
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.4 APRIL 2024
537

PAPER
A Trie-Based Authentication Scheme for Approximate String
Queries

Yu WANG†, Liangyong YANG†, Jilian ZHANG† ,††a), and Xuelian DENG†††b), Nonmembers

SUMMARY Cloud computing has become the mainstream computing
paradigm nowadays. More and more data owners (DO) choose to outsource
their data to a cloud service provider (CSP), who is responsible for data
management and query processing on behalf of DO, so as to cut down
operational costs for the DO. However, in real-world applications, CSP may
be untrusted, hence it is necessary to authenticate the query result returned
from the CSP. In this paper, we consider the problem of approximate
string query result authentication in the context of database outsourcing.
Based on Merkle Hash Tree (MHT) and Trie, we propose an authenticated
tree structure named MTrie for authenticating approximate string query
results. We design efficient algorithms for query processing and query result
authentication. To verify effectiveness of our method, we have conducted
extensive experiments on real datasets and the results show that our proposed
method can effectively authenticate approximate string query results.
key words: approximate string query, edit distance, query result authenti-
cation, database outsourcing, cloud computing

1. Introduction

With the advancement of computer technology, the amount
of data is growing explosively, which causes difficulties in
data storage and management for individuals and enterprises.
In this context, cloud computing comes into being. As a new
computing model, cloud computing not only provides users
with powerful computing power, but also facilitates users to
access the resource sharing pool on demand [1]. Therefore,
more and more enterprises outsource their massive data to
CSP, through which they can enjoy fast and efficient data
management services while reducing enterprise operational
costs.

In this paper, we consider the problem of approximate
string query in the context of database outsourcing, where
there are three parties, i.e., data owner (DO), cloud service
provider (CSP), and the user. Specifically, DO outsources her
string database to CSP, and CSP provides data management
functionalities, such as storage, security, query processing
and so on. When the user sends a query request to CSP, then
CSP will process the query request in time and return the

Manuscript received September 8, 2023.
Manuscript revised November 30, 2023.
Manuscript publicized December 20, 2023.

†The authors are with College of Cyber Security, Jinan Univer-
sity, Guangzhou 510632 China.

††The author is with the Engineering Research Center of Trust-
worthy AI, Ministry of Education, Jinan University, Guangzhou
China.
†††The author is with Department of Medical Informatics,

Guangxi University of Chinese Medicine, Nanning 530200 China.
a) E-mail: zhangjilian@jnu.edu.cn (Corresponding author)
b) E-mail: 173213455@qq.com (Corresponding author)

DOI: 10.1587/transinf.2023EDP7185

query results to the user.
Although cloud computing has many advantages, it is

prone to some data security risks when the data of DO is
given to CSP for storage and processing. First, CSP may
be untrusted, e.g., deliberately tamper with query results, or
only return partial query results to the user in order to save
computing power. Therefore, the results returned by CSP
must be authenticated, i.e., to verify whether the results are
correct. Normally, query result authentication involves two
aspects, correctness and completeness. Correctness refers to
the fact that the returned result actually exists in the database
and has not been tampered with; Completeness means that
all the data in database that matches query conditions is
correctly returned to the user.

Since textual data is ubiquitous in real applications,
many information systems support approximate string query
processing. For example, in a biological database, all the
approximate protein sequences that meet user’s query con-
ditions are retrieved to identify biological clusters. In infor-
mation retrieval, the desired answer (e.g., “hamburger”) can
still be returned when user search for a string (e.g., “hum-
burger”) that is misspelled. The approximate string query
function improves the usability and user experience of the
system. At the same time, approximate string query is a basic
problem in many application fields, such as data integration,
computational linguistics, and bioinformatics.

