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PAPER
Agent Allocation-Action Learning with Dynamic Heterogeneous
Graph in Multi-task Games

Xianglong LI†, Yuan LI†, Jieyuan ZHANG†, Xinhai XU†∗, and Donghong LIU†∗, Nonmembers

SUMMARY In many real-world problems, a complex task is typically
composed of a set of subtasks that follow a certain execution order. Tradi-
tional multi-agent reinforcement learning methods perform poorly in such
multi-task cases, as they consider the whole problem as one task. For such
multi-agent multi-task problems, heterogeneous relationships i.e., subtask-
subtask, agent-agent, and subtask-agent, are important characters which
should be explored to facilitate the learning performance. This paper pro-
poses a dynamic heterogeneous graph based agent allocation-action learning
framework. Specifically, a dynamic heterogeneous graph model is firstly
designed to characterize the variation of heterogeneous relationships with
the time going on. Then a multi-subgraph partition method is invented to
extract features of heterogeneous graphs. Leveraging the extracted features,
a hierarchical framework is designed to learn the dynamic allocation of
agents among subtasks, as well as cooperative behaviors. Experimental
results demonstrate that our framework outperforms recent representative
methods on two challenging tasks, i.e., SAVETHECITY and Google Re-
search Football full game.
key words: Dynamic Heterogeneous Graph, Allocation-Action learning,
Multi-task Games

1. Introduction

Great progress has been made in the domain of multi-agent
reinforcement learning in recent years [1]–[4]. Most works
concentrate on solving a single task by learning the coop-
erative behaviours of agents. However, many real-world
problems often consist of a set of subtasks, which should be
completed by the cooperation of agents. For example, fire-
fighting [5] involves subtasks like water supply and fire con-
trol. Firefighters need to be distributed to subtasks and then
they collaborate to accomplish all subtasks in accordance
with the fire-fighting procedure. The multi-agent multi-task
game requires coordination among multiple agents, which
involves two intertwined problems. One is that agents should
be dynamically assigned to subtasks. The other one is that
how the policy of each subtask is learned with dynamically
assigned agents.

Designing strategies for dynamically allocating agents
to complete subtasks poses significant challenges in a multi-
agent multi-task game. Firstly, the game state changes dy-
namically over time, and the relationships between subtasks
are complex and changeable. This complexity increases the
difficulty of finding an effective agent allocation scheme.
Secondly, the decision-making of agents is not only influ-
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enced by collaborative relationships within allocated sub-
tasks but also by dynamic changes in the external states of
the subtasks. Some works [5]–[8] propose a layered ap-
proach to solve the above problems, in which the upper layer
is agent allocation and the lower layer is agent execution.
For example, the work [9] learns a centralized controller to
coordinate decentralized agents into different teams, where
each agent in the team executes independently based on lo-
cal observations. The work [10] leverages task structure
decomposability to reduce the learning space by allowing
agents to form local groups, enabling targeted attention to
specific subtasks and achieving superior performance. How-
ever, they only consider the cooperation of agents within
subtasks, overlooking the collaboration among agents across
different subtasks. Additionally, relationships among sub-
tasks, agents, and subtask-agent interactions are not fully
explored. This limitation hinders inter-agent coordination
and prevents valuable insights into the agent’s learning pro-
cess.

Fig. 1: Different cooperative relationships in a soccer game.

To illustrate such relationships, we provide an example
which is shown in Figure 1. There are two subtasks i.e., left-
wing subtask and penalty-area subtask, with which players
work collaboratively to score a goal. For player 2, to make a
good decision, he should first pay attention to players within
the same subtask, i.e., player 1, player 3, player 4. Strong
relationships between player 2 and the three players should
be established. Meanwhile, player 2 should judge the overall
situation in the playground, which means information about
the two subtasks should be considered. Relationships for
the two subtasks and for player 2 with the left-wing subtask
should be established. Further, player 2 should also keep
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an eye on players in the left-wing subtask to decide which
direction he should run. Relationships between player 2 and
player 5, 6, 7 should be established. Therefore, building a
relationship graph among subtasks and agents will be ben-
eficial for the learning of making decisions for each player.
How to construct and utilize such graph to facilitate the
learning of agent allocation and actions is the main problem
considered in our study.

In this paper, we propose an agent allocation-action
learning framework based on the construction of the dy-
namic heterogeneous graph, which enables the effective
exploration of different relationships in multi-agent multi-
subtask games. Multi-subtasks are typically carried out in
accordance with a specific process, and one common method
for task decomposition is the utilization of the Behavior Tree
(BT), a widely adopted tool. The considered multi-agent
multi-subtask problem has two key characters, i.e., subtasks
are not active all the time and heterogeneous relationships
should be properly modelled. To characterize the variation
of relationships with the time going on, we construct a dy-
namic heterogeneous graph with agent-agent, subtask-agent,
subtask-subtask edges. Two types of nodes, i.e., active sub-
task nodes and agent nodes, are involved in the graph. For
extracting features of the heterogeneous graph, we design
a multi-subgraph partition method which divide the hetero-
geneous graph to three different subgraphs. We employ the
graph attention network model on each subgraph to calculate
weights on different edges and aggregate node features ac-
cording to the weights. With generated features, we design
a hierarchical framework for learning both agent allocation
policy and action policy.

Finally, we conduct extensive experiments to evalu-
ate our framework on two challenging benchmarks, i.e.,
SAVETHECITY [5] and Google Research Football full
game. We compare the proposed method with some re-
cent representative baselines. With introduced the heteroge-
neous graph and feature extraction mechanism, our method
performs better than other hierarchical learning methods.
Compared to the typical multi-agent method, i.e. QMIX,
our method shows great advantages on multi-task problems,
gaining much better performance. We also make some abla-
tion studies to show the effectiveness of each component of
the proposed framework.

