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PAPER
Power Peak Load Forecasting Based on Deep Time Series Analysis
Method

Ying-Chang HUNG†a), Member and Duen-Ren LIU†, Nonmember

SUMMARY The prediction of peak power load is a critical factor di-
rectly impacting the stability of power supply, characterized significantly by
its time series nature and intricate ties to the seasonal patterns in electricity
usage. Despite its crucial importance, the current landscape of power peak
load forecasting remains a multifaceted challenge in the field. This study
aims to contribute to this domain by proposing a method that leverages
a combination of three primary models - the GRU model, self-attention
mechanism, and Transformer mechanism - to forecast peak power load.
To contextualize this research within the ongoing discourse, it’s essential
to consider the evolving methodologies and advancements in power peak
load forecasting. By delving into additional references addressing the com-
plexities and current state of the power peak load forecasting problem, this
study aims to build upon the existing knowledge base and offer insights into
contemporary challenges and strategies adopted within the field. Data pre-
processing in this study involves comprehensive cleaning, standardization,
and the design of relevant functions to ensure robustness in the predictive
modeling process. Additionally, recognizing the necessity to capture tempo-
ral changes effectively, this research incorporates features such as “Weekly
Moving Average” and “Monthly Moving Average” into the dataset. To
evaluate the proposed methodologies comprehensively, this study conducts
comparative analyses with established models such as LSTM, Self-attention
network, Transformer, ARIMA, and SVR. The outcomes reveal that the
models proposed in this study exhibit superior predictive performance com-
pared to these established models, showcasing their effectiveness in accu-
rately forecasting electricity consumption. The significance of this research
lies in two primary contributions. Firstly, it introduces an innovative pre-
diction method combining the GRU model, self-attention mechanism, and
Transformer mechanism, aligning with the contemporary evolution of pre-
dictive modeling techniques in the field. Secondly, it introduces and em-
phasizes the utility of “Weekly Moving Average” and “Monthly Moving
Average” methodologies, crucial in effectively capturing and interpreting
seasonal variations within the dataset. By incorporating these features,
this study enhances the model’s ability to account for seasonal influencing
factors, thereby significantly improving the accuracy of peak power load
forecasting. This contribution aligns with the ongoing efforts to refine fore-
casting methodologies and addresses the pertinent challenges within power
peak load forecasting.
key words: time series analysis, self-attention mechanism, transformer
mechanism, weekly moving average, monthly moving average

1. Introduction

This study aims to assess the suitability and effectiveness of
GRU [1], Self-attention network [2], and Transformer net-
work [2] in power peak load forecasting, leveraging exten-
sive historical data along with reference data such as “weekly

Manuscript received September 8, 2023.
Manuscript revised January 22, 2024.
Manuscript publicized March 21, 2024.

†The authors are with the Institute of Information Management,
National Yang Ming Chiao Tung University, HsinChu, Taiwan,
R.O.C.

a) E-mail: Eltonhung@gmail.com
DOI: 10.1587/transinf.2023EDP7187

moving average” and “monthly moving average.” The ex-
perimental dataset is derived from historical data provided
by Taiwan Power Company, encompassing daily peak load
values spanning from August 1, 2015, to May 31, 2023.

The research encompasses a comparative analysis in-
volving three primary models: the GRU network, GRU
+ Self-attention network, and GRU + Transformer net-
work, serving as experimental models for ablation exper-
iments. Additionally, two traditional prediction models,
ARIMA (Autoregressive Integrated Moving Average model)
and SVR (Support Vector Regression), are employed as the
foundation for comparative experiments. Furthermore, the
study introduces “Weekly Moving Average/Monthly Moving
Average” as an additional feature to augment the model’s ca-
pacity to capture seasonal and temporal variations [3], [4].

1.1 Problem Identification

power peak load forecasting poses a critical and intricate
challenge within the energy and power sector. It pertains to
predicting the maximum load demand on the power system
during specific timeframes. Given the inherent difficulty of
storing electrical power, power companies must meticulously
allocate resources for generation and consumption based on
precise peak load predictions. This practice is essential to
maintain a balance between power supply and demand, en-
suring grid stability and security. Without accurate forecasts,
an excessive demand for electricity can lead to voltage fluctu-
ations, instability, and grid failures, significantly impacting
economic activities and daily life. Accurate power peak load
forecasting yields several benefits, including improved en-
ergy efficiency, reduced waste and carbon emissions, cost
savings, risk mitigation, support for renewable energy inte-
gration, and enhanced customer satisfaction.

Nonetheless, power peak load forecasting is a
formidable task due to its susceptibility to internal and exter-
nal factors, including weather conditions, holidays, seasons,
social events (such as the Covid-19 pandemic), and user be-
havior. These variables imbue power peak load forecasting
with nonlinear, non-stationary, multi-variation, and multi-
sequence characteristics. Consequently, addressing these
challenges necessitates advanced data analysis and model-
ing techniques.

In recent years, the advent of machine learning and deep
learning has prompted a growing number of researchers to
apply these methodologies to power peak load forecasting.
Machine learning and deep learning techniques excel in data
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Fig. 1 Proposed methodology

representation, feature extraction, and the discovery of hid-
den patterns. Prominent among these methods are the Gated
Recurrent Unit (GRU), Self-attention network, and Trans-
former network, all adept at processing time-series data and
considering long-term dependencies. While many power
peak load forecasting studies predominantly employ time
series models like LSTM [5], ARIMA [6] and SVR [7] mod-
els, the increasing popularity of Self-attention and Trans-
former mechanisms in various deep learning domains has
introduced new possibilities. To diversify this research, the
author utilizes a GRU evolved from LSTM and combines
it with these two attention-based deep learning models to
explore their viability in power peak load forecasting.