Nowadays, there are many research work on approxi-
mate string query processing, but few of them focus on the
problem of authenticating approximate string query results in
the context of database outsourcing in cloud computing [2].
Meanwhile, the existing verification data structures based on
B-tree, R-tree and other structures cannot solve the problem
of approximate string query result authentication. There-
fore, in this paper, we focus on the problem of authenticating
approximate string query results in the context of database
outsourcing. The main contributions of this paper include:

• Based on MHT and Trie, we design an authentication
tree structure named MTrie. Compared with other data
structures, MTrie is more suitable for efficient approxi-
mate string query processing and result authentication.

• We design an efficient approximate string query authen-
tication scheme, in which the verification object (VO)
contains the nodes of MTrie tree and the corresponding
special tokens.

• We prove that it is possible to identify deceptive be-
haviors of CSP through VO during authentication, for

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers

538
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.4 APRIL 2024

example, tampering with query result record data, not
returning all eligible query result records.

• We perform extensive experiments on two real datasets.
The results show that compared with the existing
schemes, our scheme improves the performance in
terms of VO construction time, VO size and user veri-
fication time.

The main structure of this paper is as follows: in Sect. 2
we briefly review the existing work on query result authenti-
cation for outsourced databases. Then in Sect. 3 we introduce
some related preliminaries. We then propose the authentica-
tion scheme for approximate string query results under the
data outsourcing model in Sect. 4. The experiment results
are presented in Sect. 5, and finally we conclude the paper in
Sect. 6.

2. Related Work

In the past decade, much research work has been emerged on
the field of database outsourcing. There are many existing
solutions to solve related problems such as completeness
guarantee of query results [3]. In this paper, we propose an
authentication scheme based on Merkle Hash Tree (MHT),
which is a widely used binary tree authenticated structure,
as shown in Fig. 1. In general, MHT can be used to protect
the integrity and correctness of a collection of data records.

Specifically, an MHT is constructed in a bottom-up
fashion. First, all records in a database are sorted on a pre-
specified attribute. Each leaf node of MHT corresponds to
a data record di in the database and stores the hash value of
the record Hi = H(di), where H(.) is a one-way collision-
resistant hash function. Each internal node of the MHT
stores the hash values of its left and right child nodes, i.e.,
concatenates the two hash values and then computers the
hash value of the concatenation, e.g., H12 = H(h1 |h2), where
symbol “|” stands for string concatenation operation. After
the MHT is constructed, DO signs the hash value of the root
node using the private key to prevent the data from being
tampered with.

Based on MHT and other tree structures, researchers
have proposed a series of query result authentication schemes
for outsourced databases. Pang et al. [4] proposed a veri-
fication structure VBT (Verifiable B-tree) based on B-Tree,

Fig. 1 The Merkle hash tree

which can only guarantee correctness of the one-dimensional
range query results but cannot guarantee completeness of the
query result. Li et al. [5] proposed MBT (Merkle B-tree) by
combining B-tree and MHT. MBT is a disk-based variant of
MHT. Compared with MHT, MBT reduces the search time
and the number of disk accesses.

Cheng et al. proposed multi-dimensional verification
data structure VKD-tree (Verifiable KD-tree) and VR-tree
(Verifiable R-tree) [6]. The idea of signature chain is applied
to KD-tree and R-tree respectively, aiming to deal with the
problem of query result verification for multi-dimensional
data. Yang et al. [7] proposed a verification scheme that sup-
ports multidimensional top-k query. In the problem of query
validation in outsourced spatial databases, Yang et al. [8]
proposed MR-Tree (Merkle R-tree) and MR*-tree (Merkle
R*-tree). The verification information is combined with the
spatial index structure R-tree and R*-tree respectively, and
only the hash value of the root node is needed to sign. This
scheme is better than VR-tree in terms of the construction
time of authenticated data structure (ADS), query result ver-
ification time, and smaller VO size.