2. Related Work

In this section we delve into some recent hierarchical meth-
ods used for learning agent allocation and strategies, show
how they handle such problems, and point out differences
with our work.

The multi-agent multi-task problem was proposed in
[11], which makes a formal analysis of the taxonomy of
agent-task allocation in multi-robot systems. Some hierar-
chical methods have been proposed for this problem. The
work [6] introduces a hierarchical method for which the up-
per layer is the task allocation and the lower layer is the
task execution. The task allocation is solved by heuristic

algorithms, while the task execution is solved by a coordi-
nated reinforcement learning algorithm. The work [12] in-
troduces a learning-based approach for task allocation, which
assumes pre-existing subtask execution policies. However,
these works fail to simultaneously learn the agent allocation
policy and the task execution policy.

For learning in both layers, the work [5] introduces a
general learning method for addressing diverse multi-agent
subtasks, where each subtask is presumed to be independent,
and each agent only focuses on the assigned subtask. Some
works consider to use value decomposition based methods
to enhance cooperation of agents in different subtasks. The
work [7] learns to group agents into different roles which ex-
ecute different subtasks. A mix network is used to strengthen
cooperative behaviors of all agents. The work [8] involves
training a general cooperative decentralized policy to im-
prove teamwork among agents by teaching them different
skills. However, the subtask information is not utilized dur-
ing the learning process. The work [13] proposes a hierar-
chical multi-agent allocation-action learning framework for
multi-subtask games, which including allocation learning
and action learning, which could allocate agents to differ-
ent subtasks as well as compute the action for each agent in
real-time. However, these works ignore the impact of the
relationship between subtasks, between agents, and between
agents and subtasks on agent allocation and action execution.

3. Background

3.1 Heterogeneous Graph Neural Network

Heterogeneous graphs [14] allow for the representation of
complex relationships and interactions between entities in
various applications, including recommendation systems
[15], social networks [16], knowledge graphs [17], and bi-
ology [18]. A heterogeneous graph is defined as a tuple
𝐺 = (𝑉, 𝐸, 𝑇𝑉 , 𝑇𝐸) with a node set 𝑉 , an edge set 𝐸 , a node
type set 𝑇𝑉 , and an edge type set 𝑇𝐸 . Each node 𝑣 is as-
signed a node type. Each edge connects two nodes (𝑢, 𝑣)
where 𝑢, 𝑣 ∈ 𝑉 , and each edge 𝑒 ∈ 𝐸 is assigned an edge
type. Each heterogeneous graph has multiple node and edge
types such that |𝑇𝑉 | + |𝑇𝐸 | > 2. Different types of nodes and
edges have attribute representations of varying dimensions.
Heterogeneous graph neural networks (HGNs) [19], [20] are
designed to process and extract features from heterogeneous
graphs. HGNs acquire node embedding by aggregating and
propagating information across diverse node types and their
relationships, which enables the extraction of comprehensive
semantic information and relational patterns. Subsequently,
HGNs utilize the node embedding for tasks like node clas-
sification, link prediction, and graph-level prediction. For
nodes in a heterogeneous graph, the node embedding can be
calculated using the following equation (1):

ℎ𝑘𝑣 = AGGREGATE𝑘

(
ℎ𝑘−1
𝑢 ,∀𝑢 ∈ 𝑁 (𝑣)

)
(1)

Here, ℎ𝑘𝑣 represents the embedding of node 𝑣 at the 𝑘-th
layer, 𝑁 (𝑣) denotes the set of neighboring nodes of 𝑣, and
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ℎ𝑘−1
𝑢 represents the embedding of node 𝑢 at the (𝑘-1)-th layer.

AGGREGATE𝑘 is the aggregation function for the 𝑘-th layer,
used to aggregate the embedding information of neighboring
nodes. Common forms of aggregation functions include
average pooling, max pooling, or attention mechanisms.

3.2 Multi-agent reinforcement learning

We consider a multi-agent game that can be modeled as
a Markov decision process [21]. It be represented the tu-
ple ⟨N ,S,A,R,P⟩, where N = {1, 2, . . . , 𝑁} is the set of
agents. S = {𝑆𝑡 }𝑇𝑡=0 is the environment state where 𝑆𝑡 is the
state at time 𝑡 and𝑇 is the maximum time steps. A = {𝐴𝑖}𝑁𝑖=0
represents the action space for all agents. 𝑅 : S × A → R
is the reward function. P = {𝑃𝑎

𝑠𝑠′ | 𝑠, 𝑠′ ∈ S, 𝑎 ∈ A} is
the state transition function, and 𝑃𝑎

𝑠𝑠′ gives the probability
from state 𝑠 to state 𝑠′ if the action 𝑎 is taken. A popular
solution approach for multi-agent games is the value decom-
position based MARL method [7], [21]. Each agent 𝑖 is
equipped with an individual neural network that calculates
the agent’s specific state-action value 𝑄𝑖 , which represents
the expected cumulative future rewards when taking a spe-
cific action 𝑎 ∈ 𝐴𝑖 in a given state 𝑠. During the training
process, the global state-action value 𝑄𝑡𝑜𝑡 is computed as a
function of the individual values 𝑄𝑖 of all agents to enhance
cooperative behaviors of all agents. Currently, various al-
gorithms have been proposed to investigate the relationship
between𝑄𝑡𝑜𝑡 and𝑄𝑖 . For example, the summation approach
utilized in VDN [22] and the employment of a mixing net-
work in QMIX [23]. The entire neural network is updated
using the TD-loss, as represented in (2), where 𝑅 is the imme-
diate reward obtained after taking action 𝑎 in the current state.
The discount factor 𝛾 balances the importance of current and
future rewards, while 𝑠′ denotes the next state achieved after
taking action 𝑎. The term max𝑎′ 𝑄𝑡𝑜𝑡 (𝑠′, 𝑎′) represents the
target Q-value, indicating the maximum Q-value action 𝑎′

in the next state 𝑠′. On the other hand, 𝑄𝑡𝑜𝑡 (𝑠, 𝑎) represents
the current estimate of the global state-action value provided
by the model.