In addition to standard forecasting variables like climate
data (temperature, humidity, sunshine hours) and seasonal
indices (Seasonal Index), this study introduces “Weekly
Moving Average” and “Monthly Moving Average” as supple-
mentary features. These features calculate load data averages
over fixed windows of time, such as weekly and monthly in-
tervals, enhancing the model’s capacity to capture temporal
and seasonal variations.

Figure 1 illustrates the methodology proposed by the au-
thor, which encompasses the six predictive networks/models.
It incorporates the use of “Weekly Moving Average” and
“Monthly Moving Average” as supplementary features to
address the crucial issue of peak load electricity forecasting.

1.2 Contributions

The contributions of this paper can be summarized as fol-
lows:

• Comprehensive Ablation Experiment: This research con-
ducts a thorough ablation experiment, individually and in
combination, using deep learning networks such as GRU,
Self-Attention, and Transformer mechanisms, along with
the incorporation of traditional forecasting models like
ARIMA/SVR. The performance of these models is criti-
cally evaluated through comparative experiments, provid-
ing valuable insights into their predictive capabilities.

• Introducing “Weekly Moving Averages” and “Monthly
Moving Averages” proves effective in capturing the im-
pact of seasonal factors on peak load forecasting in power
systems. These two moving average methods aid in data

smoothing, highlighting both short-term and long-term
trends within time series data, particularly demonstrating
significant efficacy in handling seasonal variations. While
the weekly moving average captures cyclic changes within
a week, the monthly moving average is more adept at cap-
turing monthly seasonal variations. Through the incor-
poration of these features, the model can better account
for the influence of seasonal factors on peak load, thereby
enhancing predictive accuracy.

• Combining the features of “Weekly Moving Averages” and
“Monthly Moving Averages” within a deep learning net-
work holds significant implications for predicting power
load. These features capture trends at different time scales:
“Weekly Moving Averages” may reflect weekly cyclic pat-
terns, while “Monthly Moving Averages” better represent
longer-term seasonal changes. By amalgamating these
features, we provide a more comprehensive understanding
of load behavior. The deep learning network can lever-
age this combined information to better comprehend these
trends and patterns. Such integration enhances predictive
performance, enabling more accurate forecasts of future
power demand.

• Practical Verification Using Taiwan Power Peak Load
Data: To validate the methodology’s practicality and per-
formance, this study utilizes historical power peak load
data from Taiwan. Detailed data experiments are con-
ducted, offering insights into the applicability and effec-
tiveness of the proposed approach.

2. Related Works

power peak load forecasting plays a pivotal role in the power
system, offering valuable insights to enhance operational ef-
ficiency and energy management for both power companies
and energy providers. Its primary objective is to predict the
maximum demand on the power system within a specified
future timeframe, enabling the formulation of appropriate
strategies. Power companies rely on these forecasts to op-
timize power generation and distribution in alignment with
user needs. Dispatch centers, known as Independent Sys-
tem Operators, utilize peak load predictions to make well-
informed decisions, such as activating or deactivating gen-
erating units, adjusting transmission capacity, and managing
energy reserves.

Traditional power peak load forecasting methods often
hinge on statistical models, including time-series analysis
and regression. However, these methods may fall short
in capturing non-linear and seasonal load variations [8]–
[10]. Self-attention and Transformer-based models, origi-
nally prominent in natural language processing, have found
their way into the energy sector, particularly in predicting
electricity consumption. Recent literature has witnessed an
influx of self-attention and Transformer-based models, pri-
marily concentrating on Power Supply Prediction. These
models have been notably applied in research areas like
wind power generation and solar power generation. De-
spite exploring actual power peak load forecasting based on
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historical data remains a pertinent subject. Thus, this article
delves into the application of these models, specifically Self-
attention and Transformer-based, in predicting power peak
loads in Taiwan.

In this section, the researcher reviews various method-
ologies employing deep learning models and explores perti-
nent literature concerning the self-attention mechanism and
Transformer for electricity demand forecasting.

Within the realm of power demand prediction, several
commonly employed methods include time-series analysis,
regression models, artificial neural networks, decision tree
methods, support vector machines, and more. The following
offers a concise introduction to these methods:

1. Time-Series Analysis is a statistical method that utilizes
historical data to analyze temporal trends and predict
future data based on these patterns. Its advantage lies
in its ability to handle non-linear and non-stationary
data, capturing factors like seasonality, periodicity, and
randomness. However, it requires a substantial amount
of data to build a model and struggles with emergencies
or outliers. Common techniques include the ARIMA
model [8], [9] and exponential smoothing.

2. The regression model is a supervised learning approach
that establishes a function to describe the relationship
between independent and dependent variables, enabling
the prediction of unknown dependent variables. Its
strength lies in handling multivariate data and assess-
ing the influence of each independent variable on the
dependent variable. However, it assumes data confor-
mity to a specific distribution and is less effective with
nonlinear or highly correlated data. Common regres-
sion models encompass linear regression, multivariate
regression, etc [10].

3. Artificial Neural Networks (ANNs) mimic the human
brain’s operations, connecting neurons through learned
weight adjustments to map complex nonlinear relation-
ships within large, unstructured datasets. ANNs excel
in processing high-dimensional data, extracting hidden
features, and uncovering data patterns. Nevertheless,
they demand substantial computational resources and
training time, making them susceptible to issues like
overfitting and local optima [11].