In [9]–[11], Location-based spatial query verification
schemes have been proposed, which effectively solve the
problem of result verification for nearest neighbor, k-nearest
neighbor and skyline query, respectively. In [12]–[14], the
authors proposed a verification scheme to solve the problem
of verifying the results of spatial multi-user queries. Mul-
tiple SQL query verification schemes are described in [3].
In [15], [16], they cannot only ensure the correctness and
completeness of query results, but also support the verifi-
cation of query results on dynamic data sets. In [17]–[19],
the authors solve the problem of privacy protection of out-
sourced data, where DO uploads encrypted data to server
and server can still correctly perform query processing and
return query results even if the original data content is not
available. Yang et al. designed an authenticated index struc-
ture based on MHT and q-gram inverted index, which can
verify approximate string query results. However, the size
of VO generated based on the structure is large, because the
dictionary used in the structure is voluminous [22].

3. Preliminaries

3.1 Trie

Trie is a tree-like data structure for efficient string matching.
It is often used in text search, string matching, word occur-
rence counting and so on. Given a Trie, each path from
the root to a leaf represents a string in the dataset and every
branch on the path corresponds to a different character in
the string. In real applications, many strings have the same
prefix, and the characteristic of a Trie is that strings with
a same prefix have a common parent path. Therefore, by
using Trie we can reduce the number of comparisons of the
same prefix, so as to reduce the query overhead and improve
search efficiency.

WANG et al.: A TRIE-BASED AUTHENTICATION SCHEME FOR APPROXIMATE STRING QUERIES
539

3.2 Edit Distance

In existing research work, various measures have been pro-
posed to measure the similarity between two strings [20]. In
this paper, we use edit distance to measure the similarity
between two strings. Specifically, edit distance is defined as
the minimum number of basic operations (including charac-
ter insertion, deletion, and substitution) required to convert
one string to another. Given two strings s1 and s2, the edit
distance between them is defined as ed(s1, s2).

3.3 Active Node

Given a Trie, a string s, and a Trie node n, if ed(s,n) ≤ d is
satisfied, then node n is called the active node of string s. In
real applications, to judge whether two strings are similar, it
is not necessary to calculate the edit distance between two
complete strings, instead we use the dynamic programming
algorithm to measure their similarity. Specifically, during
the calculation process, if the edit distance between two
strings is found to be greater than a pre-specified threshold,
we can then terminate the calculation early, thus saving the
computational cost. Similarly, if n is not the active node of
any prefix of s, then all strings below n are not similar to s
with respect to a given edit distance threshold [21].

4. Our Proposed Scheme

In this section, we introduce the system model and our
method for approximate string search result authentication.

4.1 System Model

The system model in this paper consists of three parties: data
owner (DO), cloud service provider (CSP), and the user, as
shown in Fig. 2. DO uses a private key to sign the hash of
the root of the authenticated data structure (ADS) and sends
the ADS and signature to CSP, who is responsible for user
query processing on behalf of DO.

When processing user queries, CSP constructs VO of
query result R with the help of ADS, and finally returns
VO to the user. The user then verifies the correctness and

Fig. 2 The system model

completeness of the query result R based on DO’s public key
and VO.

4.2 Authenticated Data Structure MTrie

In this section, we propose a new authenticated data structure
named MTrie that is based on MHT and Trie. Following the
similar idea that MHT uses hierarchical hashing method to
realize query result authentication, we embed corresponding
digest (i.e., hash value) of each node in the Trie. Specif-
ically, the digest of each leaf node is the hash value of a
special symbol “⊥”, while the digest of each internal node is
based on the hash value of its child nodes and the character
corresponding to each branch. For example, given a string
set S = {in, inn, int, tea, ten, to}, Fig. 3 shows an MTrie
with respect to S, where the hash values of node 3, 4, and
2 are h3 = h(⊥), h4 = h(⊥), and h2 = h(h(n)|h3 |h(t)|h4),
respectively. Here, h(.) is a public hash function, such as
SHA-1.

DO calculates the hash value of each node of MTrie,
and finally uses the private key sk to sign the hash value of
the root hroot of MTrie, in order to get the root signature
Sroot as shown below:

Sroot = sigsk(hroot) (1)

where sig(.) is a digital signature algorithm, such as RSA or
ECDSA.