𝑙𝑜𝑠𝑠 = 𝑅 + 𝛾 max𝑎′ 𝑄𝑡𝑜𝑡 (𝑠′, 𝑎′) −𝑄𝑡𝑜𝑡 (𝑠, 𝑎) (2)

3.3 Behavior Trees

Thanks to the modularity and reactivity of BTs [24]–[26],
they serve as organizational structures for multiple subtasks
in complex tasks. BTs provide an intuitive way to describe
the behavior of an agent and support the decomposition,
execution, and decision-making of complex tasks. A BT
consists of a series of nodes, with each node representing a
specific behavior or control structure. The nodes in a BT can
be classified into three main types: Action, Condition, and
Control Nodes. Action nodes represent concrete actions or
operations, such as moving, attacking, or turning on lights.
Condition nodes determine the execution path based on the
satisfaction of certain conditions. Control Nodes are used to
organize and control the execution order and conditions of
other nodes. The common types of control flow nodes are
Sequence, Fallback, and Parallel. A BT decomposes tasks
into a series of subtasks and representing them as nodes in a
behavior tree [27], the execution flow of tasks can be better

organized and managed. For example, subtasks that need
to be executed in sequence are organized through Sequence
nodes. Selection nodes can organize subtasks with prior-
ity. Parallel nodes are suitable for situations where multiple
subtasks need to be executed simultaneously.

4. Methodology

In this section, we present a dynamic heterogeneous graph
based agent allocation-action learning framework (DyHG-
3A) for multi-agent multi-task game. In the following, We
first introduce the overall design of our framework. Then we
detail three important components of our framework, i.e.,
the dynamic heterogeneous graph construction, the hetero-
geneous graph attribute embedding and the agent allocation-
action Learning. Finally, the training of DyHG-3A is intro-
duced.

4.1 Overall Design of DyHG-3A

The architecture of DyHG-3A contains three modules as
shown in Figure 2.

(1) Dynamic Heterogeneous Graph Construction mod-
ule: The detailed execution process of multiple subtasks is
organized through a BT, each agent (red circle) needs be as-
sociated with a certain activated subtask (green triangle). A
dynamic heterogeneous graph is constructed to characterize
relations among subtasks, among agents and subtask-agent.

(2) Heterogeneous Graph Attribute Embedding mod-
ule: An embedding mechanism is designed to extract fea-
tures from different node attributes of dynamic heteroge-
neous graphs. (𝐺𝐴𝐴)𝑡 , (𝐺𝑆𝑆)𝑡 , and (𝐺𝑆𝐴)𝑡 represent the
agent subgraph, the subtask subgraph, and the subtask-agent
subgraph at time step 𝑡, respectively. Then different GAT
networks are used to aggregate distinct node attributes. For
the subtask-agent subgraph, two different Multilayer Percep-
trons (MLPs) are set up to unify the node feature dimensions.

(3) Agent Allocation-Action Learning module: This
module facilitates the allocation of agents to specific sub-
tasks, enabling efficient action execution. It consists of
two architectures: the agent allocation learning network
and the agent action learning network. The input of the
agent allocation learning network includes the observation
𝑜𝑡
𝑖
= (𝐻𝐴)𝑡𝑖 ⊕ (𝐻𝐴𝐴)𝑡𝑖 for each agent and the attribute ma-

trix 𝑋 𝑡 = 𝑥𝑡1, ..., 𝑥
𝑡
𝑗

for all subtasks at the time step 𝑡, where
𝑥𝑡
𝑗
= (𝐻𝑆)𝑡𝑗 ⊕ (𝐻𝑆𝑆)𝑡𝑗 , and ⊕ denotes the concatenation op-

eration.

4.2 Dynamic Heterogeneous Graph Construction

Let us consider a multi-agent multi-task problem in which
there are 𝑀 subtasks and 𝑁 agents, which is modeled as a
heterogeneous graph 𝐺 = (𝑉, 𝐸, 𝑇𝑉 , 𝑇𝐸). 𝑉 represents the
set of agents and active subtasks. There are three types of
undirected edges in 𝐸 , i.e., subtask-subtask edges signifying
collaboration relationships among subtasks, subtask-agent
edges denoting agents cooperating to complete a certain
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Fig. 2: The overall framework of DyHG-3A.

subtask, and agent-agent edges representing collaboration
between agents. At time step 𝑡, the heterogeneous graph is
represented by 𝐺𝑡 . 𝑉 𝑡 = 𝑉 𝑡

𝑆

⋃
𝑉𝐴 is the set of heteroge-

neous nodes in which 𝑉 𝑡
𝑆

is the set of active subtask nodes
and 𝑉𝐴 is the set of agent nodes. Note that 𝑉 𝑡

