents that can receive state information from
the field and decide their next actions. The goal of the game
is to score as many goals as possible by shooting the ball
into the opponent’s goal. We divide the field into Back-field
and Front-field zones. Under different task decomposition
rules, we have constructed two distinct BTs comprising vary-
ing quantities of subtasks, 10_subtasks and 18_subtasks,
as shown in Fig. 4. In the 10_subtasks scenario (Fig. 4 (a)),
the Back-field has five defensive subtasks for left-side, right-
side, left-corner, right-corner, and penalty. The left-side
and right-side subtasks work in parallel to protect the cen-
tral region of the Back-field. The left-corner, right-corner,
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Fig. 5 Performance on three SAVETHECITY scenarios.

and penalty area defensive subtasks operate in parallel, pro-
viding protection to the goal area, with their parent nodes
executed sequentially. The Front-field has five offensive sub-
tasks for the left-side, right-side, left-corner, right-corner,
and penalty. The left-side and right-side subtasks are par-
allel, and so are the corner and penalty subtasks, with their
parent nodes executed sequentially. For the 18_subtasks
scenario (Fig. 4 (b)), the Back-field has one organizing of-
fense subtask and eight defensive subtasks. The defense
subtasks execute marking and interception in the left-side,
right-side, central-area, and penalty-area areas. The offense
subtask activates after gaining ball possession. The Front-
field has one defense subtask and eight offense subtasks for
ball control and passing in the left-side, right-side, central-
area, and penalty-area.

5.2 Setting

We make extensive comparisons for the proposed DyHG-3A
framework with the following four baselines. QMIX [23]:
It is a classical multi-agent value decomposition method,
which is used to learn the actions of all agents without al-
locating the agents. ALMA [5]: Agents are allocated to
specific subtasks and each agent acts productively towards
their assigned subtask alone. HSD [8]: It is a hierarchi-
cal method designed to improve teamwork among agents by
teaching them different skills. MACC [10]: It utilizes task
decomposability to learn subtask representations, enabling
agents to focus on the most relevant subtasks for effective co-
ordination. MAAAL [13]: It could automatically learn the
allocation of agents and the subtask policy simultaneously.
However, it does not model various complex relationships
and exploit them. All experiments were conducted on a com-
puter with an i7-11700F CPU, RTX3060 GPU, and 32GB
of RAM. The discount factors were set to γ1 = 0.99 and
γ2 = 0.99. Optimization was performed using Adam with
a learning rate of 5 × 10−4. For exploration, we employed
the ϵ−greedy strategy with ϵ linearly annealed from 1.0 to
0.05 over 50,000 time steps and then kept constant for the
remainder of the training.

5.3 Performance

SAVETHECITY: We organize the SAVETHECITY task
using a BT, as shown in Fig. 3 (Right). Each building node
contains a firefight subtask and a repair subtask, which have

different precondition nodes to determine whether the build-
ing is on fire and requires repair. Agents receive rewards
for successfully extinguishing fires and repairing buildings,
while penalties are imposed when buildings are destroyed
or their health deteriorates. We considered three scenarios
with increasing number of agents and subtasks, i.e., 7a_7b,
20a_20b and 40a_40b.

Figure 5 shows comparing results of the proposed
method, DyHG-3A, with other baseline methods. As we
can see, DyHG-3A achieves the best performance in all sce-
narios. In the 7a_7b scenario, even though MAAAL could
achieve the satisfactory success rate, DyHG-3A still has a
better performance. Compared to MAAAL, the success rate
has increased by about 14%. In the 20a_20b and 40a_40b
scenarios, it improves the success rate by about 27% and
about 28%, respectively, compared with MAAAL. We no-
tice that the performance of all methods decreases as the
number of subtasks and agents increases. For the 40a_40b
scenario, DyHG-3A drops by about 18%, while MAAAL,
MACC, HSD and ALMA drop by about 35%, 48%, 44%
and 25%, respectively, which illustrates the applicability of
DyHG-3A to larger-scale scenarios. Another point to note
is QMIX performs poorly in these two scenarios, the reason
is that agents need to deal with different subtasks, but the
algorithm based on value decomposition always tends to be
similar due to the parameter sharing mechanism.

GRF: In the two GRF scenarios, i.e., 10_subtasks
and 18_subtasks, we apply the proposed method for the
Back-field and Front-field, respectively, to optimize player
performance. This enables the players to execute the ap-
propriate subtask at different time steps. We compared the
training performance of the DyHG-3A framework with the
baselines. The reward was +1 for scoring a goal and −1 for
conceding a goal. The training curves are shown in Fig. 6,
where the x-axis represents the training set in millions, and
the y-axis represents the win rate. Across all training curves,
the DyHG-3A outperforms all baselines on both back-field
and front-field for all scenarios.