4.3 VO Construction

In order to process the approximate string query q, CSP uses
Algorithm 1 to calculate the query results and construct the
VO corresponding to the query results. Specifically, there
are four types of information in VO:

(1) General active node, which puts the character data
stored in a node into VO (Line 10 of Algorithm 1).

(2) Terminal node of the string and meet the query con-
dition, use “*” to mark the character data of the node
(Line 8).

(3) Hash values and character data of the nodes that need
to be pruned (Line 14).

Fig. 3 The structure of an MTrie

540
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.4 APRIL 2024

(4) Special symbols “ [” and “]” that embrace nodes be-
longing to a same subtree (Lines 4 and 17).

Let us take Fig. 3 as an example. Assuming that the
query string q = “inf ” and edit distance threshold d = 1, we
use Algorithm 1 to obtain the final VO as follows:

VO = [i[∗n[∗n,∗t]], t[(e, h6), (o, h9)]] (2)

Finally, CSP returns the VO and the signature of root node
Sroot to the user. It is worth noting that the query result
set {“in”, “inn”, “int”} that meet the edit distance threshold
condition are already included in the VO.

4.4 Authentication Phase

In order to verify correctness of the query results, user em-
ploys Algorithm 2 to traverse the VO once, and calculates the
hash value h′

root of the root node recursively in a bottom-up
fashion. Then we use the public key pk disclosed by DO to
verify the signature Sroot returned by CSP, so as to check
whether the result returned from CSP is the same as the
h′

root reconstructed by the user.

h′
root = h(h(i)|h(h(n)|h(h(n)|h(⊥)|

h(t)|h(⊥)))|h(t)|h(h(e)|h6 |h(o)|h9)) (3)

h′
root

?
= sigpk(Sroot) (4)

Figure 4 shows the process of calculating h′
root by

Algorithm 2. Specifically, during traversing the VO, the user
extracts the string with “*” and adds it to the result set. At
the same time, the user verifies that the strings represented
by the remaining leaf nodes that are not in the result set do
not satisfy the edit distance threshold constraint.

Fig. 4 The MTrie reconstructed by the user

To prove the correctness of our proposed scheme, we
assume that a data record p in query result set R is forged or
modified into a record p′. Since the hash function is one-way
collision-resistant and the calculation of the hash value hroot
of the root node of MTrie must use the original data record
p. If the user calculates the root hash of MTrie by using the
query result set R that contains record p′, then the resulting
root hash h′

root does not match sigpk(sroot). Therefore, the
method proposed in this paper can ensure correctness of the
result set R.

Next, we prove the completeness of our proposed au-
thentication method. We assume that the data record p is a
string that meets the edit distance constraint. To enable the
user to calculate the correct root hash hroot , there are two
cases: (1) data record p exists in VO, and (2) data record
p exists in the hash of the pruned node, that is, p is not re-
turned to the user by CSP. For the first case, when traversing
VO, the user extracts the data record p that meets the edit
distance threshold constraint and puts it into the result set R,
so that the correct root hash hroot can be calculated. On the
other hand, for the second case the user will find that there

WANG et al.: A TRIE-BASED AUTHENTICATION SCHEME FOR APPROXIMATE STRING QUERIES
541

are strings that match the edit distance threshold constraint
in the pruned node during verification, meaning that there
is a potential violation of completeness of the query result.
Therefore, all the similar strings in S that match the edit
distance threshold constraint will be returned to the user.

5. Experiments

In this section, we conduct experiments on real datasets to
verify effectiveness of our proposed authentication scheme.
We measure the performance of our scheme in terms of VO
construction time, VO size and user verification time. We
compare our method named MTrie with the GS2-opt method
in [22], which is the most relevant work to ours.