𝑆
varies with

the time as activate status of the subtask always changes.
𝐸 𝑡 = {𝐸 𝑡

𝑆𝑆
, 𝐸 𝑡

𝐴𝐴
, 𝐸 𝑡

𝑆𝐴
} is the set of heterogeneous edges in

𝐺𝑡 , where 𝐸 𝑡
𝑆𝑆

, 𝐸 𝑡
𝐴𝐴

and 𝐸 𝑡
𝑆𝐴

represent the sets of subtask-
subtask edges, agent-agent edges, and subtask-agent edges,
respectively. The dynamic heterogeneous graph construc-
tion process is shown in Algorithm 1, which is named as
DyHGC. The input is the current time step 𝑡, the subtask set

Algorithm 1: DyHGC
Input: Current time step 𝑡 , All subtask set M, Agent set N
Output: Current heterogeneous graph 𝐺𝑡

1 Set 𝐸𝑡 = 𝜙; 𝑉𝐴 = N
2 for 𝑚 ∈ M do
3 if 𝑚 is activated then
4 Add 𝑚 to 𝑉 𝑡

𝑆
;

5 for 𝑣 ∈ 𝑉𝐴 do
6 Add edge 𝑒𝑚,𝑣 to 𝐸𝑡

𝑆𝐴
;

7 for 𝑚′ ∈ M do
8 if 𝑚 and 𝑚′ are parallel subtasks in current BT

and 𝑚 ≠ 𝑚′ then
9 Add edge 𝑒𝑚,𝑚′ to 𝐸𝑡

𝑆𝑆
;

10 for 𝑣 ∈ 𝑉𝐴 do
11 for 𝑣′ ∈ 𝑉𝐴 do
12 if 𝐷𝑖𝑠 (𝑣, 𝑣′ ) < 𝑑, and 𝑣 ≠ 𝑣′ then
13 Add edge 𝑒𝑣,𝑣′ to 𝐸𝑡

𝐴𝐴
;

14 𝐸𝑡 = {𝐸𝑡
𝑆𝑆

∪ 𝐸𝑡
𝐴𝐴

∪ 𝐸𝑡
𝑆𝐴

};𝑉 𝑡 = {𝑉 𝑡
𝑆
, 𝑉𝐴};

15 return 𝐺𝑡 ;

M and the agent set N . The output is a heterogeneous graph

at time step 𝑡. Initially, 𝑉 𝑡
𝑆

and 𝐸 𝑡 are set to be empty while
𝑉𝐴 is set to be N (step 1). If a subtask 𝑚 is activated, it is
added to the𝑉 𝑡

𝑆
(Steps 3-4). Meanwhile, edges between sub-

task 𝑚 and all agent nodes are established, which are added
to the set 𝐸 𝑡

𝑆𝐴
(Steps 5-6). Additionally, if parallel subtasks

are detected between any two subtasks, edges are established
and added to 𝐸 𝑡

𝑆𝑆
(Steps 7-9). For any two agent node, we

mainly focus on adjacent agents. In a large-scale multi-agent
environment, not all agents need to interact with each other
because the number of agents is large and the distance be-
tween some agents may be extremely large. Therefore, we
establish an edge when the Euclidean distance between them
is smaller than a predefined threshold 𝑑 (Steps 10-13). Fi-
nally, we obtain a heterogeneous graph with active nodes and
generated edges at time step 𝑡.

4.3 Heterogeneous Graph Attribute Embedding

Utilizing the heterogeneous graph 𝐺𝑡 at time step 𝑡, the
main task of heterogeneous graph attribute embedding is to
capture heterogeneous node relationship information. We
introduce a multi-subgraph partition method that uses the
attention model to capture the heterogeneity attributes. Ac-
cording to the edge type, 𝐺𝑡 is decomposed into three types
of subgraphs, i.e., agent subgraph (𝐺𝐴𝐴)𝑡 , subtask sub-
graph (𝐺𝑆𝑆)𝑡 , and subtask-agent subgraph (𝐺𝑆𝐴)𝑡 . For each
subgraph, we utilize Graph Attention Network (GAT) [28]
model to learn the attention weights of each node’s neighbor-
hoods and generate new latent representations by aggregating
the attributes of these important neighborhoods. The atten-
tion weight coefficient of node pair (𝑧, 𝑧′) can be calculated
as:

𝐼𝑡𝑧,𝑧′ = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(
exp

(
𝜎

(
𝑊 ·

[
𝑎𝑡𝑧 ∥𝑎𝑡𝑧′

] ))
∑

𝑘∈𝑁 𝑡
𝑧

exp
(
𝜎

(
𝑊 ·

[
𝑎𝑡𝑧 ∥𝑎𝑡𝑘

] )) ) (3)

where 𝑎𝑡𝑧 represents the attribute vector of node 𝑧, 𝑊 is the
parameterized weight vector of the attention function, and
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𝑁 𝑡
𝑧 is the sampled neighbors of node 𝑧 at time step 𝑡. 𝜎 repre-

sents the LeakyReLU activation function, and ∥ denotes the
operation of concatenation, subsequently normalized by the
Softmax function. After that, aggregating the neighbors’ la-
tent embedding with calculated attention weight coefficients,
we can obtain the final attribute representation of node 𝑖 for
the subgraph type and the time step 𝑡 as:

(𝐻𝑧)𝑡 = 𝜎
©­«
∑︁

𝑧′∈𝑁 𝑡
𝑧

𝐼𝑡𝑧,𝑧′ · 𝑎
𝑡
𝑧
ª®¬ (4)

where (𝐻𝑧)𝑡 is the aggregated attribute embedding of node
𝑧 at the current time step 𝑡.