Figures 6 (a) and 6 (b) show the performance of all
methods in the Back-field and Front-field of 10_subtasks
scenario, respectively. It can be seen that after sufficient
training, DyHG-3A and MAAAL performed the best, How-
ever, compared to MAAAL, the win rate in the back-field has
increased by about 11%, and the win rate in the front-field
has increased by about 14%. It is clear to see that classi-
cal value decomposition QMIX method performs poorly due
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Fig. 6 Performance on two GRF scenarios.

to the lack of assignment of performing agents to subtasks.
Compared with ALMA, DyHG-3A achieved an about 40%
improvement in win rate. This is because ALMA focuses
only on the cooperation of agents within specified subtasks,
ignoring cooperation among agents across subtasks. Com-
pared with HSD, DyHG-3A exhibits an enhanced win rate
of about 30%, attributed to HSD not fully utilizing sub-
task information during the process of assigning skills to
agents. We also observe that MACC performs worse than
DyHG-3A, because although MACC considers subtask state
information, while it does not consider the more complex
cooperative relationship between subtasks. It is interesting
to see that the performance in the Front-field is slightly better
than in the Back-field, as the Front-field directly increases
victories while the Back-field improves the defense win rate.

Furthermore, we conducted the same experiment on the
18_subtasks scenario, with the results shown in Figs. 6 (c)
and 6 (d). As we can see, similar conclusions are also held.
This further proves that different BT organization methods
for subtasks have little impact on the performance of DyHG-
3A, which can achieve optimal performance in both scenar-
ios.

5.4 Ablation Studies

In this section, we conducted ablation experiments to eval-
uate the contribution of each component in the DyHG-3A
framework. For the heterogeneous graph attribute embed-
ding module, we separately masked the subtask nodes and
agent nodes. The raw attributes of the masked nodes did
not go through subgraph attribute embedding and are di-
rectly connected to the agent allocation-action module. The
framework masking the subtask nodes is named DyHG-3A
no-Subtask, and the framework masking the agent nodes is
named DyHG-3A no-Agent. Setting equal attention weight
coefficients among all nodes is achieved through Eqs. (3),
and is denoted as DyHG-3A Equal-Attention. Additionally,
we replace the hierarchical agent allocation-action learning
module with a cooperative multi-agent reinforcement learn-

Fig. 7 Ablation results for SAVETHECITY and for 10_subtasks in
GRF.

ing algorithm like QMIX, named DyHG-3A No-hierarchy.
We conducted ablation studies on the SAVETHECITY

20a_20b scenario and the GRF scenario 10subtasks, and
the results are shown in Fig. 7. DyHG-3A No-hierarchy ob-
tains the worst performance, which indicates the hierarchical
agent allocation-action learning plays a key role for the per-
formance of DyHG-3A. DyHG-3A outperformed DyHG-3A
Equal-Attention, highlighting the significance of exploring
diverse attention weights among subtasks, among agents,
and agent-subtask. DyHG-3A no-Agent and DyHG-3A no-
Subtask perform worse than DyHG-3A, emphasizing the
necessity of jointly considering relationships among sub-
tasks, among agents, and agent-subtask for DyHG-3A. Ad-
ditionally, DyHG-3A no-Subtask outperformed DyHG-3A
no-Agent, potentially owing to the dual roles played by agent
attribute embeddings in both allocation learning and action
learning.

6. Conclusion

In this paper, we propose a dynamic heterogeneous graph
based agent allocation-action learning (DyHG-3A) frame-
work, which enables the effective exploration of differ-
ent relationships in multi-agent multi-task games. The
DyHG-3A first constructs a dynamic heterogeneous graph
to model complex heterogeneous relationships among sub-
tasks, among agents, and between agent-subtask. To ef-
fectively extract features from the heterogeneous graph, we
propose a multi-subgraph partitioning method. This method
employs a graph attention network model to compute edge
weights on the heterogeneous graph and aggregates node
features based on these weights. Finally, we introduce a hi-
erarchical learning framework that leverages the generated
subtask and agent features for allocation learning and action
learning. This framework allocates agents to different sub-
tasks and calculates actions for each agent in real time. The
experiment results show that the DyHG-3A achieves superior
performance compared to the recent representative methods
on both SAVETHECITY and Google Research Football full
game tasks. We hope that our approach can provide valuable
guidance for addressing large-scale multi-agent multi-task
problems in real-world settings in the future.
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