5.1 Experiment Setup

Datasets. We employ two real-world datasets: (1) DBLP
Authors (https://dblp.uni-trier.de/xml/) downloaded from the
DBLP publication dataset that contains author names; (2)
LastName (www.census.gov/topics/population/genealogy/
data/1990_census/1990_census_namefiles.html) is a dataset
of frequently occurring surnames provided by the U.S. Cen-
sus Bureau. Table 1 summarizes the detailed statistics of
the two datasets, where N denotes the number of strings,
AvgLen the average length of the strings, and |

∑
| the number

of different characters.
Experiment environment. The experiments were con-
ducted on a PC running 64-bit Ubuntu operating system
with Intel(R) Core(TM) i9-9960X CPU@3.10 GHz. The
hash function we adopted in our experiments is SHA1, and
the generated hash value is 20 bytes long. The digital sig-
nature algorithm we used is the 128 bit RSA. We randomly
generate 50 strings as query strings, and each of the reported
result is the average of 10 trails.

5.2 Experiment Results

In the query verification scheme, the time to construct VO,
the size of VO and the verification time of the user have a
certain change relationship with the edit distance. The fol-
lowing is the comparison of the experimental results between
this paper and that in [22].

We first investigate the impact of edit distance on VO
size. The results are given in Fig. 5, which reveals the rela-
tionship between the size of VO and the edit distance d on
the two datasets. When the edit distance is less than 4, the
size of VO is small and it grows slowly. As the edit distance
continues to increase, the number of strings that match the
edit distance threshold increases sharply, so the size of VO
also increases rapidly.

Table 1 Statistics of the two datasets used

Next, we investigate the impact of edit distance on VO
construction time, and the experiment results are presented
in Fig. 6. From the figure we can see that the VO construction

Fig. 5 Edit distance versus VO size

Fig. 6 Edit distance versus VO construction time

542
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.4 APRIL 2024

Fig. 7 Edit distance versus VO verification time

time of MTrie is much less than that of [22]. When the edit
distance is less than 4, the VO construction time is less than
one second. With the increase of edit distance, however, the
VO construction time shows a rapid increase trend.

Finally, we look at the impact of edit distance on VO
verification time at the user side, and Fig. 7 gives the ex-
periment results. The user verification time required by our
proposed scheme is also less than the verification time re-
ported in [22]. There are two parts in the time cost of VO
verification at the user side, that is: (1) the time for verifying
the correctness of query results. Specifically, the user recal-
culates the hash value h′

root of the root node of MTrie by
using VO, employs the public key pk to decrypt the signa-
ture Sroot to get sigpk(Sroot), and then determines whether
h′

root is equal to sigpk(Sroot); (2) the time for verifying the
completeness of query results, i.e., whether the edit distance
between the strings composed of all termination nodes in
VO (excluding those in the result set) and the query string is
greater than the distance threshold d.

The above experiment results show that our MTrie pro-
posed in this paper performs better than GS2-opt when
edit distance is small. However, when a larger edit dis-
tance threshold is specified, the performance of the proposed
scheme will deteriorate, that is, the size of VO and the user
verification time will increase. It is worth noting that in real-
world applications, using a larger edit distance threshold for
approximate string queries often greatly affects the accuracy
and usability of query results. Therefore, the authentication
scheme proposed in this paper is more suitable and mean-
ingful for most practical application scenarios with a smaller
edit distance.

6. Conclusion

In this paper, we focused on the problem of authenticat-
ing the approximate string query results in the context of
data outsourcing. First, we proposed an effective authenti-
cated data structure called MTrie. Then, based on MTrie,
we designed a VO construction algorithm and a query re-
sult authentication algorithm to ensure the correctness and
completeness of the query results, respectively. Finally, we
have conducted extensive experiments on real datasets to
verify that our proposed scheme is superior to the existing
state-of-the-art method for approximate string query result
authentication in the context of data outsourcing.