Subtask Subgraph Attribute Embedding The atten-
tion attribute embedding for the subtask subgraph aims to
learn attention weights for two subtask nodes and gener-
ate a new latent attribute representation by aggregating the
attributes of the subtask neighborhoods. The attribute of
subtask node 𝑗 ∈ 𝑉 𝑡

𝑆
is denoted by 𝑥𝑡

𝑗
∈ R𝑑𝑠 , where 𝑑𝑠

represents the subtask attribute dimension. For (𝐺𝑆𝑆)𝑡
at time step 𝑡, the final attribute representation of subtask
node 𝑗 calculated by Equations 3 and 4 is denoted by
(𝐻𝑆𝑆)𝑡𝑗 . To obtain stable and effective attribute represen-
tations, we utilize the GAT model with multi-head mecha-
nisms. Specifically, we employ 𝑘 independent GAT models
in parallel and concatenate the learned features to obtain
the output embedding. Consequently, the multi-head at-
tention representation of subtask node 𝑗 can be calculated
as (𝐻𝑆𝑆)𝑡𝑗 = Concat((𝐻𝑆𝑆)1

𝑗
, . . . , (𝐻𝑆𝑆)𝑘𝑗 ). After apply-

ing the multi-head GAT models, we obtain a set of sub-
task node attribute representations for (𝐺𝑆𝑆)𝑡 , denoted as
{(𝐻𝑆𝑆)𝑡1, . . . , (𝐻𝑆𝑆)𝑡|𝑉 𝑡

𝑆 |
; (𝐻𝑆𝑆)𝑡𝑗 ∈ R𝑑𝑠 }.

Agent Subgraph Attribute Embedding The agent
subgraph attention attribute embedding plays a crucial role
in capturing collaborative attributes among different agents.
The attribute of agent node 𝑖 ∈ 𝑉𝐴 is denoted by 𝑜𝑡

𝑖
∈ R𝑑𝑎 ,

where 𝑑𝑎 represents the agent attribute dimension. For
(𝐺𝐴𝐴)𝑡 at time step 𝑡, the final attribute representation of
agent node 𝑖 calculated by Equations 3 and 4 is denoted
by (𝐻𝐴𝐴)𝑡𝑖 . After applying the multi-head GAT mod-
els, we obtain sets of agent node attribute representations
{(𝐻𝐴𝐴)𝑡1, . . . , (𝐻𝐴𝐴)𝑡|𝑉𝐴 | ; (𝐻𝐴𝐴)𝑡𝑖 ∈ R𝑑𝑎 }.

Subtask-Agent Subgraph Attribute Embedding The
subtask-agent subgraph attention attribute embedding en-
ables the capture of heterogeneous attributes between sub-
tasks and agents. Note that subtask nodes and agent nodes
have distinct dimensional attributes, making the direct ag-
gregation of heterogeneous neighbor information infeasible.
We begin by using two non-linear transformation networks
to map the initial attributes of subtask nodes and agent nodes
to the same feature space. It can be described by Equation 5,
where 𝑊𝑆 , 𝑊𝐴, 𝑏𝑆 , and 𝑏𝐴 are the shared learnable weight
matrices and bias vectors.

𝑥𝑡𝑗 = 𝜎(𝑊𝑆 · 𝑥𝑡𝑗 + 𝑏𝑆); 𝑜𝑡𝑖 = 𝜎(𝑊𝐴 · 𝑜𝑡𝑖 + 𝑏𝐴); (5)

Then, in (𝐺𝑆𝐴)𝑡 , the attention weights coefficient be-
tween subtasks and agents are separately calculated using

Equation 3. Note that the neighborhood nodes for subtask
node 𝑗 consist of the set of agent nodes, while for agent node
𝑖, the neighborhood nodes consist of the set of subtask nodes.
Subsequently, node attributes are aggregated through Equa-
tion 4, with the aggregated attributes of agent nodes denoted
as (𝐻𝐴)𝑡𝑗 , and the aggregated attributes of subtask nodes
denoted as (𝐻𝑆)𝑡𝑗 . After applying the multi-head GAT mod-
els, we obtain sets of attribute representations for subtask
nodes and agent nodes, denoted as {(𝐻𝑆)𝑡1, . . . , (𝐻𝑆)𝑡|𝑉 𝑡

𝑆 |
}

and {(𝐻𝐴)𝑡1, . . . , (𝐻𝐴)𝑡|𝑉𝐴 | }, respectively, for (𝐺𝑆𝐴)𝑡 .
Finally, the attribute embeddings of subtask nodes

and agent nodes are denoted as 𝑥𝑡
𝑗
= (𝐻𝑆𝑆)𝑡𝑗 ∥(𝐻𝑆)𝑡𝑗 and

𝑜𝑡
𝑖
= (𝐻𝐴𝐴)𝑡𝑖 ∥(𝐻𝐴)𝑡𝑖 , respectively. These embeddings will

be utilized in the agent allocation-action learning module.