4. The Decision Tree method employs graphical binary
judgment rules to categorize data into various values,
identifying optimal judgment rules by exploring po-
tential paths. Decision trees effectively handle both
categorical and numerical data, offering an intuitive vi-
sualization of feature impact on outcomes. However,
they are sensitive to noise and outliers, occasionally
generating overly complex or oversimplified rules [12].

5. The Support Vector Machine (SVM) relies on statisti-
cal theory to attain optimal classification or regression
by identifying a hyperplane that maximizes the margin
between different categories or values. SVMs excel
in handling highly nonlinear and correlated data, and
their flexibility and generalization capabilities can be

enhanced through Kernel Functions [13].

However, these models exhibit certain limitations in
dealing with complex and nonlinear patterns in the data.
Deep learning models, including Convolutional Neural Net-
works (CNNs), Recurrent Neural Networks (RNNs), and
Long Short-Term Memory (LSTM) networks, have proven
to yield superior results when tackling data complexity and
non-linearity [14], [15].

Since Vaswani et al. introduced the Transformer model
for natural language processing in 2017 [2], it has become a
key methodology for time series and sequence-to-sequence
predictions. In recent years, emerging neural network mod-
els like self-attention and Transformer have also made in-
roads into power peak load forecasting. Self-attention is a
machine learning attention mechanism capable of learning
correlations between different time steps. The Transformer,
an encoder-decoder architecture based on self-attention, has
demonstrated remarkable results in natural language pro-
cessing and image processing.

In the realm of power peak load forecasting, some re-
searchers have begun to explore the application of emerg-
ing neural network models such as self-attention and Trans-
former. For instance, Hu et al. proposed a method that
combines self-attention and LSTM for predicting electric ve-
hicle charging demands. They utilized CRPS (Continuous
Ranked Probability Score) as the evaluation loss function
to assess the recommendations based on the self-attention
method for forecasting electric vehicle charging. This ap-
proach was chosen because the self-attention method can
balance historical patterns and current trends, alleviate long-
term forgetting, and enable superior predictions using CRPS.
It demonstrated promising outcomes in forecasting electric
vehicle charging demands [16]. Jun Wei Chan introduced
the Transformer model and compared it to state-of-the-art
approaches such as Recurrent Neural Networks (RNN) and
Convolutional Neural Networks (CNN). In the end, he rec-
ommended using the “GLEU” activation function to empha-
size its speed and impressive accuracy [17].

In addition to the consideration and design of Self-
attention and Transformer models, “Weekly Moving Aver-
age” and “Monthly Moving Average” represent another set of
commonly used techniques in time-series prediction. These
techniques primarily aim to capture seasonal and long-term
trends present in time series data. “Weekly Moving Aver-
age” entails computing the average based on load data from
the previous week, while “Monthly Moving Average” calcu-
lates the average based on the load data from the preceding
month. While these moving averages have found widespread
application in various time series forecasting problems, such
as stock market and weather forecasting, their utilization in
power peak load forecasting remains relatively limited.

“Weekly Moving Average” effectively captures weekly
seasonal trends. By calculating the average load data from
the past week, a corresponding weekly moving average value
is derived and incorporated as a feature in the forecasting
model. This enhancement allows the model to better ac-
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count for week-to-week patterns, subsequently improving
forecast accuracy. Similarly, the “Monthly Moving Average”
adeptly captures monthly seasonal trends, such as variations
in electricity consumption between summer and winter. By
computing the mean of the load data over the past month, a
one-month moving average value is obtained as a forecasting
model feature. This further augments the model’s ability to
grasp monthly patterns of change, contributing to improved
forecast accuracy [18].

Furthermore, this study conducted a series of related ab-
lation studies and comparative experiments. These studies
primarily investigated the impact of different model designs
and parameters on the accuracy of power peak load fore-
casting. Among them, certain studies have indicated that
models based on Self-attention and Transformer outperform
traditional time series models in power peak load forecast-
ing [19]–[22]. Nevertheless, others have emphasized that the
effectiveness of power peak load forecasting is significantly
influenced by model design and parameter adjustments.
In summary, existing literature suggests that deep learn-
ing models, particularly Transformers, effectively manage
complexity and non-linearity in power demand data. Con-
currently, self-attention mechanisms enhance these models’
capacity to capture long-term dependencies. Building upon
these findings, this study establishes the use of self-attention
mechanisms and Transformers for peak load prediction in
Taiwan.

3. Methodology

In this section, the primary focus is to delve into the process
of conducting ablation and comparative experiments con-
cerning power peak load forecasting. It involves elucidating
fundamental machine learning concepts and the methodol-
ogy proposed by the author. The aim is to ascertain whether
the author’s proposed method aligns with the capabilities
and significance of power peak load forecasting.

The initial step in this undertaking involves data col-
lection and preparation. This research relies on the ‘his-
torical power supply and demand data’ obtained from and
purchased through the Taiwan Power Company. The sam-
ple dataset for short term provided by Taiwan power com-
pany is consistently sourced from the Government opendata
website (www.data.gov.tw) [23]. Through official channels,
data pertaining to ‘date,’ ‘Net peak power supply capac-
ity’ (MegaWatt), ‘Peak load’ (MegaWatt), ‘Backup capacity’
(MegaWatt), ‘Backup capacity ratio’, and the power gener-
ation data of each generator unit is obtained. And the time
period is from 2015/08/01 to 2023/05/31. This study will
perform data experiments on “peak load” (MegaWatt), aug-
menting it with “Weekly Moving Average” and “Monthly
Moving Average.”