Acknowledgments

The work of this paper is supported by NSFC (Grant No.
62020106013 and 61972177), Science Plan of Yunfu city
(Grant No. 2022010212), and Teaching Quality and Reform
Project (Grant No. JG2023057), Jinan University. Xuelian
Deng is supported by Guangxi Higher Education Undergrad-
uate Teaching Reform Project (Grant No. 2023JGB234) and
Project of Guangxi University of Chinese Medicine (Grant
No. 2022MS023 and 2022B061).

References

[1] P. Mell and T. Grance, “The nist definition of cloud computing,”
2011.

[2] B. Dong and W. Wang, “Arm: Authenticated approximate record
matching for outsourced databases,” 2016 IEEE 17th International
Conference on Information Reuse and Integration (IRI), IEEE,
pp.591–600, 2016.

[3] B. Zhang, B. Dong, and W.H. Wang, “Integrity authentication for
SQL query evaluation on outsourced databases: A survey,” IEEE
Trans. Knowl. Data Eng., vol.33, no.4, pp.1601–1618, 2019.

[4] H.H. Pang and K.-L. Tan, “Authenticating query results in edge com-
puting,” Proc. 20th International Conference on Data Engineering,
IEEE, pp.560–571, 2004.

[5] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin, “Dynamic
authenticated index structures for outsourced databases,” Proc. 2006
ACM SIGMOD international conference on Management of data,
pp.121–132, 2006.

[6] W. Cheng, H.H. Pang, and K.-L. Tan, “Authenticating multi-
dimensional query results in data publishing,” Data and Applica-
tions Security XX: 20th Annual IFIP WG 11.3 Working Conference
on Data and Applications Security, Sophia Antipolis, France, July
31-Aug. 2, 2006. Proceedings 20. Springer, pp.60–73, 2006.

[7] S. Yang, S. Tang, and X. Zhang, “Privacy-preserving k nearest neigh-
bor query with authentication on road networks,” Journal of Parallel
and Distributed Computing, vol.134, pp.25–36, 2019.

[8] Y. Yang, S. Papadopoulos, D. Papadias, and G. Kollios, “Spatial out-
sourcing for location-based services,” 2008 IEEE 24th International
Conference on Data Engineering, IEEE, pp.1082–1091, 2008.

[9] S. Nutanong, R. Zhang, E. Tanin, and L. Kulik, “The v*-diagram:
a query-dependent approach to moving KNN queries,” Proc. VLDB
Endowment, vol.1, no.1, pp.1095–1106, 2008.

[10] L. Hu, W.-S. Ku, S. Bakiras, and C. Shahabi, “Spatial query integrity
with voronoi neighbors,” IEEE Trans. Knowl. Data Eng., vol.25,
no.4, pp.863–876, 2011.

[11] X. Zhu, J. Wu, W. Chang, G. Wang, and Q. Liu, “Authentication of

http://dx.doi.org/10.6028/nist.sp.800-145
http://dx.doi.org/10.6028/nist.sp.800-145
http://dx.doi.org/10.1109/iri.2016.86
http://dx.doi.org/10.1109/iri.2016.86
http://dx.doi.org/10.1109/iri.2016.86
http://dx.doi.org/10.1109/iri.2016.86
http://dx.doi.org/10.1109/tkde.2019.2947061
http://dx.doi.org/10.1109/tkde.2019.2947061
http://dx.doi.org/10.1109/tkde.2019.2947061
http://dx.doi.org/10.1109/icde.2004.1320027
http://dx.doi.org/10.1109/icde.2004.1320027
http://dx.doi.org/10.1109/icde.2004.1320027
http://dx.doi.org/10.1145/1142473.1142488
http://dx.doi.org/10.1145/1142473.1142488
http://dx.doi.org/10.1145/1142473.1142488
http://dx.doi.org/10.1145/1142473.1142488
http://dx.doi.org/10.1007/11805588_5
http://dx.doi.org/10.1007/11805588_5
http://dx.doi.org/10.1007/11805588_5
http://dx.doi.org/10.1007/11805588_5
http://dx.doi.org/10.1007/11805588_5
http://dx.doi.org/10.1016/j.jpdc.2019.07.013
http://dx.doi.org/10.1016/j.jpdc.2019.07.013
http://dx.doi.org/10.1016/j.jpdc.2019.07.013
http://dx.doi.org/10.1109/icde.2008.4497517
http://dx.doi.org/10.1109/icde.2008.4497517
http://dx.doi.org/10.1109/icde.2008.4497517
http://dx.doi.org/10.14778/1453856.1453973
http://dx.doi.org/10.14778/1453856.1453973
http://dx.doi.org/10.14778/1453856.1453973
http://dx.doi.org/10.1109/tkde.2011.267
http://dx.doi.org/10.1109/tkde.2011.267
http://dx.doi.org/10.1109/tkde.2011.267
http://dx.doi.org/10.1007/978-3-030-05345-1_6