4.4 Agent Allocation-Action Learning

Based on the node attribute embedding generated in the pre-
vious section, we introduce a hierarchical mechanism for
learning the dynamic allocation of agents among subtasks,
as well as cooperative behaviors. On the upper layer, a sub-
task allocation module is used to connect an agent network
to a subtask network, i.e., assigning each agent to a certain
subtask. For the lower layer, an action learning module is
designed to compute appropriate actions for each agent with
the allocation result. All active subtask attribute embedding
𝑋 𝑡 = 𝑥𝑡1, 𝑥

𝑡
2, ..., 𝑥

𝑡

|𝑉 𝑡
𝑆 |

are encoded by a neural network to
vectors, i.e., 𝑈𝑡 = 𝑢1, 𝑢2, ..., 𝑢 |𝑉 𝑡

𝑆 | . Each agent attribute em-
bedding 𝑜𝑡

𝑖
are encoded by another neural network and then

multiplied with𝑈𝑡 . The output is the Q-values of all possible
choices of subtasks, i.e., 𝑄̄1, 𝑄̄2, ..., 𝑄̄ |𝑉 𝑡

𝑆 | . In the execution
mode, the index corresponds to the maximum value is the
subtask that should be assigned to the agent 𝑖. Once a subtask
𝑚 is assigned to agent 𝑖, each agent attribute embedding 𝑜𝑡

𝑖
will be passed to the input of the subtask network, which then
select a proper action 𝑎 ∈ A for an agent among all possible
actions, where A is action space. The output of the subtask
network is the vector of Q-values of all actions for agent
𝑖 < |𝑉𝐴 |, i.e., 𝑄𝑖

1, 𝑄
𝑖
2, ..., 𝑄

𝑖
|A | . To combine Q-values of all

agents together, we introduce a neural network 𝑓 to compute
𝑄𝑡𝑜𝑡 , i.e., 𝑄𝑡𝑜𝑡 = 𝑓 (𝑄1

𝑎1 , 𝑄
2
𝑎2 , ..., 𝑄

|𝑉𝐴 |
𝑎𝑁

). 𝑎𝑖 is the action
selected by agent 𝑖 following the 𝜖−greedy principle. We
train our framework end-to-end by optimizing the following
TD-loss function:

𝐿𝑜𝑠𝑠 = 𝑟 𝑡 + (𝛾1 max
𝑚′

𝑄̄(𝑋 𝑡+1, 𝑜𝑡+1
𝑖 , 𝑚′) − 𝑄̄ (𝑋

𝑡 , 𝑜𝑡𝑖 , 𝑚))

+(𝛾2 max
𝑎′

𝑄𝑡𝑜𝑡 (𝑜𝑡+1
𝑖 , 𝑎′) −𝑄𝑡𝑜𝑡 (𝑜𝑡𝑖 , 𝑎))

(6)

where 𝛾1 is the discount factor of allocation learning, 𝛾2 is
the discount factor of action learning.

4.5 The Overall Training

In this section, we describe how heterogeneous graph con-
struct, attribute embedding, and allocation-action learning
work together in our framework. The whole learning pro-
cedure is illustrated in Algorithm 2. Each episode repre-
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Algorithm 2: DyHG-3A Training Procedure
Input: A BT with the set of subtasks M, the set of agents N
Output: Parameters of whole neural networks

1 for episode = 1, 2, . . . , 𝐿 do
2 Reset the Environment and BT parameters;
3 Initialize heterogeneous graph 𝐺𝑡 = (𝑉 𝑡 , 𝐸𝑡 ) , i.e.,

𝑉 𝑡 = 𝑉 𝑡
𝑆

⋃
𝑉𝐴, 𝑉 𝑡

𝑆
= 𝜙, 𝐸𝑡 = 𝜙;

4 while 𝑡 ≤ 𝑇 do
5 Constructing HetG by Algorithm 1, i.e.,

𝐺𝑡 = 𝐷𝑦𝐻𝐺𝐶 (𝑡 , M, N);
6 Collecting agent observations 𝑂𝑡 and activating

subtask attributes 𝑋𝑡 ;
7 Calculating (𝐻𝑆𝑆 )𝑡𝑗 , (𝐻𝐴𝐴)𝑡𝑖 , (𝐻𝑆 )𝑡𝑗 and (𝐻𝐴)𝑡𝑖

based on Eq.(4);
8 Getting attribute emmbedding of activated subtasks

and all agents is 𝑥𝑡
𝑗
= (𝐻𝑆𝑆 )𝑡𝑗 ∥ (𝐻𝑆 )𝑡𝑗 and

𝑜𝑡
𝑖
= (𝐻𝐴𝐴)𝑡𝑖 ∥ (𝐻𝐴)𝑡𝑖 ;

9 Computing Q-values 𝑄̄1, 𝑄̄2, ..., 𝑄̄
���𝑉𝑡

𝑆

��� with the

allocation learning;
10 Getting subtask 𝑚𝑡

𝑖
assigned to each agent 𝑖;

11 Computing Q-values 𝑄𝑖
1, 𝑄

𝑖
2, ..., 𝑄

𝑖
|A| with subtask

network 𝑚𝑡
𝑖
;

12 Getting the action 𝑎𝑡
𝑖

for each agent 𝑖 ∈ 𝑉𝐴;
13 Running the BT with allocation results and actions of

agents, and getting the game reward 𝑟 𝑡 ;
14 Storing the sample (𝑋𝑡 , 𝑜𝑡

𝑖
, 𝑚𝑡

𝑖
, 𝑎𝑡

𝑖
, 𝑟 𝑡 ) to buffer D;

15 if UPDATE then
16 Randomly select samples from D;
17 Computing 𝐿𝑜𝑠𝑠 following (6), and perform gradient

descent over the whole network.

sents a game round, and 𝐿 represents the maximum train-
ing episodes. The maximum time steps of the game are
𝑇 . For each time step 𝑡, getting observations of all agents
𝑂𝑡 = 𝑜𝑡1, 𝑜

𝑡
2, ·, 𝑜

𝑡
|𝑉𝐴 | , and attribute of all activate subtasks

𝑋 𝑡 . Firstly, with Algorithm 1, a heterogeneous graph is con-
structed in Step 5. Then, Steps 6-8 to obtain attribute em-
bedding between two different nodes. In steps 9-10 allocate
agents to complete the subtask. After completing the agent
allocation for each agent, obtain the specific action of each
agent through the subtask network (steps 11-12), and related
samples are generated. Finally, the keyword “UPDATE” in
step 14 is used to control the frequency of updating the neural
networks.