3.1 Data Collection and Preprocessing

The historical power supply and demand data from Taiwan
Power Company were collected and split into training and

test datasets. Preprocessing steps, including data cleaning,
feature selection, and normalization, were executed as fol-
lows:

3.1.1 Data Collection

Collect historical electrical load data, encompassing times-
tamps and corresponding peak load values. This data can
be acquired from open data platforms provided by power
companies and government sources.

3.1.2 Data Preprocessing

Process the collected data, which may involve tasks such as
removing outliers, handling missing values, and smoothing
data to reduce noise.

3.1.3 Feature Engineering

Organize and compute the “Weekly Moving Average” and
“Monthly Moving Average” from the dataset. These features
enhance the model’s ability to capture patterns influenced by
seasonal changes, a crucial aspect in addressing electricity
demand.

3.1.4 Dataset Splitting

Divide the data into training and test datasets, with the first
80% allocated to training and the remaining 20% to testing.

3.2 Model Construction

This section provides a detailed description of the structure
and mathematical functions of each model. The researcher
will introduce the following models in succession: the GRU
network, the GRU + Self-attention network, the GRU +
Transformer network, as well as the ARIMA and SVR mod-
els.

3.2.1 GRU Network

This is a traditional GRU model that only uses GRU for
electricity consumption prediction [1].

Suppose there is a time series of peak load power data,
expressed as X = [x1,x2, . . . ,xn], where n represents the
peak load power at time stamp t.

Then use GRU to transform this time series into a feature
sequence, denoted as H = [h1, h2, . . . , hn]. The recursive
formula of GRU is as follows:

rt = σ(Wr ⊙ xt +Ur ⊙ ht−1 + br )
zt = σ(Wz ⊙ xt +Uz ⊙ ht−1 + bz)
h̃t = tanh(W ⊙ xt +U ⊙ (rt ⊙ ht−1) + b)
ht = zt ⊙ ht−1 + (1 − zt ) ⊙ h̃t

Where rt and zt are update gate and forget gate, σ(x)
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represents the sigmoid function, tanh(x) represents the hy-
perbolic tangent function, ⊙ represents the element-wise
product, Wr , Ur , br , Wz , Uz , bz , W , U, and b are addressed
as weights and biases of models.

Then, by using a linear layer to perform electricity
consumption prediction on the feature sequence H. As-
suming that the predicted power consumption sequence is
Y = [y1, y2, . . . , yn], the formula of the forecast model is:

yt = Wy ⊙ ht + by

Where Wy and by are addressed as weight and bias of
models

The process of the entire GRU network is as follows:
Use GRU to transform the power consumption X of the time
series into a feature sequence H. Use the linear layer to
predict the electricity consumption of the feature sequence
H, and obtain the predicted electricity consumption sequence
Y.

The GRU network’s relative simplicity, efficient train-
ing dynamics, and strong performance with short to medium-
length sequences position it as a robust tool for modeling and
forecasting sequential data. In our ongoing exploration of
power peak load forecasting, it will investigate how the GRU
network can be harnessed to enhance predictions and con-
tribute to more effective power management strategies. The
mechanism of the GRU network is shown as Model 1 in
Fig. 2.

3.2.2 GRU + Self-Attention Network

The model combines the strengths of GRU and the Self-
Attention network. GRU focuses on extracting sequence fea-
tures, while the Self-Attention network adds deep learning-
based importance weighting.

In power peak load forecasting, the GRU + Self-
Attention network leverages both these architectures to cap-
ture temporal patterns and extended dependencies in the data.
This hybrid approach merges Gated Recurrent Units (GRUs)
and Self-Attention mechanisms, aiming to enhance predic-
tive accuracy in power peak load forecasting by adeptly cap-
turing short-term and long-term temporal patterns in histor-
ical power supply and demand data.

Fig. 2 The hybrid network architecture

Self-Attention Mechanism: The Self-Attention mech-
anism complements GRU capabilities by capturing distant
dependencies and global context. It assigns importance
to different time steps based on their relevance to the cur-
rent prediction. This proves valuable in understanding how
past power consumption patterns influence future peak loads,
even over extended intervals.

To predict using this hybrid model:
Data Preparation: Historical power supply and demand

data, along with relevant features like “weekly moving av-
erage” and “monthly moving average,” are preprocessed for
training and testing.

Model Architecture: The GRU + Self-Attention net-
work design optimally integrates both components. GRU
processes sequences, while Self-Attention captures contex-
tual relationships across time steps.

By harnessing the strengths of GRU and Self-Attention,
the GRU + Self-Attention network offers a comprehensive
power peak load forecasting approach. It adeptly captures
various temporal patterns and dependencies, enhancing ac-
curacy for informed decisions in effective power manage-
ment and supply stability. The mechanism of the GRU +
Self-Attention network is shown as Model 2 in Fig. 2.

3.2.3 GRU + Transformer Network

This model combines the advantages of GRU and the Trans-
former network. GRU handles sequence feature extraction,
while the Transformer network manages feature interaction
and prediction.

The GRU + Transformer network is a hybrid model that
merges Gated Recurrent Units (GRUs) with the Transformer
architecture. This fusion enhances the accuracy of power
peak load forecasting by leveraging the strengths of both
components. It effectively captures short-term dynamics
and provides a global context within historical power supply
and demand data.