WANG et al.: A TRIE-BASED AUTHENTICATION SCHEME FOR APPROXIMATE STRING QUERIES
543

skyline query over road networks,” Security, Privacy, and Anonymity
in Computation, Communication, and Storage: 11th International
Conference and Satellite Workshops, SpaCCS 2018, Melbourne,
NSW, Australia, Dec. 11-13, 2018, Proceedings 11. Springer, pp.72–
83, 2018.

[12] Y. Wang, S. Gao, J. Zhang, X. Nie, X. Duan, and J. Chen, “Au-
thenticating multiple user-defined spatial queries,” 2016 IEEE 40th
Annual Computer Software and Applications Conference (COMP-
SAC), vol.1, IEEE, pp.471–480, 2016.

[13] X. Duan, Y. Wang, J. Chen, and J. Zhang, “Authenticating preference-
oriented multiple users spatial queries,” 2017 IEEE 41st annual
computer software and applications conference (COMPSAC), vol.1,
IEEE, pp.602–607, 2017.

[14] Y. Wang, X. Duan, X. Yang, Y. Zhang, and X. Zhang, “Processing
multiple-user location-based keyword queries,” IEICE Trans. Inf. &
Syst., vol.101, no.6, pp.1552–1561, 2018.

[15] H. Zhu, Q. Wei, X. Yang, R. Lu, and H. Li, “Efficient and privacy-
preserving online fingerprint authentication scheme over outsourced
data,” IEEE Trans. Cloud Comput., vol.9, no.2, pp.576–586, 2018.

[16] M. Rady, T. Abdelkader, and R. Ismail, “Integrity and confidentiality
in cloud outsourced data,” Ain Shams Engineering Journal, vol.10,
no.2, pp.275–285, 2019.

[17] W. Song, B. Wang, Q. Wang, Z. Peng, and W. Lou, “Tell me the
truth: Practically public authentication for outsourced databases with
multi-user modification,” Information sciences, vol.387, pp.221–
237, 2017.

[18] T. Xiang, X. Li, F. Chen, Y. Yang, and S. Zhang, “Achieving ver-
ifiable, dynamic and efficient auditing for outsourced database in
cloud,” Journal of Parallel and Distributed Computing, vol.112,
pp.97–107, 2018.

[19] J. Wang, X. Chen, J. Li, J. Zhao, and J. Shen, “Towards achieving
flexible and verifiable search for outsourced database in cloud com-
puting,” Future Generation Computer Systems, vol.67, pp.266–275,
2017.

[20] M. Yu, G. Li, D. Deng, and J. Feng, “String similarity search and
join: a survey,” Frontiers of Computer Science, vol.10, pp.399–417,
2016.

[21] J. Wang, J. Feng, and G. Li, “Trie-join: Efficient trie-based string
similarity joins with edit-distance constraints,” Proc. VLDB Endow-
ment, vol.3, no.1-2, pp.1219–1230, 2010.