5. Experiments

In this section, we evaluate the performance of our proposed
framework DyHG-3A on two challenging environments, i.e.,
SAVETHECITY [5] and Google Research Football (GRF)
[29] full game.

5.1 Scenarios

SAVETHECITY is an environment similar to a ”Search-
and-Rescue task [30]” where agents must coordinate fire-
fighting and rebuilding in a burning city. The complete
scenario consists of a 16x16 grid with 𝑁 agents (circles) and

Fig. 3: Left is a snapshot of 20a 20b scenario. Right is the
structure of a BT organization subtasks, where the number
represents the index of the building.

𝑁 + 1 buildings (squares) as shown in Figure 3(Left). The
buildings are randomly generated on the map and have a cer-
tain probability of catching fire (red bars) at the start of each
episode, which decreases their ”health” (black bars). There
are three types of agents: firefighter (red), builder (blue),
and generalist (green). Firefighters are most effective at ex-
tinguishing fires, while builders excel at repairing damaged
buildings. The generalists have twice the movement speed of
firefighters and builders, and it can prevent further damage to
burning buildings while assisting other agents. We first need
to assign agents to different burning buildings, and then learn
low-level actions to navigate between subtasks and cooperate
to complete the firefighting and building repair subtasks.

(a) 10 𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠 (b) 18 𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠

Fig. 4: Two scenarios with different number of subtasks for
GRF.

Google Research Football GRF simulates a complete
football game with two teams and a ball. Each team is
controlled by 11 agents that can receive state information
from the field and decide their next actions. The goal of
the game is to score as many goals as possible by shoot-
ing the ball into the opponent’s goal. We divide the field
into Back-field and Front-field zones. Under different task
decomposition rules, we have constructed two distinct BTs
comprising varying quantities of subtasks, 10 𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠 and
18 𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠, as shown in Figure 4. In the 10 𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠 sce-
nario (Figure 4(a)), the Back-field has five defensive subtasks
for left-side, right-side, left-corner, right-corner, and penalty.
The left-side and right-side subtasks work in parallel to pro-
tect the central region of the Back-field. The left-corner,
right-corner, and penalty area defensive subtasks operate in
parallel, providing protection to the goal area, with their
parent nodes executed sequentially. The Front-field has five
offensive subtasks for the left-side, right-side, left-corner,
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Fig. 5: Performance on three SAVETHECITY scenarios.

right-corner, and penalty. The left-side and right-side sub-
tasks are parallel, and so are the corner and penalty sub-
tasks, with their parent nodes executed sequentially. For
the 18 𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠 scenario (Figure 4(b)), the Back-field has
one organizing offense subtask and eight defensive subtasks.
The defense subtasks execute marking and interception in
the left-side, right-side, central-area, and penalty-area areas.
The offense subtask activates after gaining ball possession.
The Front-field has one defense subtask and eight offense
subtasks for ball control and passing in the left-side, right-
side, central-area, and penalty-area.

5.2 Setting

We make extensive comparisons for the proposed DyHG-3A
framework with the following four baselines. QMIX [23]:
It is a classical multi-agent value decomposition method,
which is used to learn the actions of all agents without al-
locating the agents. ALMA [5]: Agents are allocated to
specific subtasks and each agent acts productively towards
their assigned subtask alone. HSD [8]: It is a hierarchi-
cal method designed to improve teamwork among agents by
teaching them different skills. MACC [10]: It utilizes task
decomposability to learn subtask representations, enabling
agents to focus on the most relevant subtasks for effective co-
ordination. MAAAL [13]: It could automatically learn the
allocation of agents and the subtask policy simultaneously.
However, it does not model various complex relationships
and exploit them. All experiments were conducted on a com-
puter with an i7-11700F CPU, RTX3060 GPU, and 32GB
of RAM. The discount factors were set to 𝛾1 = 0.99 and
𝛾2 = 0.99. Optimization was performed using Adam with
a learning rate of 5 × 10−4. For exploration, we employed
the 𝜖−greedy strategy with 𝜖 linearly annealed from 1.0 to
0.05 over 50,000 time steps and then kept constant for the
remainder of the training.

5.3 Performance

SAVETHECITY: We organize the SAVETHECITY task
using a BT, as shown in Figure 3(Right). Each building
node contains a firefight subtask and a repair subtask, which
have different precondition nodes to determine whether the
building is on fire and requires repair. Agents receive rewards
for successfully extinguishing fires and repairing buildings,

while penalties are imposed when buildings are destroyed
or their health deteriorates. We considered three scenarios
with increasing number of agents and subtasks, i.e., 7a 7b,
20a 20b and 40a 40b.