Transformer Architecture: The Transformer introduces
a self-attention mechanism critical for capturing long-range
dependencies and contextual relationships. This mechanism
evaluates the importance of various time steps concerning
current predictions, particularly valuable for understanding
how past power consumption patterns impact future peak
loads across extended intervals.

By combining GRUs and the Transformer architecture,
the GRU + Transformer network benefits from both:

Short-Term Patterns: GRU captures immediate con-
sumption trends, revealing short-term variations and pat-
terns.

Global Context: The Transformer’s self-attention
mechanism widens the context, identifying long-term de-
pendencies and relationships. This is essential for predicting
peak loads influenced by seasonal or significant changes.

To forecast power peak load using this hybrid model:
Data Preparation: Historical power supply and demand

data, along with features like “weekly moving average” and
“monthly moving average,” undergo preprocessing for train-
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ing and testing.
Model Architecture: The GRU + Transformer network

architecture optimizes both components. GRU focuses on
sequential patterns, while the Transformer’s self-attention
captures contextual interdependencies.

The GRU + Transformer network offers a comprehen-
sive approach to power peak load forecasting by combining
different strengths. It captures a wide range of temporal pat-
terns and dependencies, leading to improved forecasting ac-
curacy. This approach supports informed decision-making
for effective power management and supply stability, con-
tributing to better resource allocation and energy planning.
The mechanism of the GRU+Transformer network is shown
as Model 3 in Fig. 2.

3.2.4 LSTM Network

Exploring the Long Short-Term Memory (LSTM) model
involves clarifying its fundamental concepts, architecture,
and relevance within your research or application. In con-
junction with the proposed GRU, Self-Attention, and Trans-
former models, the LSTM model stands as another prominent
technique in time series forecasting, enabling a comparative
experiment. LSTM, a subtype of recurrent neural network
(RNN), excels in capturing and learning intricate dependen-
cies within sequential data, making it well-suited for tasks
such as time series analysis and prediction.

The integration of LSTM into our experimental frame-
work aims to assess its predictive capabilities and determine
whether it aligns with or distinctively enhances the capture
of temporal dependencies and the prediction of power peak
loads.

3.2.5 Self-Attention Network

Self-attention networks are a type of neural architecture that
processes sequential data by assessing relationships between
each element in the sequence. Unlike traditional models lim-
ited by local or sequential processing, self-attention allows
for a comprehensive analysis of interdependencies across the
entire sequence simultaneously.

What makes self-attention networks powerful is their
capability to capture long-range dependencies effectively.
They excel in modeling intricate relationships within data,
making them highly valuable in various natural language
processing tasks like machine translation, language under-
standing, and text generation. The parallel computation abil-
ity of self-attention networks enables efficient processing of
extensive sequential data, contributing to their effectiveness
in handling large-scale datasets. Their prominence in state-
of-the-art models, like the Transformer, signifies their cru-
cial role in modern deep learning architectures for sequence
processing.

3.2.6 Transformer Network

Understanding the Transformer model involves exploring its

fundamental concepts, architectural intricacies, and its po-
tential application within your research or field. Alongside
proposed models like GRU and Self-Attention, the Trans-
former holds significance in time series forecasting. Unlike
LSTM, a recurrent neural network variant, the Transformer
specializes in capturing extensive dependencies across se-
quential data, offering a compelling approach for tasks such
as time series analysis and prediction.

Integrating the Transformer into our experimental
framework aims to assess its predictive prowess, determining
if it aligns with or distinctly surpasses in capturing temporal
dependencies and forecasting power peak loads compared to
other established models.

3.2.7 ARIMA Model

The ARIMA (Autoregressive Integrated Moving Average)
model is a time series forecasting method designed to cap-
ture trends and seasonality within the data. It is commonly
employed for predicting future data points based on historical
patterns.

Once trained, the ARIMA model can be applied to make
predictions on forthcoming data. It is particularly effective
for forecasting time-dependent data, such as electricity con-
sumption, as it can discern trends and seasonality in the
dataset.

3.2.8 SVR Model

SVR (Support Vector Regression) is an extension of SVM
(Support Vector Machine) designed to tackle regression
problems. The fundamental concept behind SVR is to trans-
form regression tasks into optimization problems that min-
imize prediction errors, utilizing the principles and tech-
niques of SVM.

In summary, the SVR model provides a data-driven
approach to power peak load forecasting by leveraging his-
torical data and uncovering underlying relationships. Its
capacity to handle non-linear associations and incorporate
diverse features renders it a valuable tool for precise power
load predictions. This, in turn, supports improved resource
planning, enhanced energy management, and ensures a sta-
ble power supply.

3.3 Add the “Weekly Moving Average” and “Monthly
Moving Average” into the Dataset

In the realm of power peak load forecasting, climatic factors
exert significant influence. Typically, climate variables such
as temperature, rainfall, and relative humidity, along with the
incorporation of a “Seasonal Index,” are integral components
to strengthen forecasting models. These factors collectively
constitute pivotal determinants of electricity demand.