[22] L. Yang, H. Ye, X. Liu, Y. Mao, and J. Zhang, “Authenticat-
ing q-gram-based similarity search results for outsourced string
databases,” Mathematics, vol.11, no.9, 2023. [Online]. Available:
https://www.mdpi.com/2227-7390/11/9/2128

Yu Wang received the B.S. degree from
Jiangsu University of Technology, and M.S. de-
gree from Jinan University, respectively. Her
research interests include big data management,
cloud computing, and information security.

Liangyong Yang received the B.S. degree
from Dongguan University of Technology, and
M.S. degree from Jinan University, Guangzhou
China in 2023. His research interests include
cloud computing and information security.

Jilian Zhang received the Ph.D. degree
in Information Systems from Singapore Man-
agement University in 2014. He has published
more than 50 refereed papers in refereed con-
ferences and journals, including IEEE TDSC,
IEEE TNNLS, ACM SIGMOD, VLDB, WWW,
IJCAI, etc. Currently he is an associate professor
of Jinan University, Guangzhou China.

Xuelian Deng received the B.S. and M.S. de-
grees in Computer Science from Central China
Normal University and Guangxi Normal Univer-
sity, respectively. Her research interests include
information systems, data management and ma-
chine learning. She has published more than 10
papers in refereed international journals. Cur-
rently, she is an associate professor of Guangxi
University of Chinese Medicine, China.

http://dx.doi.org/10.1007/978-3-030-05345-1_6
http://dx.doi.org/10.1007/978-3-030-05345-1_6
http://dx.doi.org/10.1007/978-3-030-05345-1_6
http://dx.doi.org/10.1007/978-3-030-05345-1_6
http://dx.doi.org/10.1007/978-3-030-05345-1_6
http://dx.doi.org/10.1007/978-3-030-05345-1_6
http://dx.doi.org/10.1109/compsac.2016.66
http://dx.doi.org/10.1109/compsac.2016.66
http://dx.doi.org/10.1109/compsac.2016.66
http://dx.doi.org/10.1109/compsac.2016.66
http://dx.doi.org/10.1109/compsac.2017.68
http://dx.doi.org/10.1109/compsac.2017.68
http://dx.doi.org/10.1109/compsac.2017.68
http://dx.doi.org/10.1109/compsac.2017.68
http://dx.doi.org/10.1587/transinf.2017edp7375
http://dx.doi.org/10.1587/transinf.2017edp7375
http://dx.doi.org/10.1587/transinf.2017edp7375
http://dx.doi.org/10.1109/tcc.2018.2866405
http://dx.doi.org/10.1109/tcc.2018.2866405
http://dx.doi.org/10.1109/tcc.2018.2866405
http://dx.doi.org/10.1016/j.asej.2019.03.002
http://dx.doi.org/10.1016/j.asej.2019.03.002
http://dx.doi.org/10.1016/j.asej.2019.03.002
http://dx.doi.org/10.1016/j.ins.2016.07.031
http://dx.doi.org/10.1016/j.ins.2016.07.031
http://dx.doi.org/10.1016/j.ins.2016.07.031
http://dx.doi.org/10.1016/j.ins.2016.07.031
http://dx.doi.org/10.1016/j.jpdc.2017.10.004
http://dx.doi.org/10.1016/j.jpdc.2017.10.004
http://dx.doi.org/10.1016/j.jpdc.2017.10.004
http://dx.doi.org/10.1016/j.jpdc.2017.10.004
http://dx.doi.org/10.1016/j.future.2016.05.002
http://dx.doi.org/10.1016/j.future.2016.05.002
http://dx.doi.org/10.1016/j.future.2016.05.002
http://dx.doi.org/10.1016/j.future.2016.05.002
http://dx.doi.org/10.1007/s11704-015-5900-5
http://dx.doi.org/10.1007/s11704-015-5900-5
http://dx.doi.org/10.1007/s11704-015-5900-5
http://dx.doi.org/10.14778/1920841.1920992
http://dx.doi.org/10.14778/1920841.1920992
http://dx.doi.org/10.14778/1920841.1920992