Figure 5 shows comparing results of the proposed
method, DyHG-3A, with other baseline methods. As we
can see, DyHG-3A achieves the best performance in all sce-
narios. In the 7a 7b scenario, even though MAAAL could
achieve the satisfactory success rate, DyHG-3A still has a
better performance. Compared to MAAAL, the success rate
has increased by about 14%. In the 20a 20b and 40a 40b
scenarios, it improves the success rate by about 27% and
about 28%, respectively, compared with MAAAL. We no-
tice that the performance of all methods decreases as the
number of subtasks and agents increases. For the 40a 40b
scenario, DyHG-3A drops by about 18%, while MAAAL,
MACC, HSD and ALMA drop by about 35%, 48%, 44%
and 25%, respectively, which illustrates the applicability of
DyHG-3A to larger-scale scenarios. Another point to note
is QMIX performs poorly in these two scenarios, the reason
is that agents need to deal with different subtasks, but the
algorithm based on value decomposition always tends to be
similar due to the parameter sharing mechanism.

GRF: In the two GRF scenarios, i.e., 10 𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠 and
18 𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠, we apply the proposed method for the Back-
field and Front-field, respectively, to optimize player perfor-
mance. This enables the players to execute the appropriate
subtask at different time steps. We compared the training
performance of the DyHG-3A framework with the baselines.
The reward was +1 for scoring a goal and -1 for conceding
a goal. The training curves are shown in Figure 6, where
the x-axis represents the training set in millions, and the y-
axis represents the win rate. Across all training curves, the
DyHG-3A outperforms all baselines on both back-field and
front-field for all scenarios.

Figures 6(a) and 6(b) show the performance of all meth-
ods in the Back-field and Front-field of 10 𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠 sce-
nario, respectively. It can be seen that after sufficient train-
ing, DyHG-3A and MAAAL performed the best, However,
compared to MAAAL, the win rate in the back-field has in-
creased by about 11%, and the win rate in the front-field
has increased by about 14%. It is clear to see that classi-
cal value decomposition QMIX method performs poorly due
to the lack of assignment of performing agents to subtasks.
Compared with ALMA, DyHG-3A achieved an about 40%
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Fig. 6: Performance on two GRF scenarios.

improvement in win rate. This is because ALMA focuses
only on the cooperation of agents within specified subtasks,
ignoring cooperation among agents across subtasks. Com-
pared with HSD, DyHG-3A exhibits an enhanced win rate
of about 30%, attributed to HSD not fully utilizing sub-
task information during the process of assigning skills to
agents. We also observe that MACC performs worse than
DyHG-3A, because although MACC considers subtask state
information, while it does not consider the more complex
cooperative relationship between subtasks. It is interesting
to see that the performance in the Front-field is slightly better
than in the Back-field, as the Front-field directly increases
victories while the Back-field improves the defense win rate.

Furthermore, we conducted the same experiment on
the 18 𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠 scenario, with the results shown in Figures
6(c) and 6(d). As we can see, similar conclusions are also
held. This further proves that different BT organization
methods for subtasks have little impact on the performance
of DyHG-3A, which can achieve optimal performance in
both scenarios.

5.4 Ablation Studies

In this section, we conducted ablation experiments to eval-
uate the contribution of each component in the DyHG-3A
framework. For the heterogeneous graph attribute embed-
ding module, we separately masked the subtask nodes and
agent nodes. The raw attributes of the masked nodes did
not go through subgraph attribute embedding and are di-
rectly connected to the agent allocation-action module. The
framework masking the subtask nodes is named DyHG-3A
no-Subtask, and the framework masking the agent nodes is
named DyHG-3A no-Agent. Setting equal attention weight
coefficients among all nodes is achieved through Equations 3,
and is denoted as DyHG-3A Equal-Attention. Additionally,
we replace the hierarchical agent allocation-action learning
module with a cooperative multi-agent reinforcement learn-
ing algorithm like QMIX, named DyHG-3A No-hierarchy.

We conducted ablation studies on the SAVETHECITY
20a 20b scenario and the GRF scenario 10𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠, and the
results are shown in Figure 7. DyHG-3A No-hierarchy ob-
tains the worst performance, which indicates the hierarchical
agent allocation-action learning plays a key role for the per-
formance of DyHG-3A. DyHG-3A outperformed DyHG-3A
Equal-Attention, highlighting the significance of exploring
diverse attention weights among subtasks, among agents,
and agent-subtask. DyHG-3A no-Agent and DyHG-3A no-
Subtask perform worse than DyHG-3A, emphasizing the
necessity of jointly considering relationships among sub-
tasks, among agents, and agent-subtask for DyHG-3A. Ad-
ditionally, DyHG-3A no-Subtask outperformed DyHG-3A
no-Agent, potentially owing to the dual roles played by agent
attribute embeddings in both allocation learning and action
learning.
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Fig. 7: Ablation results for SAVETHECITY and for
10 𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠 in GRF.

6. Conclusion

In this paper, we propose a dynamic heterogeneous graph
based agent allocation-action learning (DyHG-3A) frame-
work, which enables the effective exploration of differ-
ent relationships in multi-agent multi-task games. The
DyHG-3A first constructs a dynamic heterogeneous graph
to model complex heterogeneous relationships among sub-
tasks, among agents, and between agent-subtask. To ef-
fectively extract features from the heterogeneous graph, we
propose a multi-subgraph partitioning method. This method
employs a graph attention network model to compute edge
weights on the heterogeneous graph and aggregates node
features based on these weights. Finally, we introduce a hi-
erarchical learning framework that leverages the generated
subtask and agent features for allocation learning and action
learning. This framework allocates agents to different sub-
tasks and calculates actions for each agent in real time. The
experiment results show that the DyHG-3A achieves superior
performance compared to the recent representative methods
on both SAVETHECITY and Google Research Football full
game tasks. We hope that our approach can provide valuable
guidance for addressing large-scale multi-agent multi-task
problems in real-world settings in the future.
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