However, in this study, the aim is to enhance prediction
performance by capturing the influence of climate factors
on power peak load. As previously introduced, the “Weekly
Moving Average” and “Monthly Moving Average” methods
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Fig. 3 Weekly/Monthly moving average concept

are employed. In addition to utilizing a “weekly” unit, i.e.,
averaging data over seven days with a one-day shift to create
the weekly moving average, a similar approach is applied to
derive the “monthly moving average” based on a “monthly”
unit, aggregating data over 30 days with a daily shift to form
the monthly moving average. By incorporating these two
supplementary datasets, predictions based solely on histor-
ical data are substantially reinforced, leading to improved
forecasting accuracy-an essential facet of this research.

The utilization of “Weekly Moving Average” and
“Monthly Moving Average” to enhance prediction preci-
sion extends beyond datasets related exclusively to climate
and seasons. It applies broadly to any time series historical
dataset, enriching prediction outcomes through the inclusion
of these additional features.

The subsequent section provides the mathematical func-
tion expressions for adjusting “Weekly Moving Average” and
“Monthly Moving Average”.

Weekly Moving Average M , M = [m1,m2, . . . ,mj].
Where t = n − 6, indicating the number of times the sliding
window length is 7 days, represented by t + 7,

mj =
xj + xj+1 + xj+2 + xj+3 + xj+4 + xj+5 + xj+6

7

Monthly Moving Average M ′, M ′ = [m′
1,m

′
2, . . . ,m

′
k
]

where the value range of k is from 1 to n, indicating the
starting position of each sliding window, and the length of
each sliding window is 30 days,

m′
k =

xk + xk+1 + xk+2 + xk+3 + . . . + xk+29

30

When forecasting, the adjusted power peak load data
(Y1’, Y2’, . . . , Y12’) are used for modeling and forecasting.
These adjusted figures will better reflect long-term trends.
The mechanism of this concept is shown in Fig. 3.

4. Experiment and Discussion

4.1 Experiment Setting

This section outlines the experiment setup, encompassing
dataset preparation, evaluation metrics, and experimental
parameter configuration.

4.1.1 Dataset Preparation

The experimental dataset is derived from historical supply
and demand data provided by the Taiwan Power Company.
Specifically, the dataset covers the timeframe from August
1, 2015, to May 31, 2023, and is divided into two segments.
80% of the total data constitutes the training dataset, while
the remaining 20% forms the test dataset. This dataset is
subsequently employed for predicting power requirements
during power peak load instances.

For each time step, the target variable is the electricity
consumption value, with other relevant features (such as date
and time) serving as input features.

In the dataset preparation phase, it is imperative to con-
duct data preprocessing tasks, including feature scaling, han-
dling missing values, and performing feature engineering.
These steps ensure that the data is both accessible and suit-
able for input into the model.

4.1.2 Evaluation Metrics

To assess the performance of various models, the following
evaluation metrics will be utilized:

• Root Mean Square Error (RMSE): RMSE represents the
square root of the mean squared error between the pre-
dicted and actual values. The calculation formula is as
follows:

RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)2

• Mean Absolute Error (MAE): MAE signifies the mean ab-
solute difference between the predicted and actual values.
The calculation formula is as follows:

MAE =
1
n

n∑
i=1

|yi − ŷi |

• Mean Absolute Percentage Error (MAPE): MAPE signi-
fies the mean absolute Percentage difference between the
predicted and actual values. The calculation formula is as
follows:

MAPE =
100

n

n∑
t=1

���� At − Ft

At

����
A: denotes the actual value, F: denotes the Predict value

These three metrics offer a comprehensive evaluation of the
model’s predictive performance and depict the extent of dis-
similarity between predicted and actual values.

4.1.3 Setting of Experimental Parameters

For each model, there are corresponding parameter settings.
For example:

• Setting the hidden state dimension of the GRU layer for
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the GRU network model.
• Setting the hidden state dimension of the GRU layer, the

number of attention mechanism heads, and the dimension
of the linear layer for the GRU + Self-attention network
model, and so on.

• Setting the number of layers for the GRU layer and trans-
former encoder layer, the number of attention mechanism
heads, dimensions, and regularization parameters for the
GRU + Transformer network model.

These parameters are configured based on empirical
knowledge and real-world requirements. Adjusting these
parameter values allows for the analysis and comparison of
model performance. Additionally, it is essential to prevent
overfitting and ensure model stability through techniques like
cross-validation.

The dataset is divided into training and testing sets using
an 80-20 split, where the initial 80% of the data is allocated
for training, and the remaining 20% for testing. The exper-
iments are conducted by implementing the proposed model
in the Keras deep learning framework. Training takes place
in a cloud environment (Python 3 Google Compute Engine)
equipped with an NVIDIA T4 GPU and 15 GB of memory,
including 12.7 GB of system memory. For experimental op-
timization, the model is trained using the “Adam” optimizer
with a learning rate of 0.001 and a batch size of 32. The
model is trained for 200 epochs.

Subsequently, the validity of the experimental results
is confirmed through hypothesis testing. Finally, these five
models are compared to each other to assess the strengths
and weaknesses of the research findings, leading to the final
conclusions.

4.2 Experimental Results

In the ablation experiments, the researcher compared the
predictive performance of the GRU network, GRU + Self-
attention network, and GRU + Transformer network. Fur-
thermore, comparative experiments were conducted between
ARIMA and SVR when compared to the GRU network and
GRU + Self-attention network. The results indicated that
the GRU + Self-attention network outperformed the others,
highlighting the advantage of the self-attention mechanism
in extracting sequence features and enhancing prediction ac-
curacy.

4.2.1 Analysis about Training History/ Prediction Trends

Additionally, the following plots depict the convergence dur-
ing training and the predictions on both training and testing
data obtained from experiments for each network or model.
Only one example plot for each will be presented.

• For the GRU Network, the training history trend is depicted
in Fig. 4.

– Observing the illustration, it becomes evident that the
GRU Network exhibits significant convergence after

Fig. 4 Training history trend for GRU network

Fig. 5 Training history trend for GRU+ self-attention network

200 epochs of computational experiments utilizing both
training and test datasets. Notably, starting from ap-
proximately the 50th epoch, a gradual convergence be-
tween the trends of the test and training datasets be-
comes apparent. This convergence signifies a close
alignment in behavior or performance observed be-
tween the test and training data, almost overlapping
as the epochs progress.

• For the GRU+ Self-Attention Network, the training history
trend is depicted in Fig. 5.

– Observing the illustration, it becomes evident that the
GRU+ Self-Attention Network exhibits significant con-
vergence after 200 epochs of computational experi-
ments utilizing both training and test datasets. Notably,
starting from approximately the 30th epoch, a gradual
convergence between the trends of the test and training
datasets becomes apparent. This convergence signifies
a close alignment in behavior or performance observed
between the test and training data, almost overlapping
as the epochs progress.

• For the GRU+ Transformer Network, the training history
trend is depicted in Fig. 6.

– Observing the illustration, it becomes evident that the
GRU+ Transformer Network exhibits significant con-
vergence after 200 epochs of computational experi-
ments utilizing both training and test datasets. Notably,
starting from approximately the 50th epoch, a gradual
convergence between the trends of the test and training
datasets becomes apparent. This convergence signifies
a close alignment in behavior or performance observed
between the test and training data, almost overlapping
as the epochs progress.
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Fig. 6 Training history trend for GRU+ transformer network

Fig. 7 Training history trend for LSTM network

Fig. 8 Training history trend for self-attention network network

• For the LSTM Network, the training history trend is de-
picted in Fig. 7.

– Observing the illustration, it becomes evident that the
LSTM Network exhibits significant convergence after
200 epochs of computational experiments utilizing both
training and test datasets. Notably, starting from ap-
proximately the 55th epoch, a gradual convergence be-
tween the trends of the test and training datasets be-
comes apparent. This convergence signifies a close
alignment in behavior or performance observed be-
tween the test and training data, almost overlapping
as the epochs progress.

• For the Self-attention network, the training history trend
is depicted in Fig. 8.

– Observing the illustration, it becomes evident that the
Self-attention Network exhibits significant convergence
after 200 epochs of computational experiments utiliz-
ing both training and test datasets. Notably, starting
from approximately the 50th epoch, a gradual con-
vergence between the trends of the test and training
datasets becomes apparent. This convergence signifies

Fig. 9 Training history trend for transformer network

Fig. 10 Training history trend for ARIMA model

a close alignment in behavior or performance observed
between the test and training data, almost overlapping
as the epochs progress.

• For the Transformer Network, the training history trend is
depicted in Fig. 9.

– Observing the illustration, it becomes evident that the
Transformer Network exhibits significant convergence
after 200 epochs of computational experiments utiliz-
ing both training and test datasets. Notably, starting
from approximately the 50th epoch, a gradual con-
vergence between the trends of the test and training
datasets becomes apparent. This convergence signifies
a close alignment in behavior or performance observed
between the test and training data, almost overlapping
as the epochs progress.

• For the ARIMA Model, the training history trend is de-
picted in Fig. 10 and the Actual v.s. Predict comparison is
depicted in Fig. 11.

– From the illustration above, it can “NOT” be observed
that the ARIMA Model demonstrates significant con-
vergence after computation experiments using training
and test datasets.

• For the SVR Model, the training history trend is depicted in
Fig. 12 and the Actual v.s. Predict comparison is depicted
in Fig. 13.

– From the illustration above, it can “NOT” be observed
that the SVR Model demonstrates significant conver-
gence after computation experiments using training and
test datasets.

4.3 Statistical Significance Test

In this study, seven predictive networks/models have been
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Fig. 11 Actual v.s. predict for ARIMA model

Fig. 12 Training history trend for SVR model

Fig. 13 Actual v.s. predict comparison for SVR model

proposed to address the crucial issue of peak load electric-
ity forecasting. An in-depth exploration of the performance
of these models will be conducted, and significant conclu-
sions will be derived through extensive experimentation and
statistical analysis.

To begin with, the following table, depicting numerical
data displaying the average RMSE, MAE and MAPE values
obtained after 30 rounds of experiments, each comprising
200 epochs, for each network/model, is presented in Table 1.

In the experiments, actual peak load electricity datasets
were utilized, and the models’ accuracy was assessed us-
ing performance metrics such as Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), and Mean Absolute
Percentage Error (MAPE). To determine whether perfor-
mance differences were statistically significant, a series of
statistical significance tests, specifically the T-test, was con-
ducted to compare the models’ performances.

This study investigated the following aspects concern-
ing the new approach: (a) whether there are significant differ-
ences in performance among the proposed combined models
in ablation experiments, (b) demonstrating whether the pro-
posed model outperforms both the comparison single model

Table 1 Average RMSE, MAE and MAPE values of experiments

and traditional models in contrast experiments, and (c) ex-
ploring factors and situations influencing the experimental
performance and potential areas for improvement.

In this section, statistical significance tests were em-
ployed to examine and compare the predictive performance
between each experimental group and the control group. Ini-
tially, an F-test was applied to evaluate the overall variance in
financial performance among the models, enabling the cor-
rect formulation for subsequent T-tests. The results of the
statistical significance tests comparing the proposed models
with the control group are presented in Table 2, with the
significance level as 5%. The null hypothesis is formulated
as follows:

H0 = µb ≥ µa

In the ablation experiments section, the results indicated
significant differences in performance among the GRU net-
work, GRU + Self-Attention network, and GRU + Trans-
former network. Specifically, the GRU network outper-
formed the GRU + Self-Attention network, while the GRU
+ Self-Attention network exhibited better performance than
the GRU + Transformer network.

In the comparative experiments section, the author com-
pared each proposed model with single networks or tradi-
tional models such as the LSTM network, Self-Attention
network, Transformer Network, ARIMA model, and SVR
model. The results indicated that, in most cases, the GRU
network and the GRU + Self-Attention network outper-
formed the other models, including LSTM, Self-attention
network, Transformer network, ARIMA, and SVR. Deep
learning networks, especially the GRU network and GRU +
Self-Attention network, demonstrated superior performance
compared to traditional time series models. However, the
results showed that there were no significant difference in
performance between the the GRU + Self-Attention network
and LSTM Network.

Additionally, regarding the comparative experiments
between the ARIMA model with SVR model, and the re-
sult is the SVR model exhibited better performance than the
ARIMA model in certain scenarios.

Several observations arise from the above statements:

• Model Complexity and Overfitting: Regarding self-
attention mechanism may increase the model’s overall
complexity. While self-attention is proficient at captur-
ing long-range dependencies, it also introduces numerous
parameters. This complexity can lead to overfitting, partic-
ularly when the dataset is not sufficiently large or diverse.
In contrast, a standalone GRU network may strike a bet-
ter balance between model complexity and dataset size,
enhancing generalization to test data.

• Data Representation and Feature Extraction: Self-
attention mechanisms are designed for sequential data,
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Table 2 T-test results for RMSE, MAE and MAPE value

excelling at tasks where capturing global patterns is es-
sential. In the context of electricity peak load Prediction,
the sequential nature of GRU networks may better capture
temporal patterns. However, the attention mechanism may
prioritize global context at the expense of finer temporal
details, resulting in relatively poorer performance in this
specific task.

• Training Dynamics: There can be significant variations
in the training dynamics of GRU network, GRU+ Self-
Attention Network, and GRU+ Transformer network.
GRU Networks, with their simpler architecture, tend to
exhibit more stable training and require less hyperparam-
eter tuning. The more complex architectures of GRU+
Self-Attention Network and GRU+ Transformer network
may lead to more challenging optimization during train-
ing, potentially converging to suboptimal solutions with-
out achieving superior predictive power.

• Hyperparameter Tuning: Both GRU and Self-Attention
mechanisms entail specific sets of hyperparameters that

necessitate fine-tuning. Performance disparities may stem
from suboptimal hyperparameter configurations in both
the GRU+ Self-Attention Network and the GRU+ Trans-
former network, affecting their predictive ability relative
to a standalone GRU network.

In summary, this study offers valuable guidance for
selecting models in peak load electricity Prediction. How-
ever, it underscores the significance of factors such as model
complexity, data characteristics, training dynamics, and hy-
perparameter tuning in determining performance. In prac-
tical applications, choosing the appropriate model requires
a comprehensive consideration of these factors and metic-
ulous optimization. This research contributes to the future
of electricity demand Prediction and energy management,
providing valuable insights in the ever-evolving energy land-
scape. Accurate peak load Prediction is a critical step in
ensuring the reliability and efficiency of power systems in
the dynamic energy sector.

5. Conclusion and Future Works

Future research can apply the same deep learning model and
incorporate ‘Weekly Moving Average’ and ‘Monthly Mov-
ing Average’ as auxiliary methods to improve forecasting
accuracy. This approach can find applications in various
domains characterized by time-series data and large histor-
ical datasets. Furthermore, there is room for exploration in
terms of additional deep learning models and optimization
algorithms. Consideration of other external factors could
also enhance the accuracy and applicability of these predic-
tions. This study presents a general approach to data pre-
diction utilizing deep learning models and enhanced dataset
techniques. Specific mathematical functions and model de-
tails may vary depending on the implementation and deep
learning framework used. For more in-depth discussions re-
garding mathematical functions and model specifics, further
details can be provided upon request.

The primary contribution of this study lies in intro-
ducing a predictive method tailored for time-series data. It
leverages ‘Weekly Moving Average’ and ‘Monthly Moving
Average’ as auxiliary tools to enhance prediction accuracy.
The model combines GRU, the Self-attention mechanism,
and Transformer in a novel design. Experiments conducted
on Taiwan’s power peak load data showcase the superiority
of the proposed model over comparative models. Nonethe-
less, there exist certain limitations and avenues for future
research in this work. Firstly, the proposed model could
benefit from further optimization through exploration of dif-
ferent hyperparameters and training strategies. Secondly,
incorporation of external factors like weather conditions and
economic indicators may elevate forecast accuracy. Thirdly,
assessing the model’s generalizability by applying it to other
regions and countries warrants attention.

To conclude, this study underscores the effectiveness
of the Self-attention mechanism and Transformer in Predict-
ing Taiwan’s power peak load. The proposed model has



856
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.7 JULY 2024

the potential for practical applications in the power indus-
try’s decision-making processes. In the future, expanding
the application of these models to diverse fields and explor-
ing methods to enhance their predictive capabilities will be
valuable directions for further research.
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